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The integration of single-cell genomics into the chemical genetics paradigm is reshaping how researchers
profile drug activity, prioritize lead candidates, and uncover new therapeutic opportunities. Traditional
chemical genetic approaches, though instrumental in linking compounds to cellular phenotypes, often rely
on bulk measurements that obscure important cellular heterogeneity and limit insight into mechanisms
of action. By contrast, single-cell technologies offer a transformative view of how compounds influence
diverse cell types and states, capturing nuanced molecular responses that further our understanding of
efficacy, resistance, and polypharmacology. From cancer to neurodegenerative disorders and other disease
contexts, single-cell chemical profiling enables a more precise annotation of drug-induced effects, revealing
differential responses across cellular subpopulations. These methods help identify both beneficial and
adverse outcomes that may not be readily predicted by a compound’s structure or known targets, enhancing
preclinical prioritization and supporting rational drug repurposing strategies. As these technologies mature,
advances in multiplexing, multimodal profiling, and computational analysis are expanding their scalability
and applicability to increasingly complex models. The resulting data-rich assays are poised to bridge critical
gaps between compound screening and clinical relevance. This review highlights the evolution of chemical
genomics toward single-cell resolution and outlines emerging opportunities to leverage these methods
throughout the drug discovery pipeline, from early preclinical prioritization to late-stage repurposing,
ultimately accelerating the development of safer, more effective therapies.

Introduction
The advent of genomic technologies has significantly enhanced our ability to catalog how perturbations
influence cellular states [1–6]. In the context of disease, genomics tools can help identify actionable
disease drivers [7–9], map genetic variation to cellular phenotypes [10–13], and define regulatory networks
associated with therapeutic efficacy [14–16]. More recent advances applying these technologies at single-
cell and spatial resolution have further refined our understanding of disease, pinpointing specific cell
types and states underlying disease phenotypes [17] and highlighting a basis for heterogeneity in disease
manifestation [18].

Chemical genetics revolutionized our ability to dissect how thousands of compounds and biologics
alter gene function and cellular phenotypes [19]. High-throughput chemical genetic screens applied
across genetically diverse cellular models, both naturally occurring [2] and engineered through genetic
manipulation [20], have helped define the genetic dependencies of cellular responses to various exposures.
Many genetic screens are limited to gross phenotypic (such as viability and proliferation) or highly specific
molecular readouts (such as transcriptional reporters and enzymatic activity). While valuable, these
approaches often limit insight into mechanisms of action or off-target effects. Over the past two decades,
the integration of large-scale genomic profiling into chemical genetics has offered a more comprehensive
understanding of cellular responses to perturbations and laid the foundation for the extension of this field
into chemical genomics [21].

Drug discovery strategies are broadly categorized into target-based drug discovery (TDD) and
phenotypic drug discovery (PDD) [22]. In TDD, a molecular target is nominated a priori based on
biological or genetic evidence, and screening efforts focus on identifying compounds or biologics
optimized for their ability to modulate that target. The TDD approach is analogous to reverse genetic
screens in which perturbation of a defined gene is used to interrogate downstream phenotypes [19]. In
PDD, compounds are prioritized based on their ability to elicit a cellular phenotype of interest, without
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requiring prior knowledge of the underlying target. This approach parallels forward genetic screens,
which begin from a phenotype and work backward to identify causal genes. In the context of chemical
genomics, target-based campaigns use high-throughput, information-rich profiling and computational
tools to understand how modulation of a target reshapes biological states [23]. In phenotypic screens, it
enables the deconvolution of targets and pathways underlying active compounds by linking exposure to
detailed molecular response profiles [24].

In drug discovery, whether in target-based or phenotypic campaigns, there is an inherent balance
between employing well-established, low-information-content assays that are specific, rapid, and scalable
[25] and leveraging unbiased, information-rich profiling [24]. However, drug discovery efforts may lack
a comprehensive annotation of the diverse molecular effects induced by a compound. This gap can result
in unanticipated drug-induced effects, an incomplete understanding of a drug’s mechanism of action,
and poor clinical translation [26–28]. By systematically integrating large-scale profiling of drug-induced
molecular effects alongside standard targeted assays that define on-target activity, researchers can improve
the characterization of a drug’s mechanism of action and its often complex (poly-)pharmacology.

Within the drug development pipeline, chemical genomics tools present a unique opportunity to
enhance the characterization of compound libraries, promising lead candidates, and both investigational
and approved drugs based on their ability to induce distinct molecular states. Applying this paradigm
early in the pipeline would enable the identification of beneficial and detrimental effects that may not be
apparent from a compound’s chemical structure, class, or annotated mechanism of action. Such insights
have the potential to improve prioritization, mitigate unforeseen negative effects, and refine therapeutic
strategies.

In this review, we explore the methodological and computational advances that can be readily applied
to the drug discovery pipeline. Specifically, we highlight areas where high-throughput single-cell chemical
genomics profiling can drive progress in compound identification, preclinical prioritization, and the
characterization of a drug’s polypharmacology, as well as facilitate drug repurposing efforts (Figure 1). For
a more detailed discussion on target identification, disease-specific drug discovery, genomics applications,
quality control, and best practices, we refer readers to the following reviews [29–33].

Population-averaged chemical genomics approaches
Before the rapid advancement of next-generation sequencing (NGS), high-throughput parallel measures
of gene expression first took place on DNA microarrays [34], capturing relative mRNA levels using
hybridization to gene-specific probes. Marton et al. first established the idea of a chemical ‘signature,’ or
a gene expression footprint, demonstrating not only on-target calcineurin signaling inhibition-induced
expression signatures in Saccharomyces cerevisiae but also off-target GCN4-regulated transcriptional
responses [3]. Later, Hughes et al. built on this with the idea of collecting a ‘compendium’ of signatures,
showing in S. cerevisiae that deletions in genes involved in similar pathways result in more similar
signatures compared with gene deletions involved in separate pathways [35]. This idea proved its value as
the authors assigned function to several unannotated yeast ergosterol pathway genes; their search narrowed
substantially simply by inspecting how a signature for a gene of unknown function clustered with those of
known genes, and the authors suggest the future use of the approach for chemical perturbations [35].

The compendium approach was applied in what would become the Connectivity Map (CMap),
part of the National Institutes of Health (NIH) Common Fund’s Library of Integrated Network-based
Cellular Signatures (LINCS) program [36]. Originally a collection of 453 perturbation-induced expression
signatures across four human cancer cell lines measured by DNA microarrays [37], the subsequent CMap
studies measure perturbation response by L1000, an assay using bead hybridization and fluorescent
measurements of 978 landmark transcripts as a proxy for the expression of the transcriptome [2]. The
approach has allowed for the profiling of a large number of perturbations with the latest iteration
containing 1.16M replicate-collapsed signatures from >80 k perturbations (33,609 compounds; 9288 genes)
across >200 cell models [38]. By connecting signatures of uncharacterized chemicals to those of known
chemicals and genetic perturbation via gene loss-of-function, CMap authors classified previously unknown
ROCK and MTOR/PI3K inhibitors and discovered the first inhibitor against CSNK1A1. Resources at
this scale have the potential to enable discovery of effective therapeutics, especially when coupled with
orthogonal resources like the Cancer Dependency Map [1,39,40], an encyclopedic endeavor to uncover
genetic dependencies across an ever-growing collection of pan-cancer cell lines, including the extensive
genomic characterization of these cell lines [41–43], and examining viability changes in response to a
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diverse set of drugs [44,45]. Notably, the L1000 assay, while advantageous for its low cost and scale, is
limited by the number of genes measured, requiring the imputation of 9196 of 11,350 unmeasured genes.
The authors note that missing information from the L1000 readout could contribute to the inability to
connect 37% of the screened compounds to their expected target and that higher sensitivity measurements
should be considered for future studies.

More recently, with the lowering costs of sequencing and transcriptome profiling, bulk RNA-seq
chemical genomic approaches were developed to address the challenge of faithfully measuring the whole
transcriptome while maintaining high-throughput capacity. Landmark studies, PLATE-seq [4] and later
DRUG-seq [46], established multi-well plate-based bulk RNA-seq protocols to measure genome-wide
expression changes in response to chemical or genetic perturbation by leveraging well-specific reverse
transcription barcodes. The PLATE-seq and DRUG-seq studies went on to collect signatures from 184 and
433 chemicals, respectively, demonstrating the feasibility of collecting unbiased transcriptomic responses to
study the molecular response to chemicals from a mechanistic perspective.

In addition to gene expression profiling, other groups have enabled assays with orthogonal genomic
measurements of drug response, such as epigenomics and proteomics. With regard to the latter, efforts to
measure protein-based drug signatures [47] have resulted in the discovery and further characterization of
HDAC inhibitors [48,49], JNK inhibitors [50], adrenergic receptor antagonists [51], CDK inhibitors [52],
and BRAF inhibitors [53], to name several examples, providing mechanistic insights into drug–protein
interaction, intra-protein stability and disruption, and interactions within protein complexes [54].

Population-averaged, or bulk, approaches highlight the utility of collecting and comparing
perturbation-induced gene expression signatures. From these data and with follow-up validation,
researchers were able to assign function to uncharacterized genes, classify or reclassify chemicals by
mechanism of action, and identify off-target inhibition. These previous studies laid the foundation for
the application of large-scale chemical genomics and continue to be resources in forming hypotheses for

Figure 1: High-throughput single-cell chemical genomics.

Results can drive progress in compound identification, preclinical prioritization, and the characterization of a drug’s polypharmacology, as well as facilitate drug repurposing
efforts.
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drug discovery and development. Over the last two decades, advances in single-cell genomics technologies
have led to the discovery of striking heterogeneity in cell type composition and an astounding diversity
in cellular state across normal and pathological conditions [55–60]. Population-averaged approaches, with
their limited sensitivity to detect these differences, average over heterogeneity, often leading to a muted
view of induced changes and, in some instances, can reverse the true trends in the data, a phenomenon
known as Simpson’s paradox [61]. Of relevance to chemical genomics, bulk averaging can mask the
response of clinically relevant cellular subpopulations and ignore heterogeneity in drug-induced molecular
responses. Lastly, despite atlas-scale efforts, it is nearly impossible for a single resource to characterize
perturbation signatures of interest to researchers (i.e. provide data for the inhibitor of interest in a
particular model). Therefore, accessible screening methods, technologies that account for heterogeneity,
and computational tools capable of inferring drug-induced effects are a necessity to uncover unique
genotype- and therapy-specific transcriptional responses.

Chemical genomics at single-cell resolution
Population-averaged, bulk chemical genomics approaches coupled with high-throughput screens led to a
significant advance in the ability to perform molecular characterization within the drug-discovery pipeline.
However, these methods are still limited by (1) the inability to capture heterogeneous changes in cell state,
which can frequently occur even within seemingly homogeneous cellular systems, and (2) the lack of
resolution in complex heterogeneous systems compatible with high-throughput screening (e.g. organoids)
to monitor cell type and cell state specific responses and how changes in cell type composition correlate
with drug response.

In the past 15 years, single-cell omics techniques have revolutionized our ability to identify the
cellular basis of disease pathology and aid in the prioritization of therapeutic approaches. Leveraging the
resolution of single-cell omics technologies is quickly enabling the discovery of translationally impactful
correlations between precise cell-state measurements and disease, which have the opportunity to feed
back to advance drug discovery. Within the purview of single-cell chemical genomics, the systematic
molecular screening of drugs at single-cell resolution has the potential to expedite the drug discovery
pipeline. Similar to bulk methods, it can enable annotations that inform treatments with increased
efficacy and minimize detrimental effects, uncovering mechanisms to combat drug resistance all while
determining whether these properties vary across cellular subpopulations. For example, in the context
of cancer, single-cell transcriptomics approaches have been applied to gain insight into the resistance
continuum [62], the gradual adaptation of cancer cells to cancer therapy with increasing fitness. Single-cell
profiling of a BRCA2-deficient high-grade serous ovarian cancer cell line with varying concentrations of
treatment identified vulnerabilities to PARP inhibition with olaparib through the combinatorially targeting
of glutaminase 1 with CB-839, increasing treatment efficacy compared with monotherapy PARP inhibition
treatment, and inducing synthetic lethality in BRCA1- and BRCA2-deficient tumors [62]. Single-cell
genomics technologies have similarly been applied to define how canonical amyloid-β and tau pathologies
regulate microglia subtypes during Alzheimer disease progression through scRNA-seq [63] and sex-specific
gene-expression changes in neurodegenerative diseases that can be monitored by profiling cell types of the
blood [64].

The large number of conditions within a high-throughput chemical screen brings several challenges
to the use of single-cell molecular readouts, in particular, the need for technologies with sufficient
throughput and the need to minimize technical variation across batches. Thresholds for efficiency and
cost-effectiveness should also be considered when choosing an appropriate readout. Currently, there
are various single-cell genomics approaches that have or can be readily adapted to chemical genomic
profiling (nanowell, droplet-based microfluidic, and combinatorial indexing/split-pool techniques), each
with differing characteristics in sensitivity, cost, and throughput. We first discuss the general characteristics
of methods that can be applied to routinely capture at least thousands of cells per experiment, focusing
on the measure of cellular transcriptomes and how they are suitable for single-cell chemical genomics
profiling, followed by introducing a variety of multiplexing strategies at the exposure or cellular level
that can minimize technical noise when applied to large screens and can be leveraged to increase the
throughput of these techniques. Lastly, we comment on how further innovation on these platforms has
enabled multi-modal profiling approaches at the level of the proteome, epigenome, and genome (Figure 2).

Nano-well-based strategies (e.g. Seq-Well [65] and ICELL8 [66]) use gravity (sedimentation) to
physically isolate individual cells into nanowell arrays, resulting in an efficient, simple, low-cost system.
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Despite having a lower overall throughput than the droplet-based microfluidic and combinatorial indexing/
split-pool techniques described below, nanowell-based methods have a high capture rate for a cell’s
transcriptome and are ideal for low cell number samples [67]. The scalability and native throughput of
nanowell-based methods, however, are limited by the number of array wells, although cellular hashing
techniques, described later, could allow for array ‘superloading’ to increase throughput in single-cell
chemical genomics screens.

Droplet-based microfluidic techniques are the most commonly used single-cell methods for high-
throughput single-cell scRNA-seq. In this approach, individual cells and barcoded beads are co-
encapsulated within an aqueous/oil emulsion within nanoliter droplets that uniquely tag a cellular
transcriptome. Drop-seq [68] and inDrop [69] constitute the first iterations of these methods. Drop-
seq, developed by Macosko and colleagues, separates single cells into droplets, capturing single-cell
transcriptomes attached to microparticles (STAMPs) for reverse transcription, amplification, and
sequencing using the STAMP barcodes to identify the cell of origin. InDrop (indexing droplets)
encapsulates cells with a reverse transcription mix and hydrogel beads containing primers released by
UV irradiation. Prior to sequencing, this method employs T7 RNA polymerase for linear amplification
via in vitro transcription. The commercialization of droplet-microfluidic approaches (e.g. the Chromium

Figure 2: An overview of the general workflow of wet lab methods for chemical genomics screening.

After exposing cells to chemical compounds, various hashing cellular and nuclear hashing methods may be used before applying one of the three single-cell genomics
strategies: nano-well based, droplet-based microfluidics, or combinatorial indexing/split-pool. Finally, the high-throughput, multiplexed data produced by these techniques are
computationally analyzed, with some methods enabling multi-modal insights.
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system from 10X Genomics) led to an exponential increase in the accessibility of researchers to single-cell
RNA-seq technology and the innovation of novel assays on the platform. The throughput of commercial
droplet-based microfluidic techniques allows for the capture of up to 10–20,000 cells per unique sample.
Cellular hashing approaches, described below, can be used to increase this throughput by overloading
nanoliter droplets. However, these approaches have limits on the size of cells that can be captured (large
cells may block the device) and can include technical noise and background associated with ambient RNA
[65].

Combinatorial indexing or split/pool methods (e.g. sci-RNA-seq [70] and SPLiT-seq [71]) constitute
highly scalable single-cell genomics technologies. In contrast to other methods, cells are not physically
isolated for library preparation, but rather single cells or nuclei are uniquely labeled via a combination
of barcodes across several indexing rounds. Throughput scales rapidly with the number of indexing
rounds allowing for the profiling of millions of cells within one experiment. The approaches have allowed
for comprehensive profiling of millions of cells representing cell types and cell states across multiple
organisms [72,73]. Similar to microfluidic approaches, a key consideration is that the number of available
cellular barcodes is significantly larger than the number of cells, minimizing barcode collisions [74]. In
the context of drug discovery, this level of scale pairs well with the notion of large throughput screens
and was demonstrated in our development of the sci-Plex pipeline for multiplex single-cell chemical
transcriptomics [5]. Recently, the suitability of these technologies for large-scale single-cell chemical
genomics profiling was excitingly highlighted by the release of the Tahoe-100M, a 100 million cell dataset,
collected using a split-pool technique, of mosaic collections of cancer cell lines exposed to hundreds of
compounds at various drug/dose combinations [75].

Drug-induced cellular states can be characterized by changes in RNA transcription, chromatin
accessibility, protein expression, metabolisms, or other molecular changes. Any one technology (genomics,
transcriptomics, proteomics, and metabolomics) fails to capture the full scope of a single cell’s identity,
making multi-modal multiplexed methods ideal for deeper insights into cellular drug response. Multiple
technologies have been developed to measure additional aspects of the central dogma at single-cell
resolution, frequently in combination with other measurements [ [76–82]]. For example, CITE-seq
and Phospho-seq profile both the transcriptome and quantify surface or intracellular proteins with
oligonucleotide-labeled antibodies [83,84]. Assays to profile chromatin accessibility profiling, such as
the assay for transposase accessible chromatin (ATAC-seq [85]) have been extended to droplet-based
microfluidics [86] and combinatorial indexing [87] approaches for gene expression analysis. PHAGE-
ATAC measures phage-based multiplex protein measurements and chromatin accessibility through
scATAC-seq in parallel, utilizing phages for epitope profiling and phage libraries to select antigen-
specific libraries [88]. SHARE-seq and sci-CAR simultaneously measure chromatin accessibility and
gene expression, linking accessibility to transcription across cell states [89,90]. DEFND-seq co-profiles
mRNA and genomic DNA (gDNA) from an individual cell’s nucleus, building on ATAC-seq by revealing
nucleosome positioning [91]. NEAT-seq [92] reduces non-specific staining of barcoded antibodies to
nuclear proteins by conjugating Escherichia coli ssDNA binding protein, enabling simultaneous profiling of
intra-nuclear proteins, chromatin accessibility, and gene expression. The epigenome has also been studied
at single-cell resolution using DNA methylation profiling via bisulfite conversion with high-throughput
single-cell combinatorial indexed techniques using sciMETv2 [93], where non-methylated cytosine bases
are converted into uracil and sequenced as thymine. Lastly, techniques for whole genome sequencing at
single-cell resolution (sc-WGS) and the direct capture of primary DNA sequence to profile mutations and
areas of genetic variation (e.g. SMOOTH-seq [94]) provide the final piece of the central dogma. Exciting
next steps for the fields include the incorporation of metabolic measurements to arrive at comprehensive
measures of cellular state. Single-cell metabolic regulome profiling (scMEP) [95], for example, an antibody-
based, single-cell metabolic profiling method, has been used to define the metabolic states of human
cytotoxic T cells. While techniques that simultaneously assess the genome, transcriptome, and proteome
of an individual cell together have not been widely established, several techniques do provide multi-modal
insight that leads to more detailed cell profiling, better potential drug-target identification, and broader
drug response prediction. Systems such as Element Bioscience’s AVITI24 are working to close this gap by
combining NGS, RNA capture, proteomics, and morphology of a sample in one platform [96].

Cellular hashing approaches for single-cell genomics allow multiple samples, such as cellular models
exposed to diverse chemical libraries, to be pooled and processed jointly within one experiment, increasing
throughput, minimizing batch effects, and reducing costs [97]. Most approaches involve the addition
of unique DNA-barcoded tags assigned to each sample and synthetic analytes to be captured within
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each methodology. These tags enable pooled samples to be deconvolved in downstream analysis and
individual cells to be matched to specific conditions. A range of cellular hashing methods has been
optimized and implemented. One of the first examples of cellular hashing was developed in 2018 by
Stoeckius et al. as a modification of the multiplexed single-cell multi-modal measurement technique
CITE-seq [98]. This multiplexing strategy allows for the increase of parallel experiments and helps
identify cell multiplets signaling by using a defined set of oligo-tagged antibodies to attach to proteins
on the cell surface. MULTI-seq [99], a technique that specifically tags cells with lipids and cholesterol-
conjugated oligonucleotides to barcode live cells and nuclei. Using MULTI-seq, McGinnis et al. identified
transcriptional responses of myoepithelial and luminal epithelial cells across co-culture conditions and
after induction of transforming growth factor beta (TGF-β) signaling. The combinatorial indexing-based
sci-Plex approach, taking advantage of the inherent affinity of DNA molecules to the cell nucleus, involves
attaching single-stranded DNA oligonucleotide barcodes to permeabilized cells. This low-cost multiplexing
strategy coupled to combinatorial indexing sci-RNA-seq3 was used in an unbiased single-cell chemical
genomics screen profiling thousands of unique combinations of cell model, drug, and dose, identifying a
novel metabolic basis of the molecular response of cells to histone deacetylase inhibition [5] and classifying
related classes of small molecule inhibitors (EGFR inhibitors) by their ability to induce distinct molecular
programs [100].

The tracking of genomic heterogeneity within captured cellular transcripts also allows for multiplexing
across diverse cellular models. Demuxlet [101] and Mix-seq [102] use sample-specific demultiplexing
based on genetic single-nucleotide polymorphism to deconvolve mixtures of cell types. Mix-seq
demonstrates the ability to use this approach to multiplex conditions across diverse cell models exposed
to differing drugs and multiple time points [102]. Lastly, the incorporation of heritable barcodes amenable
to capture via single-cell genomics techniques can be used for multiplexing and to track the evolution of
cells under therapy. CellTag Indexing [103] tracks cells and cellular lineages across different conditions
over different time points by the expression of randomized molecular indexes within RNA polymerase II
driven transcripts via sequential lentiviral delivery and has recently been extended to multimodal profiling
[104]. Cheng and colleagues recently used CellTag to generate a lentivirus barcode library and observed
an association between the induction of resistance to targeting of the kinesin motor KIF11 by ispinesib in
glioblastoma (GBM) cells and a transition to the improved-survival-associated proneural glioma subtype
[105].

The addition of single-cell genetic screens within the context of the chemical genomic pipelines
allows for the ability to systematically dissect which genes are causative for drug-induced molecular
changes. Beginning in 2016, the development of the Perturb-seq [106,107], CRISP-seq [108], CROP-seq
[109], and MOSAIC-seq [110] approaches, which couple CRISPR-based genetic perturbations with a
single-cell transcriptomics readout, revolutionized our ability to determine how gene activity alters gene
expression networks. The first iteration of these methods relied on capture of CRISPR single guide
RNA (sgRNA) identity by capturing a polyadenylated transcript containing a distal barcode that reports
on the delivered sgRNA or embedding of the sgRNA within the 3′ untranslated region (UTR) of a
reporter transcript in droplet-microfluidics based single-cell RNA-seq. Distal barcode methods can suffer
from decreased statistical power due to lentiviral recombination during pooled lentivirus generation
[111], which can be minimized by creating viral particles individually and pooling for transduction
[107]. More recently, innovations have allowed for direct capture of short sgRNAs [112,113], which
fully mitigates challenges associated with distal barcodes. Recently, the sci-Plex-GxE [114] and Perturb-
sci-Kinetics [115] frameworks have demonstrated the ability to couple single-cell genetic screens with
high-throughput combinatorial indexing RNA-seq, applying them to identify the regulation of resistance
programs downstream of drug-induced transcription and the regulation of RNA synthesis, respectively.

Advancements in the scalability of high-throughput screens, multiplexing strategies, and cellular
hashing have led to the generation of large, complex datasets. Despite the fact that data are becoming
increasingly multiplexed as the scope of single-cell analysis increases, the single-cell chemical genomics
field is limited by both technique efficiency and older demultiplexing analysis. To truly make use of
single-cell chemical genomics and gain biological insight to be applied to drug discovery, innovation is still
needed to produce more robust readouts while still facilitating scale. Newer computational techniques are
also needed in order to extract meaningful information from these sparse, large-scale screens regarding
cellular response to drug exposure. To elucidate more mechanisms of action, better dissect immune
response, and unbiasedly catalog drugs with single-cell chemical genomics, more advancements must be
made in computational frameworks to analyze increasingly complex, high-throughput single-cell data.
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Computational methods to gain insight from highly multiplex chemical
genomics screens
The applications of large-scale chemical genomics screens to drug discovery require the development of
novel computational tools that account for considerations specific to multiplex chemical screens and allow
us to gain insight from these extraordinarily high-dimensional datasets while accounting for confounding
technical artifacts of single-cell experiments. As discussed in [29], the adoption of high-throughput drug
screens with molecular readouts has already revolutionized drug discovery, allowing for the identification
of therapeutic cellular targets and a better understanding of drug mechanism of action. Further, these
assays are well poised to generate the necessary data toward the rational design of drug combinations with
predicted therapeutic effects and to inform drug repurposing efforts.

Advances in machine learning (ML) methods applied to scRNA-seq to learn and detect perturbational
response patterns have accompanied the generation of single-cell perturbation datasets [116]. A key
challenge is that perturbation responses are typically measured on different cells before vs. after treatment,
yielding unpaired single-cell data distributions. Another crucial objective in perturbation modeling is
out-of-distribution prediction, or predicting treatment effects from unseen conditions, given that it
is infeasible to explore the full combinatorial space of drug perturbations. A model must first learn
perturbation-induced transcriptional effects and subsequently, the model can predict transcriptional effects
from counterfactual conditions, including untested doses, treatment timings, responses from different cell
types, or drug combinations. Further complexities include disentangling perturbation-specific effects from
confounding variations, and modeling drug–drug interactions across diverse contexts may be challenging.
In this section, we discuss recent exciting advances in ML methods that can be used to uncover biology
from single-cell chemical genomics screens, as well as forward-looking directions involving pre-trained
single-cell foundation models and single-cell causal discovery methods (Figure 3).

Modern representation learning methods have emerged as the computational backbone for single-
cell chemical genomics analysis, leveraging the flexibility of variational autoencoders (VAEs) and
hierarchical Bayesian modeling [117,118]. These approaches excel at reconstructing expression data
while learning latent variables relating to cell states or modules of gene expression, providing denoising
capabilities through probabilistic modeling [119–126]. Specifically, representation learning models feature
generative processes that reconstruct expression profiles of seen conditions using approximated probability
distributions of latent factors to summarize cell state (encoders) and mappings from latent factor reduced
dimensions to expression space (decoders). Notably, the decoding process can be leveraged to predict
transcriptional treatment effects from counterfactual conditions not represented in the original training set,
depending on model design [117].

Figure 3: Overview of downstream analysis tasks performed by computational methods trained on chemical genomics screens.

Left, graphical representation and description of the task; right, citation number of methods that can perform the task. aTask achieved by method trained on genetic but not
chemical perturbations as of publication. bTask possible through in silico gene regulatory network (GRN) perturbation but not explicitly tested by the method as of publication.
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In just the past 2 years, an assortment of representational learning models has aimed to predict
treatment effects on the single-cell transcriptome as a central task. The Compositional Perturbation
Autoencoder (CPA) encodes conditions as independent covariates using adversarial loss to predict
counterfactual expression profiles using linear combinations of latent factors and covariates [127]. This
approach builds on concepts from the authors’ prior scGen model that combines VAEs with latent
space vector arithmetic to model how a perturbation shifts gene expression in unseen cell types
[128] as well as their trVAE model that uses maximum mean discrepancy regularization to force cross-
condition similarities and enable out-of-distribution predictions [129]. scVIDR additionally uses log-linear
interpolation to predict cell type-specific, dose-dependent gene expression changes across unseen doses
[130]. While these VAEs learn and encode perturbational effects as latent factors assumed to be consistent
across cell states, MrVI (Multi-resolution Variational Inference) more generally models heterogeneous
transcriptional response across nested multi-condition experiments, which can then be used for
multiple downstream analyses, including computing transcriptomic similarities between seen and unseen
conditions and predicting counterfactual differential expression for a given cell state [131]. Relatedly, DRVI
employs additive decoders along with pooling functions to learn disentangled latent representations, in
this case corresponding to distinct drug or gene perturbation transcriptional effects [132]. The sVAE+
and FCR methods aim to learn causal representations of chemical or genetic perturbations on single-cell
transcriptomics readouts using sparse mechanism shift modeling and factorized causal representation
learning, respectively [133,134]. Notably, FCR aims to distinguish treatment and covariate (e.g. cell line)
specific effects, as well as interaction effects between treatments and other covariates, which may be useful
for disease-specific prioritization of perturbation targets.

The recent scCADE method also tackles decoupling cellular context from perturbation responses
using contrastive learning and attention mechanisms towards predicting unseen perturbation effects in
seen cellular contexts [135]. Another recent method, LEMUR, avoids discrete categorization of cell states
across experiment conditions and instead relies on matrix factorization using pre-specified conditions as
covariates to map cell phenotypes to a continuous latent space and predict cell-state specific differential
expression between conditions, although this approach may not reflect non-linear treatment effects [136].
OntoVAE incorporates biological ontologies into latent space representations, which allow for direct
interpretation of simulated drug or gene transcriptional effects, although the model may not distinguish
causal from direct relationships within the biological ontology space [137]. Conversely, scCAPE employs
adversarial learning to distinguish perturbation effects on the single-cell transcriptome from intrinsic or
extrinsic cell state variation, the latter being captured in scCAPE’s latent space. However, scCAPE was
originally designed for genetic perturbations (i.e. Perturb-seq training data), and perturbation inference is
conducted at a factor and not a gene-specific level [138].

Modeling perturbations can be formulated as identifying a mapping between two distinct, unpaired
single-cell expression datasets. As such, optimal transport has been proposed as a framework to infer or
predict treatment effects. CINEMA-OT proposes optimal transport within a causal framework to isolate
confounding variation and infer causal treatment effects at the single-cell level via counterfactual cell
pairs, which can also be used to predict combinatorially perturbed phenotypes [139]. CellOT and the
more high-dimensionally efficient W1-OT framework operate within a non-causal context to predict
perturbation effects in single-cell expression data [140,141].

Finally, the BATCHIE framework utilizes active learning and flexible Bayesian modeling to enable
adaptive experimental design for efficient and informative combinatorial drug screens. While not a fixed
model, BATCHIE explicitly encourages iterative and rational drug screening to explore the combinatorial
space, which we predict will be a crucial next direction in the field of chemical genomic screening [142].
In turn, rational generation of combinatorial perturbation data will further improve the performance of
the aforementioned methods in modeling the full combinatorial perturbation space [127,132,138,139]. In
summary, ML methods have shown great performance and promise in dissecting biology from large-scale
experimental single-cell datasets.

Beyond predicting phenotypic responses, computational methods and causal discovery techniques are
harnessing perturbation screens to reverse-engineer gene regulatory networks (GRNs). GRNs capture
co-regulatory dynamics, specifically transcription factor (TF) and target gene interactions, and yield insight
into the molecular underpinnings of disease. A well-constructed GRN could simulate dose-dependent
or combinatorial effects of chemical or genetic perturbations by propagating perturbation effects across
connected nodes (e.g. in silico knockdown, knockout, and/or overexpression of multiple TFs or kinases).
Robust GRN inference from scRNA-seq has been a long-standing goal in the field of bioinformatics and
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systems biology [143]. Unfortunately, directly inferring GRNs from experimental scRNA-seq alone, for
example, through simplistic covariance analysis or specialized tools like SCENIC [144], often fails due to
the static nature of single-timepoint gene expression and other technical limitations like noise and sparsity.
An active area of interdisciplinary ML research applies novel causal discovery methods to better infer
GRNs from genetic perturbation scRNA-seq [145,146]. Genetic perturbation scRNA-seq (e.g. Perturb-seq)
is the gold-standard modality to study gene–gene relationships for GRN inference, although noise and
sparsity inherent to genetic screens continue to impede robust GRN inference. Nonetheless, we anticipate
future causal approaches will increasingly use deeper and wider chemical screens as training datasets
instead.

Contemporary deep generative methods like PDGrapher, graphVCI, and TFdisc train on chemical,
genetic, and/or no perturbation (wildtype, control) scRNA-seq datasets to predict transcriptional effects
using already-constructed or inferred GRNs. PDGrapher predicts combination chemical perturbations
necessary to reverse a given disease’s effects given ground-truth GRNs, while TFdisc simulates TF
perturbation by learning inter-regulation between TFs and target genes from wildtype scRNA-seq using
random forests. graphVCI builds upon a previous variational causal inference framework VCI and trains
on either chemical or genetic perturbation data to refine given ground-truth GRNs and predict cell-specific
counterfactual transcriptional effects from unseen perturbations [147–150]. Key challenges remain in
inferring GRNs, such as deconstructing cyclic relationships between feedback-looping genes in favor
of directed acyclic graphs, but we are excited about the utility of these methods and their emerging
application to analyzing chemical genomics screens.

Finally, in the advent of popular large language models enabled by generative pre-trained transformers
(GPTs) such as ChatGPT, LLaMA, and DALL-E, we anticipate self-supervised foundation models (FMs)
will play a large role in future efforts to predict drug-induced molecular phenotypes. FMs can be pre-
trained on diverse, large-scale single-cell datasets to encode biology or other useful representations and
are an attractive option in order to subsequently perform various downstream tasks with minimal-to-no
refinement. Several single-cell FMs have been developed with diverse performance across common analysis
tasks within single-cell genomics pipelines, with impressive performance already noted in automated
cell type annotation and strong headways in predicting gene expression changes following genetic
perturbations [151]. Notably, scGPT can predict unseen genetic perturbation responses and infer genetic
networks, scFoundation features both drug and genetic perturbation response predictions as downstream
tasks, and other single-cell FMs may indirectly yield insight into drug response at the expression level
across tissue types or species [152–156]. While FMs already show promise in single-cell data analysis,
their application to chemical genomic screens to perform downstream analyses such as predicting dose-
dependent or combinatorial drug effects is yet to be tested, and it remains unclear whether they currently
outperform the aforementioned methods.

We anticipate a new era of transfer learning in chemical genomics where pre-trained models can be
adapted to predict any chemical or genetic perturbation combination in diverse contexts. Such in silico
predictions could greatly accelerate virtual screening of drug effects, hypothesis generation for combination
therapies, and discovery of causal regulatory mechanisms through providing a flexible backbone that had
already learned the language of cells [157]. A central challenge is the lack of a large corpus of single-cell
chemical genomics datasets necessary for pre-training existing and future model architectures and refining
single-cell FM pre-training strategies. While biopharma industry-sponsored initiatives have made headway
into generating large-scale, single-cell drug perturbation datasets [75], we predict comprehensive training
datasets in single-cell genomics will remain elusive in the near term. Future efforts in integrating causal
structures into attention-based FMs would be exciting directions to ensure interpretability.

Outlook and future perspectives
The integration of single-cell molecular profiling into chemical genomics and drug discovery has
demonstrated its potential to transform our understanding of drug mechanisms, polypharmacology, and
therapeutic efficacy. Looking ahead, we expect that advancements in single-cell methodologies will greatly
refine our ability to perform drug target identification, characterize correlates (biomarkers) of therapeutic
response, and predict resistance mechanisms a priori.

The resolution provided by single-cell genomics has provided key insights into the cell type(s) most
likely to be affected in a disease and make predictions regarding how cellular heterogeneity and shifts in cell
state(s) co-vary with disease phenotypes and an individual’s response to therapy [15,17,62,158–163]. This
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ability to refine target identification can help ensure that therapeutic interventions are directed at the most
relevant cellular subpopulations. In the context of the chemical genetics paradigm, single-cell chemical
genomics profiling has more deeply defined the consequence of drug exposure capturing molecular and
cellular determinants of efficacy and resistance [62,114,164,165], which can ultimately guide the design of
more effective combination therapies.

In the context of cancer, various screenable modeling approaches have been developed to facilitate
the high-throughput screening of drug response at single-cell resolution. Established cell lines using
multiplexed sequencing methods have provided insights into how genetic background influences drug
response [5,102] and are rapidly scalable and multiplexable [75]. Patient-derived models have been
optimized to maintain tumor heterogeneity [100,166], which can improve the clinical relevance of
preclinical findings. Organoid models have allowed for the study of drug responses in three-dimensional
environments that mimic in vivo conditions [167], while explants have preserved native tissue architecture
and cell–cell interactions [165,168]. However, a systematic analysis to identify minimal screenable
systems for a given molecular phenotype (i.e. retain key disease and therapeutic response features while
maintaining multiplexing ability) is still lacking. Looking ahead, extending single-cell chemical genomics
to more physiologically relevant model systems will be essential. Organoids [169], patient-derived explants
[165], and microphysiological ‘organ-on-chip’ platforms [170] can better capture native 3D architecture,
microenvironment interactions, and gradients in drug exposure that shape therapeutic response. Key
opportunities lie in adapting these complex systems to high-throughput profiling and perturbation screens
and in integrating spatially resolved readouts that map transcriptional drug responses back to defined
structural features. Lastly, evolution under therapy due to genetic variation [171] or cellular plasticity
[172] has also been identified as a manner by which tumors evade the effects of therapy. Incorporation
of single-cell lineage tracing [104,173] will be instrumental in determining how cell populations evolve in
response to drug exposure and has already highlighted how clonal expansions contribute to therapeutic
resistance to chemotherapy [174].

Future promising directions in single-cell chemical genomics include the integration of spatial
transcriptomics [175–179] and spatially barcoded single-cell transcriptomics approaches [180,181] to
capture tissue-specific drug responses to drugs and leverage optical molecular screens [182–184] to define
their regulation. While artificial intelligence (AI) and ML hold promise for advancing drug discovery,
a major challenge lies in the need for comprehensive, large-scale, high-quality single-cell perturbation
datasets to train these models effectively, a challenge that is excitingly beginning to be met by the release of
the Tahoe-100M datasets [75].

The next decade holds immense promise for single-cell molecular profiling in drug discovery.
By integrating high-throughput single-cell screening with computational innovations and multi-modal
approaches, researchers will unlock deeper insights into drug mechanisms of action, accelerate the
identification of effective therapies, and refine personalized treatment strategies. While challenges remain
in scalability, data interpretation, and clinical translation, continued interdisciplinary advancements will
solidify single-cell chemical genomics as a cornerstone of modern drug development.
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