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ABSTRACT: Significant advances in science and engineering often emerge at the
intersections of disciplines. Nanoscience and nanotechnology are inherently interdiscipli-
nary, uniting researchers from chemistry, physics, biology, medicine, materials science,
and engineering. This convergence has fostered novel ways of thinking and enabled the
development of materials, tools, and technologies that have transformed both basic and
applied research, as well as how we address critical societal challenges. In this Nano Focus,
we pose and explore 33 questions whose answers could profoundly impact fields such as
energy, electronics, the environment, optics, and medicine. These questions highlight the
need for deeper foundational understanding, improved tools and techniques, and
innovative applicationseach with significant societal relevance. Together, they represent
a global call-to-action for the scientific community.

Nanoscience and nanotechnology have perhaps done
more than many other modern disciplines to unite
researchers across chemistry, physics, materials

science, biology, engineering, and medicine (Figure 1).
Originally pioneered by physicists, the field saw early
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breakthroughs in preparing and characterizing materials at the
nanoscalefor instance, the 1986 Nobel Prize in Physics
recognized the invention of the scanning tunneling microscope
and the electron microscope.1
By the 1990s, chemists joined the field in large numbers.

The 1996 Nobel Prize in Chemistry, awarded for the discovery
of fullerenes,2 transformed our understanding of carbon,
arguably the most important element in the Periodic Table,
and sparked further discoveries such as of carbon nanotubes
and graphene. This transdisciplinary approach established a
model for innovation that fields like synthetic biology and
artificial intelligence (AI) are now emulating. Today, nano-
science and nanotechnology tools are integral to disciplines
ranging from chemistry to engineering and medicine,
continuing to drive scientific, technological, and societal (e.g.,
policy, education, intellectual property) advancement; these
fields have also been important in connecting the scientific
community to the lay public.
Looking forward, nanoscience and nanotechnology are well-

positioned to address critical global challenges. In this Nano
Focus, we present 33 questionseach accompanied by an
answerdesigned to foster cross-disciplinary dialogue and
collaboration. The number of questions corresponds to the
number of years of the existence of one of our laboratories (C.
A. M.) at the time this project was initiated, a hub of extensive
and collaborative research e2orts, and also closely coincides
with the number of years since many foundational papers in
nanoscience and technology appeared in print. The Mirkin lab
at Northwestern University (NU) was established in 1991, and
NU also hosts the International Institute for Nanotechnology
(IIN), founded in 2000, which has grown into one of the
world’s largest centers for nanoscience research and education.
This dynamic research and training environment has
significantly contributed to the sustained growth of the field,
having contributed to the education of hundreds of faculty
members now leading research programs at top institutions
worldwide, including many authors of this Nano Focus.
We have organized the 33 questions and responses

according to the framework proposed by the Chemical
Abstracts Service (CAS) of the American Chemical Society
(ACS),3 which classifies Nobel Prize-recognized innovation
into three categories: (1) Foundational Understanding (11
questions), (2) Tools and Techniques (7 questions), and (3)
Impactful Applications (11 questions) (Figure 2). Additionally,
we explore four questions related to the societal implications of

nanotechnology. Addressing the challenges outlined in this
article would lead to transformative scientific and societal
progress. We o2er this Nano Focus as a call-to-actionurging
researchers across disciplines to come together in pursuit of
integrated, collaborative solutions to some of the most
complex problems of our time.

FOUNDATIONAL UNDERSTANDING
According to the CAS,3 foundational understanding refers to
insights from basic research that deepen our knowledge of the
world. In nanoscience and nanotechnology, this targeted
insight involves exploring how materials can be designed and
synthesized to achieve programmable properties beyond those
found in nature. Researchers aim to understand the behavior of
these novel materials in complex environments. A key area of
interest is reverse engineering: starting with desired properties,
identifying suitable materials, and synthesizing them through
chemical or top-down physical methods. An ultimate goal is to
develop design principles by integrating theoretical models
with experimental data. Such concepts form the basis of the
discussions in this section.

DESIGNING AND SYNTHESIZING NEW FORMS OF
MATTER WITH CHEMICAL PRECISION

1. When is atomic and molecular precision in
nanostructure synthesis most important, and how
can it be achieved? Atomic and molecular precision in
nanostructure synthesis is essential when specific material
properties, such as electronic, catalytic, or optical behavior,
depend on well-defined structure−property relationships. This
level of control is particularly important for fundamental
studies aimed at understanding how nanomaterials behave
under di2erent conditions and in applications that require
reproducible and high-performance materials.
Significant advances have been made. Individual atoms can

be positioned on surfaces.4−6 Hundreds of routes to atomically
precise metal nanoclusters (e.g., Au25(SR)18 via size-focusing
methods) and reactions involving them exist.7−9 Dendrimer-
templated approaches enable particle uniformity without the
intentional use of surface ligands.10 The hot-injection method

Figure 1. Nanoscience and nanotechnology have united disci-
plines.

Figure 2. Key unresolved questions in nanoscience and nano-
technology encompass: Foundational Understanding, Tools and
Techniques, Impactful Applications, and Societal Implications.
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has become foundational in synthesizing well-defined nano-
crystals (2−100 nm), while ligand-assisted and electrochemical
strategies provide further control over morphology and
exposed facets.11−16 Bimetallic nanostructures can also be
engineered to localize specific elements, tailoring surface
activity for catalysis.17−19 These synthetic innovations have
enabled hierarchical assemblies with emergent properties.20−23

The degree of precision required depends on the application.
In catalysis, parameters like oxidation state, surface facets,
(crystal) phases, and adsorbates significantly a2ect activ-
ity.15,19,24−28 In optics and electronics, defect structures
modulate performance-critical properties such as photo-
luminescence and conductivity.
Despite these developments, much of the field still relies on

empirical optimization. To transition toward predictive
synthesis, researchers must develop a mechanistic under-
standing of nanostructure growth, refine thermodynamic and
kinetic control, and identify critical parameters for each
application. In catalysis, where active sites may form
dynamically under reaction conditions, in situ tools capable
of resolving atomic transformations are essential.10 Current
ensemble methods like X-ray absorption spectroscopy (XAS)
and X-ray photoelectron spectroscopy (XPS) must be
complemented by single-particle and correlative techniques,29
and theoretical tools such as density functional theory (DFT)
and electromagnetic modeling remain invaluable. Emerging
integration of machine learning (ML) and AI30,31 o2ers new
potential to map synthesis conditions to desired outcomes,
setting the stage for the routine and automated creation and
scale-up of atomically precise nanostructures.
2. What innovations are needed to make nanoma-

terials functional in extreme environments? Nanoma-
terials designed for use in extreme environments, such as high
temperature, pressure, mechanical strain, or radiation or high
or low pH, must maintain stability and performance despite
their inherently high surface reactivity. While their tunable
properties o2er opportunities for enhanced performance (e.g.,
improved catalytic activity under high pressure), these same
traits can lead to structural degradation under harsh
conditions.32,33
A critical need is for operando and in situ characterization

techniques that track atomic-scale structural changes in real
time. Tools like electron microscopy and X-ray spectroscopies
have begun to simulate extreme conditions, but more robust
methods with high spatiotemporal resolution are needed to
inform stability design.34−36 Theory has been used to develop
optical control methods based on the phase, intensity, or
spectral composition of light. Although researchers have
applied such methods to control, and in some cases to
understand, complex systems, including molecular-scale
electronics, some are not practically feasible or experimentally
implementable in the laboratory. In that respect, moderately
intense, short-pulse laser fields have an advantage.37 Computa-
tional approaches like DFT and molecular dynamics o2er
valuable insight38−40 but often fall short due to assumptions
that simplify environmental complexity.41 Improved algorithms
and integration with AI can better capture real-world
conditions and expand predictive power across broader
chemical spaces.
Materials innovations are also essential. High-entropy alloys

(HEAs), composed of multiple metals with near-equimolar
ratios, o2er exceptional thermal and mechanical stability due to
entropy-driven phase stabilization and sluggish di2usion.42−44

Ceramics and ceramic matrix composites, including those
composed of borides, nitrides, and carbides, exhibit extreme
hardness and thermal resistance,45,46 making them suitable for
aerospace and nuclear applications. Two-dimensional (2D)
materials like graphene and MoS2 also show promise due to
their flexibility, chemical inertness, and thermal conductivity.47
Even promising materials can fail in deployment without
consistent production routes. Interdisciplinary progress,
merging advanced synthesis, ML-guided simulation, and real-
time characterization, is key to designing nanomaterials that
are not only functional but also reliable in environments far
from equilibrium.

3. Given the rise of structural nanomedicine, how
can we design nanomedicines with molecular precision
for optimized therapeutic potency? Molecularly precise
nanomedicines represent a new frontier in therapeutic design,
o2ering control over drug identity, spatial arrangement, and
hence physicochemical properties. Unlike conventional for-
mulations or larger self-assembled structures, structural
nanomedicines,48−51 by controlling structural presentation in
addition to composition, allow fine-tuning of performance
metricssuch as circulation time, cellular uptake, and
therapeutic potencywhile minimizing toxicity.52−62

Uniformity is key. Precision synthesis ensures batch-to-batch
reproducibility,53,55,63−66 enabling clearer interpretation of
pharmacokinetics and biological interactions. Extended circu-
lation, often achieved through poly(ethylene glycol) (PEG)-
ylation, improves bioavailability and therapeutic index.67,68
Targeting is enhanced through surface modification, such as
antibody conjugation69−79 or physical tuning of size, charge,
and shape, to navigate biological barriers like the blood−brain
barrier (BBB).80−82 Methods are needed to formulate
nanoparticles as well as to measure the density and positioning
of various ligands on nanoparticle surfaces, which is not always
straightforward using current methodologies.
Controlled-release systems responsive to pH, enzymes, or

metabolic cues enable site-specific activation, increasing
e0cacy while limiting systemic exposure.83−88 Paracrine-
transfer mechanisms, where particles enter one cell and are
passed to neighbors, can also enable staged delivery for
localized and sustained treatment.89 Exploring broader size
ranges expands application potential; smaller nanomaterials
(3−10 nm) enter cells more e0ciently, can engage key
biological targets more selectively, penetrate tissues more
deeply, and help avoid immune clearance.90−93 Larger mimetic
structures (300 nm−1 μm), such as red blood cell-mimicking
carriers or membrane-coated particles, evade phagocytosis and
prolong circulation.94−99

Next-generation structural nanomedicines will combine
multiple functional agentse.g., peptides, nucleic acids,
prote ins , and polymers to per form synerg is t ic
tasks.92,93,100−104 These multicomponent systems may enable
programmable responses, self-amplifying signals, or feedback-
controlled delivery. Progress requires advances in in vivo
analytics, manufacturing, and regulatory frameworks. Only
with molecular-level design, standardized production, and real-
time tracking will the field of structural nanomedicine fully
transform therapeutic paradigms.

DELINEATING STRUCTURE−FUNCTION
RELATIONSHIPS

4. How can understanding structure−function
relationships in natural systems guide the design of
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synthetic materials with enhanced functionality? To
design synthetic materials that match or exceed nature’s
capabilities, we must first understand how biological systems
use structure to control function. Natural materials like
enzymes achieve near-perfect catalytic e0ciencies, performing
complex reactions with minimal energy loss. These biological
exemplars inspire the rational design of nanostructures for
applications in catalysis, energy storage, and biomedicine.
A central challenge lies in replicating dynamic, hierarchical,

and adaptive functions observed in biology. Unlike rigid
synthetic systems, biological structures respond to stimuli and
self-regulate, o2ering pathways toward intelligent, self-assem-
bling materials. Advances in structural biology, including tools
that predict protein 3D structures from amino acid
sequences,105 are now being extended to biomolecule−
nanomaterial systems using unified structural descriptors.106,107
These approaches enable predictive control over nanomaterial
assembly and reactivity, moving us closer to synthetic analogs
of protein machines.108
Synthetic mimicry also involves replicating biological

interfaces.109−118 For example, hydrated silicon dioxide mimics
the protective e2ects of water on membranes. Unlike
conventional cryopreservation, nanosilicification preserves
cells and tissues at ambient temperatures, protecting them
from oxidation and UV degradation. Upon rehydration, the
silica shell dissolves, and biological function is restored,
o2ering a cost-e2ective solution for storing sensitive biological
samples.
Another emerging frontier is phase-separated nanomaterials

inspired by cellular compartmentalization via liquid−liquid
phase separation. These transiently ordered systems do not
rely on static structure but instead gain function through
reversible organization. Such materials challenge the classical
“structure defines function” paradigm, providing a foundation
for adaptive nanotechnologies.
Ultimately, by learning how living matter controls function

through structure, motion, and environment, researchers can
engineer synthetic systems that not only mimic biology but
extend it, o2ering new tools for sustainable energy, responsive
medicine, and materials with life-like properties.119,120
5. How can structure−function relationships be

leveraged to control charge dynamics in nanoscale
systems? Understanding and exploiting structure−function
relationships is key to manipulating electronic charge at the
nanoscale.121 Charge dynamics, encompassing generation,
separation, motion, and recombination, govern many quantum
phenomena and device functionalities. Carefully engineered
materials, such as type-II heterojunctions, exploit band o2sets
to separate electrons and holes spatially after photoexcita-
tion.122 For example, lead-halide perovskite/metal oxide
heterostructures facilitate directional charge transfer, enhanc-
ing photocatalytic and photovoltaic performance.123−128

Materials discovery in this area is critical.
In addition, capturing these ultrafast events, which occur on

femto- to attosecond time scales and nanometer length scales,
requires advanced characterization.129−133 Transient absorb-
ance (TA) spectroscopy and nonlinear optical methods, such
as second harmonic generation (SHG), provide femtosecond
resolution and are sensitive to electric fields and excited-state
dynamics. Pushing these technologies to higher spatiotemporal
resolution remains critical for real-time insights into charge
behavior.134 Theory also has been a major tool in the
development of ultrafast, space-resolved control and analysis

of electronic behaviors. Numerically, it is straightforward to
predict and to analyze electronic behaviors down to the
ultimate time- and space-resolved limits because wavepacket
propagation methods are improving with the e0ciency of
Fourier transform techniques. Additionally, semiclassical
methods, which are typically useful for multidimensional
systems and for describing molecules coupled to an environ-
ment, quickly become e0cient.
Scanning probe techniques and high-resolution electron

microscopy complement optical methods by revealing the
nanoscale landscape over which charges move. Atomic-
resolution imaging of charge domains, defects, and interfaces
helps correlate structure with electronic function.135−141

Enhancing in situ electron microscopy and enabling operando
imaging of devices can convert these tools into ″nanolabs″
where electronic and structural evolution can be tracked
simultaneously.142
Emerging tools like ultrafast electron microscopy (UEM)

combine the time resolution of spectroscopy with the spatial
resolution of electron imaging.143−145 Similarly, electron
holography can quantify electrostatic potentials at atomic
resolution and assess single-particle charge states,146,147 and
time-resolved scanning tunneling microscopy, often based on
plasmonics, is also important.
Together, these complementary techniques will advance our

understanding of charge manipulation, enabling the precise
design of nanomaterials for quantum computing, neuro-
morphic systems, and high-e0ciency energy devices. As
structure increasingly dictates electronic behavior at the
nanoscale, structure−function insights will be vital to
developing materials that exploit quantum phenomena with
high fidelity.

SCALING AND INTEGRATING NANOMATERIALS INTO
FUNCTIONAL SYSTEMS

6. How can nanomaterials be scaled and integrated
into larger structures and functional devices? Once a
nanomaterial with promising properties has been developed,
the challenge shifts to producing it at scale and integrating it
into macroscale systems. Many existing synthesis techniques,
such as high-throughput nanolithographies and microfluidics,
enable the creation of complex nanostructures with useful
catalytic, optical, or electronic functions.148−161 However,
translating some of these types of methods to production at
industrially relevant scales remains a significant hurdle.
A core issue is the inherently dilute nature of nanoparticle

suspensions.162 Producing dense solids from dilute systems
requires large volumes of solvent, making the process
ine0cient. To overcome this challenge, researchers are
developing methods that allow stable, high-concentration
nanoparticle solutions while retaining control over interparticle
interactions for a variety of applications, including optics.163
Ligand design is critical because ligands not only stabilize
particles but also govern assembly, interfacial behavior, and
functional properties.164−179 Building comprehensive, scalable
ligand libraries, including DNA, small molecules, and synthetic
polymers, is essential. Researchers in related fields have also
sought to solve similar issues to increase the chemical content
of metal and ceramic inks of various compositions for use in
patterning and additive manufacturing.180,181
Processing nanoparticles into bulk materials or functional

devices poses additional challenges.155,182 While superlattices
formed from nanoparticles can mimic atomic crystals, their
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growth dynamics di2er markedly due to the larger sizes and
weaker forces at play.183,184 The kinetics of these processes
a2ect material microstructure.185−190 While atomic solids rely
on microstructural control for property management, their
e2ects on nanoparticle assemblies remain less explored. New
assembly methods must account for these mesoscale
phenomena, enabling precise delivery of thermal, mechanical,
or electromagnetic energy during fabrication.
Integration into devices requires maintaining nanoscale

functionality within macroscale architectures. This integration
might involve embedding nanoparticles in flexible substrates,
3D printing nanocomposites, or creating multiscale hetero-
structures. As materials are scaled, interfaces become crucial,
dictating performance and failure modes. Future progress
depends on understanding the multiscale thermodynamics,
kinetics, and mechanics of nanostructure assembly and
integration. Bridging the gap between nanoscale precision
and macroscale utility will unlock transformative applications
in energy systems, computing, healthcare, and structural
materials.
7. How can we integrate nanoscale components and

processes with larger-scale systems to create devices
with hierarchical structure and function across length
and time scales? Integrating nanoscale components into
larger-scale systems to create functional devices with structural
and temporal hierarchies remains a central challenge in
nanoscience. Biological systems provide compelling models,
where nanoscale machineries exhibit highly organized
architectures and operate synergistically across spatial and
temporal dimensions.191,192 Mimicking such multiscale coor-
dination in engineered systems requires precise definition of
nanoscale building blocks and seamless connection across
length scales.193
Top-down fabrication methods, such as wafer-scale photo-

lithography, o2er high spatial precision but face limitations in
scalability and cost.194 Bottom-up strategies, including the
synthesis and self-assembly of nanoparticles and nanoclusters,
enable complex organization from the molecular level
upward.195 A hybrid approach combining these methods is
critical for constructing hierarchical structures with tailored
geometries and functions.
Recent work has demonstrated controlled assembly of

nanoclusters into superstructures for optical and electronic
applications,182,196−201 yet achieving arbitrary geometries with
robust integration remains di0cult. Advances in ML are
addressing this gap by enabling predictive design across
scales.202 Inspired by protein folding breakthroughs like
AlphaFold,203,204 ML models now predict properties of atomic
clusters,205,206 metal−organic frameworks (MOFs),207,208 and
perovskites,209,210 helping bridge nanoscale traits with macro-
scopic material performance (see also Question 9 below).
Temporal hierarchies are vital. Many critical nanoscale

processes, such as electrocatalysis, occur over femtosecond to
second time scales.211,212 Designing devices that leverage these
processes requires synchronizing kinetic and structural
hierarchies.213 This strategy motivates the development of
responsive, multilength-scale architectures optimized for
dynamic function.
Progress depends on advanced characterization. In situ and

operando microscopies,214 correlative techniques,215 and ultra-
fast spectroscopies216 enable simultaneous monitoring of
structural and functional dynamics, providing key insights
into multiscale interactions. These tools and strategies drive

the rational design of integrated devices that exploit nanoscale
phenomena for macroscopic utility.

8. How can nanoenabled devices be seamlessly
integrated with biological systems to improve human
health? Seamless integration of nanoenabled devices with
biological systems holds great promise for transforming
healthcare, but it requires careful attention to both materials
and systems design. Recent advances in wearable and
implantable nanodevices have demonstrated exciting capa-
bilities for diagnostics, monitoring, and therapy.217−222

However, true integration demands that devices operate
harmoniously within the complex and dynamic human body
as has been accomplished in certain cases with larger scale
systems (e.g., implantable defibrillators with batteries that last
approximately 10 years and are Bluetooth-enabled and capable
of communicating data to hospitals via an app).
Materials in direct contact with biological tissue must be

biocompatible, avoiding immune responses or fibrosis, and
resilient to mechanical strain over time.223−225 Mismatches in
mechanical properties between soft tissues and rigid electronics
can cause damage and limit long-term stability. To address this
issue, researchers are developing shape-adaptive interfaces that
match the mechanical compliance of tissues, improving
integration and minimizing inflammation.226−229

For skin-mounted devices, breathability is critical to ensure
user comfort and prevent irritation. Natural materials such as
silk have emerged as promising substrates due to their
biocompatibility, flexibility, and gas permeability.230−234

These innovations are key to developing unobtrusive, long-
term health monitors.
Powering such miniaturized systems remains a major hurdle.

Conventional batteries are bulky, rigid, and often require
invasive replacement procedures.235 Bioenergy harvesters,
which convert mechanical, thermal, or biochemical energy
from the body into usable electricity, represent a compelling
alternative and are under active development.236,237 On the
system level, high-resolution nanosensors generate large
volumes of real-time data, necessitating robust data manage-
ment and wireless communication platforms.238 Ensuring data
security, processing speed, and scalability will be essential for
widespread clinical use.
Ultimately, nanoenabled devices must evolve into “smart”

systems that sense biological signals and autonomously
respond to disease states. Integrating AI enables these devices
to analyze complex data sets, personalize treatment, and
enhance early detection.239,240 These advances are reshaping
how we interface electronics with the human body, paving the
way for the next generation of personalized, responsive
healthcare technologies.

MULTISCALE MODELING OF NANOMATERIALS
9. How can we model materials across length scales

where classical or quantum mechanics alone are
inadequate to match theory and experiment? Modeling
materials across multiple scalesfrom atoms to devicesis
crucial for understanding complex nanomaterial behavior, yet
no single theoretical framework su0ces across all regimes.
Classical and quantum mechanics each provide foundational
insights: quantum mechanics excels at capturing electronic
properties of small systems, while classical molecular dynamics
(MD) and Monte Carlo methods model larger systems using
empirical or quantum-derived forces.241 However, these
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methods face limitations in scale, accuracy, or computational
cost.242
For very large systems or long time scales, coarse-grained

models group atoms into simplified units, or “beads,” enabling
simulations of polymers, DNA, proteins, and nanoparticle
superlattices.243−251 Yet, such models struggle with chemical
processes like bond formation or redox reactions, especially at
interfaces between dissimilar materials. At coarser levels,
continuum theories are applied, but often lack the resolution
needed to capture mesoscale phenomena and may be
constrained by computational resources.252−254

To bridge these gaps, multiscale modeling approaches have
emerged. Hybrid schemes, such as mixed quantum-classical or
semiclassical models, are particularly e2ective for describing
light-matter interactions. For example, finite-di2erence time-
domain (FDTD) and finite element methods (FEM) are
widely used in classical electrodynamics,255,256 while quantum
electrodynamics is necessary to understand nanoscale optical
phenomena such as in quantum dots, plasmonics, and strong
light-matter coupling.257,258 Mixed and semiclassical methods
provide a balance between computational e0ciency and
quantum accuracy.259−262

Both ML and AI are increasingly integrated into multiscale
frameworks to accelerate simulations, improve force field
accuracy, and model complex phenomena. Notable successes
include protein folding predictions203 and ML-derived
interatomic potentials,263 as well as reaction modeling.264
These data-driven approaches can complement physics-based
methods, particularly in challenging intermediate regimes
where neither classical nor quantum mechanics alone are
su0cient. Ultimately, combining coarse-graining, hybrid
quantum-classical methods, and ML o2ers a path to unify
theoretical and experimental understanding across scales,
essential for the predictive design of next-generation nanoma-
terials.

UNDERSTANDING AND EXPLOITING
NANOMATERIAL LIFECYCLES
10. Given that nanostructures are often dynamic

under external stimuli, how can we predictably control
nanoparticle durabilityand can self-healing mecha-
nisms be designed to prolong functionality? Nanostruc-
tures are inherently dynamic, responding to stimuli such as
light, heat, and electrochemical input in ways that can both
enhance functionality and accelerate degradation.265,266 While
this dynamism enables tunable behavior, it introduces
challenges for their long-term durability, particularly in high-
performance applications like energy storage, catalysis, and
sensing. Designing nanoparticles that respond to repeated
stimulation in a predictable and robust manner is therefore
critical.
One promising strategy is to draw inspiration from biological

systems, where self-repair is common. Adaptive nanostructures
capable of reconfiguring or restoring their function after
damage could maintain performance over extended use.267
Such self-healing materials might incorporate built-in feedback
mechanisms that detect structural failure and initiate repair
without significant external input. However, the complexity of
these systems makes material selection and integration of self-
repair functions particularly challenging.
An equally important design consideration is end-of-life

behavior. Rather than maximizing durability indefinitely, in
some cases it may be desirable to enable controlled

degradation after functional use. Degradable coatings or
modular architectures can facilitate the recovery of valuable
components and reduce environmental impact.268−274 For
instance, soft materials like nanocellulose o2er built-in
degradability,275 while coordination chemistry has been used
to recover gold atoms from nanoparticles using benign agents
such as cyclodextrins.276 These strategies highlight the
potential to design nanoparticles not only for performance
but also for sustainability and recyclability.
Ultimately, future nanostructures should balance resilience

and responsiveness during their operational lifespan with
environmentally and economically beneficial disassembly at
end-of-life. This dual focus on durability and degradability will
be essential for sustainable nanotechnology in advanced
applications.

11. What are the key factors in nanometabolomics,
and can we design nanometabolites to act as therapies
rather than just byproducts? Nanometabolomicsthe
study of how nanomedicines are metabolizedplays a critical
role in understanding and optimizing the safety and e0cacy of
nanoscale therapeutics. The pharmacokinetics (PK) and
pharmacodynamics (PD) of nanomedicines depend heavily
on size, shape, surface chemistry, and composition,277−280 yet
these parameters remain insu0ciently characterized in many
systems. Once inside the body, nanoparticles can exhibit
complex and unpredictable behavior,281 necessitating early
identification and characterization of resulting nanometabo-
lites.
To ensure safe and e2ective use, these nanometabolites must

be examined not only for toxicity but also for therapeutic
potential. This shiftfrom viewing nanometabolites as waste
products to potentially useful agentscould open new avenues
for therapy. Accurate ADME (absorption, distribution,
metabolism, and excretion) profiling, integrated with physio-
logically based pharmacokinetic (PBPK) models, is essential
for understanding in vivo behavior.282,283 These models are
especially useful when guided by ML, enabling prediction of
nanomedicine fate from in vitro data.
Complexities multiply with multicomponent nanomedicines,

where component interactions a2ect PK/PD in ways not
captured by single-entity models.61,65,284−297 These formula-
tions require advanced, systems-level models that account for
structural organization, degradation pathways, and the roles of
individual componentsincluding beneficial nanometabolites.
A key complicating factor is the formation of a “protein

corona” around nanoparticles upon exposure to biological
fluids.298 This corona modulates interactions with cells and
organs, profoundly a2ecting ADME and immune responses.
Protein identification, ideally conducted in vivo via mass
spectrometry, is vital,299 though conventional techniques are
often incompatible with soft nanomaterials.300 Moreover,
corona composition varies with administration route, patient
physiology, and even lab-specific conditions, underscoring the
need for standardized analytical protocols.301,302
Integrating mass spectrometry data with PBPK models could

enable predictive mapping of protein-nanoparticle interactions
to biological outcomes. Ultimately, refining nanometabolomics
will not only ensure safer nanomedicines but also allow rational
engineering of therapeutic nanometabolites, transforming how
we design and deploy nanoscale treatments.
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TOOLS AND TECHNIQUES
Tools and techniques encompass innovations that enable new
research methods, significantly enhancing or accelerating
scientific progress.3 Nanomaterials, with their unique struc-
tures and properties distinct from both molecules and bulk
materials, require specialized tools for analysis. Character-
ization techniques have evolved alongside synthetic methods
and have been essential to the field’s development. Device
fabrication also plays key roles in translating nanomaterials into
practical applications. More recently, AI and ML have become
integral to nanoscience, o2ering advanced solutions for data
analysis, predictive modeling, and problem solving. Addition-
ally, cross-disciplinary tools are crucial for fostering collabo-
ration and accelerating progress. Universal platforms that
operate across various materials and domains would promote
greater e0ciency, integration, and innovation.

DEVELOPING NEW SYNTHETIC PROTOCOLS WITH
SUSTAINABILITY IN MIND
12. How can we design nanomaterial syntheses to be

sustainable across raw materials, reactions, and
manufacturing processes? To minimize the environmental
and human health impact of nanotechnology tools, nanoma-
terial syntheses must embrace sustainable principles from the
outset. This includes using renewable feedstocks, environ-
mentally benign reagents, and energy-e0cient methods. Green
synthesis pathways should prioritize atom economy, favoring
reactions that maximize the incorporation of raw materials into
the final product, while minimizing waste and side
products.303−306 Lifecycle analyses should be routinely applied
to evaluate environmental costs from synthesis through
disposal and paired with standardized sustainability guide-
lines.307 Predictive tools, such as ML, can assist by modeling
the environmental and biological impacts of nanomaterials,
accelerating the discovery of safer and more sustainable
alternatives.308
Biomass-based nanomaterialsderived from abundant,

biocompatible feedstocksare particularly promising.309−314

For example, cellulose-based materials have been employed in
solar steam generation,315 lignin-derived hydrogels in drug
delivery,316 plant polyphenols in nanolithography,317 and
protein templates in the synthesis of metal nanoparticles,
quantum dots, and polymers.318−321 Environmentally friendly
reaction conditions, such as ambient temperature, aqueous
solvents, microwave or ultrasound-assisted reactions, and
enzyme catalysis, should continue to be explored.322−325

Advances in automation and high-throughput synthesis can
further reduce energy consumption and increase reproduci-
bility.326−329 However, sustainability challenges remain,
particularly with biomolecules like DNA that are frequently
used in nanomaterial assembly.71,330,331 Traditional phosphor-
amidite-based DNA synthesis involves toxic solvents and
excessive reagents.332 Alternatives such as enzymatic synthesis
with terminal deoxynucleotidyl transferase (TdT),333−336

improved solid-phase techniques,337−339 and P(V)-based
coupling reagents340−342 are emerging. Sustainable syntheses
of modified nucleic acids like deoxynucleic guanidines have
been achieved using iodine in place of mercuric chloride.343,344
Ultimately, sustainability should be integrated into every

stage of nanomaterial developmentfrom molecular design
and reaction conditions to manufacturing scale-up and end-of-
life disposal. Making sustainable nanomaterial synthesis the

default rather than the exception will require both techno-
logical innovation and cultural shifts within the research
community.

DEVELOPING NEW TOOLS TO STUDY THE
NANOSCALE WORLD

13. What tools are needed to study single nanoma-
terials and assemblies in native, dynamic environ-
ments? Conventional characterization techniques often
average the properties of nanomaterials over space and time,
obscuring critical insights into dynamic behavior at the single-
particle level.345 To understand nanoscale processes as they
occur in real-world environments, new tools must deliver high-
resolution, temporally resolved data in situ and operando.
Radiation-based approaches (e.g., electron, ion, or photon

probes) and scanning techniques like scanning probe
microscopy (SPM) provide localized information.346 Advanced
transmission electron microscopy (TEM) now enables atomic-
scale resolution, 3D tomography, and real-time studies of
materials under environmental stimuli.347−351 To realize these
capabilities, multimodal platforms that integrate nanofabri-
cated specimen stages with imaging, spectroscopy, and data
analyses are needed.352,353
Instrumentation must continue to evolve: coherent sources,

aberration correctors, high-dynamic range detectors, and
encapsulated micro/nanofabricated chips allow imaging
under realistic temperature, pressure, liquid, or gas con-
ditions.354 Innovations like in situ TEM stages with micro-
fluidics and environmental controls enable direct observation
of structural evolution.355 Stimuli such as light, force, or X-rays
can be applied within these systems to explore nanoscale
responses. Both AI and ML are critical enablers of next-
generation analysis. Integrated into tools like 4D STEM or
atomic force microscopy (AFM), they enhance acquisition
speed, automate processing, and improve reproducibility.356,357
ML models trained on large data sets can detect trends, direct
attention to emerging events in real time, and even adapt
experimental parameters on-the-fly.
Ultimately, researchers must develop a new generation of

instruments that combine minimal sample impact with high-
throughput, high-precision analysis of nanoscale behavior.
These tools will provide insight into how nanomaterials evolve,
interact, and functionunlocking a deeper understanding of
their mechanisms and informing better design across
applications.

14. How can nanotechnology be used to build
engineered tissues and organs for biological research
and medicine? Nanomaterials o2er powerful capabilities to
replicate biological complexity in engineered systems.358 By
mimicking the nanoscale structure of extracellular matrices
(ECMs), materials such as electrospun fibers, hydrogels, and
nanoparticles can support cellular adhesion, growth, and
di2erentiation.359−362 These sca2olds can be engineered to
deliver spatially and temporally resolved chemical and
mechanical signals, enabling detailed study of biological
processes and disease states.363−369

Advances in 3D printing using nanocomposite inks now
enable fabrication of vascularized organ-like structures.370
Integration of nanomaterials into these systems permits
embedded sensing of stress, pH, or metabolite levels over
time.371−373 These capabilities are being used to explore
phenomena such as metastasis in flowing environments,374

ACS Nano www.acsnano.org Nano Focus

https://doi.org/10.1021/acsnano.5c12854
ACS Nano 2025, 19, 31933−31968

31939

www.acsnano.org?ref=pdf
https://doi.org/10.1021/acsnano.5c12854?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as


stem cell di2erentiation through electrical signals,375 and
protein expression in response to drugs or toxins.376
Organ-on-chip (OoC) models have gained attention for

their ability to recreate organ-specific microenviron-
ments.377,378 During the COVID-19 pandemic, they accel-
erated drug testing. The emerging field of body-on-chip (BoC)
platforms connects multiple OoCs to simulate systemic human
physiology.379,380 These platforms o2er new possibilities for
personalized medicine and miniaturized clinical trials.381
Real-time monitoring remains a key challenge. Nano-

biosensors, including electrochemical, mechanical, and optical
devices, can detect biomarkers such as troponin in cardiac
chips, glutamate in brain models, or oxygen in tumor
environments.382−385 Cyborg organoids, living tissues inte-
grated with stretchable nanoelectronics, enable continuous
sensing of cellular activity, a significant advance in studying
tissue responses.386,387
To scale these systems and to ensure reproducibility,

interdisciplinary e2orts are needed. Biologists and engineers
must codesign platforms that balance biological relevance with
manufacturability and analytical access. With ongoing improve-
ments in nanomaterials and sensing technologies, engineered
tissues and organs are becoming indispensable tools for
biomedical discovery and therapeutic development.

MAKING SCIENTIFIC LABOR AND DECISION-MAKING
PROCESSES MORE EFFICIENT
15. How can AI and ML accelerate nanomaterial

discovery through inverse design? Inverse design,
identifying a desired property and working backward to find
a structure that achieves it, is transforming nanomaterials
discovery. AI and ML play pivotal roles in this process by
mapping synthesis-structure−property relationships and pre-
dicting candidate materials with desired functions.31,388,389
Generative ML models such as variational autoencoders and

generative adversarial networks can propose new molecular
structures with targeted properties.390,391 However, to ensure
trust and transparency, interpretable ML methods, like SHAP
(SHapley Additive exPlanations) or physics-informed neural
networks, are needed to identify key features driving
performance.392−395

A major limitation is data. High-quality, large-scale data sets
are essential for training ML models. High-throughput
experimental methods, megalibraries, and first-principles
simulations such as density functional theory (DFT) are
generating foundational data, but broader e2orts are needed to
scale and standardize these processes.156,159−161,396−400 Public
databases like the Open Quantum Materials Database and
Materials Project can accelerate access and collabora-
tion.401−403 Crucially, inverse design requires iterative,
closed-loop systems where AI predictions are validated by
experiments, which then provide feedback to improve the
model. Such loops reduce time and resource use while enabling
optimization of materials for specific applications.404−406

As the field matures, the combination of AI/ML with
automated synthesis, advanced characterization, and open data
will transform materials developmentfrom trial-and-error
discovery to hypothesis-driven innovation. In nanoscience,
where the combinatorial space is immense and structure−
property relationships are complex, inverse design o2ers a
powerful path to accelerate the development of next-
generation materials. Another type of iterative closed-loop
approach, genetic algorithms, has been successfully applied407

to design nanoplasmonic devices and invert experimental data
into structural information. Because of the stochastic nature of
this approach, it is numerically expensive. On the other hand, it
has the advantages of stability and generality.

16. How can AI and robotics be combined to
automate laboratory workflows in nanoscience and
nanotechnology? The rapid advances in AI, ML, and deep
learning over the past decade are transforming laboratory
automation in nanoscience and nanotechnology. Models like
convolutional neural networks (CNNs) excel at computer
vision tasks, such as vehicle detection,408,409 while recurrent
neural networks (RNNs) and generative pretrained trans-
former (GPT) models power language understanding and
generative tasks.410,411 Such AI models, combined with
robotics, enable automation of routine laboratory tasks,
increasing reproducibility and freeing researchers to focus on
data analysis and experimental design.412−414

The integration of AI and robotics promises scalable, high-
throughput experimentation beyond human capacity.397,415
For example, AI can mine the literature to identify key
nanoparticle synthesis parameters. Robotic platforms can then
perform, monitor, and characterize syntheses in real time.
Iterative feedback using ML models can refine synthesis
conditions automatically by correlating parameters to nano-
particle properties. “Self-driving labs” (SDLs) embody this
concept, combining robotic automation of repetitive tasks with
ML analysis of complex data sets.397,399 Such SDLs have been
used to synthesize nanoparticles, polymers, and organic
molecules relevant to pharmaceuticals, catalysis, and clean
energy,416,417 although systems for synthesis under harsh
conditions remain limited.418 Carnegie Mellon University’s
Cloud Lab, accessible remotely, is a leading example of such
SDL infrastructure.419
Successful AI-robotic integration depends on large, high-

quality data sets for training.420 Progress requires building data
pipelines, developing interoperable software, and adopting
cloud best practices across SDLs. Standardizing data formats,
reproducibility protocols, and synthetic description languages
would enhance integration among AI, robotics, and character-
ization techniques.421,422 Moreover, automated characteriza-
tion toolsespecially for advanced instruments like TEM,
SEM, and synchrotron X-ray spectroscopiesshould be
integrated into SDL workflows.399,423 Together, these advances
point toward fully autonomous laboratories that accelerate
discovery and translation in nanoscience and nanotechnology.

17. How can we improve early stage prediction of
nanomedicine eEcacy in humans? Predicting how
nanomedicines will perform in humans remains a major
challenge that slows development down. Like all drugs,
nanomedicines must pass rigorous preclinical testing, including
in vitro cell culture studies and in vivo animal models, before
clinical trials.424 However, these models often fail to predict
human outcomes reliably.425 Cultured human cells are
typically transformed immortalized lines or clonal populations
that poorly represent patient heterogeneity. Primary human
cells are scarce and short-lived. Animal models di2er in genetic
homology and immune responses, which complicates trans-
lation. Many nanomedicines, particularly immune therapies,
require intact human microenvironments not replicated in
standard models.
Emerging approaches aim to address these limitations.

Advanced in vitro models, including 3D cultures and
microfluidic OoC systems, more closely mimic human tissue
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architecture and physiology.426−432 These platforms are being
explored for applications such as tumor vaccine develop-
ment.433,434 “Humanized” mouse models, engineered to
express human antigens and drug targets, reduce species
di2erences.435−437 Ex vivo manipulation of human tissues from
healthy or diseased donors further refines predictive assays.438
Organoid cultures enable personalized screening, o2ering the
possibility of tailored dosing and treatment strategies.439−441

Such approaches could improve patient stratification and
reduce trial failures by identifying e2ective therapies earlier.
Computational modeling and AI tools are increasingly

employed to predict nanomedicine behavior, incorporating
genetic, biomarker, and sex/gender di2erences.442−444 Sex-
based biological di2erences remain understudied but can
significantly influence immune cell uptake of lipid nano-
particles, for example.445 Protein corona engineering is being
developed to mitigate sex-related immune variability.446 These
multidisciplinary innovations aim to accelerate nanomedicine
translation, but more researchers must engage to overcome
remaining challenges.

USING STANDARDIZATION TO DRIVE
COLLABORATION
18. What strategies are advancing standardized,

reproducible analyses in nanoscience? Nanomaterials’
unique properties and the diversity of characterization
techniques demand standardized approaches to ensure data
reliability, reproducibility, and broad usability.447,448 Establish-
ing global standards for data acquisition, processing, and
interpretation is essential to foster collaboration and to
accelerate innovation.449,450 Large data sets require interoper-
able frameworks supported by academia, industry, and
standardization bodies.
E2orts focus on developing standardized protocols, auto-

mated analysis tools, and shared databases. Centralized
repositories categorize nanomaterials and their properties,
inspired by analogous databases in molecular biology and
chemistry (e.g., Protein Data Bank, Cambridge Structural
Database). Initiatives include NanoCommons451 for nano-
informatics safety data, caNanoLab452,453 and Nanotechnology
Characterization Laboratory454 for nanomedicine safety and
characterization, and NaKnowBase (NKB)455 and Nano-
Informatics Knowledge Commons (NIKC)456 for biological
and environmental data. The Materials Project401,457,458 and
Electrolyte Genome459 gather materials data for energy
applications. Nano460 curates nanomaterial literature data.
AI-powered platforms like eNanoMapper461 automate data
analysis to reduce human error and enhance reliability.462,463
Standardization also expedites regulatory review and

commercialization by providing consistent classifications and
reducing redundant testing.464,465 For example, NIST-
developed universal research-grade test materials for SARS-
CoV-2 lipid nanoparticles466 accelerated vaccine development
through harmonized analytics and collaboration.467−469 Similar
e2orts are expanding to extracellular vesicles and other
nanomedicines, highlighting the critical role of standardized
clinical e0cacy data.470,471 Continued work is needed to
broaden and deepen these standardization frameworks,
ultimately hastening safe nanotechnology translation.

IMPACTFUL APPLICATIONS
Impactful applications refer to technologies that benefit large
numbers of people or show strong potential to do so. Like
other scientific fields, nanoscience and nanotechnology are
driven by curiosity and rooted in fundamental discovery.
However, broad scientific impact comes from the ability to
translate these discoveries into technologies that improve lives.
This translation is a key measure of the value of scientific and
engineering advancements. Nanoscience and nanotechnology
are already influencing a wide range of applicationsfrom
medicine to energy and the environmentreflecting the
interdisciplinary nature of the field. These technologies
enhance quality of life by enabling better disease treatment
and tracking, improving performance, providing clean water
and energy solutions, and advancing how we access, analyze,
and transmit information.

ENHANCING INFORMATION PROCESSING, STORAGE,
AND SHARING

19. How can nanotechnology enhance computing
and data storage? Nanotechnology promises to revolu-
tionize computing and data storage by overcoming funda-
mental limits of silicon-based devices.472 Innovations at the
architecture, materials, and algorithmic levels aim to increase
capacity, speed, and energy e0ciency critical to meeting
growing demands driven by AI and ML.473
Nanomaterials such as graphene, quantum dots (QDs),

nanosheets, and lanthanide-doped nanocrystals are integral to
next-generation memory technologies.474,475 These materials
enable devices like resistive random-access memory (ReRAM)
and spintronic memories that are smaller, faster, and consume
less power than conventional memories.476 Quantum comput-
ing represents a transformative frontier, utilizing qubits that
exploit superposition and entanglement to solve complex
problems exponentially faster than classical computers.474
Nanophotonic circuits, which use photons rather than
electrons for data transfer, promise reduced latency and higher
bandwidth for future data centers and communication
networks.
Biomolecules such as DNA provide another exciting

platform for computation and data storage.472,477,478 DNA’s
stability and dense information encoding allow massive
parallelism in data processing. Techniques like polymerase
chain reaction (PCR)479 enable e0cient data amplification.
Recent work explores peptide arrays immobilized on self-
assembled monolayers for information storage readable by
mass spectrometry, encoding digital data in molecular
patterns.480 These biomolecular approaches open new path-
ways for ultradense, energy-e0cient storage and computing,
complementary to traditional silicon and emerging quantum
technologies.

20. How are nanomaterials enabling faster, more
secure global communication? Nanomaterials are key to
advancing communication technologies that demand higher
speeds, larger capacities, and improved energy e0cien-
cies.481−483 Two-dimensional (2D) materials such as graphene
and other semiconductors exhibit exceptional electrical
properties compatible with silicon technologies, enabling
nanoscale transistors and photonic devices for rapid signal
processing.484−486 These advances support the development of
compact antennas, flexible electronics, and enhanced optical
fibers critical to modern networks.487−490
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Security in global communication increasingly relies on
quantum communication, leveraging quantum mechanics to
provide theoretically unbreakable encryption. Quantum dots,
nanodiamonds, and other nanostructures serve as single-
photon emitters and qubit hosts, potentially operable at room
temperature, overcoming technical hurdles in quantum
information science.491,492 Integrated photonics and on-chip
signal routing reduce energy losses and bolster secure data
transfer.493,494
These technologies pave the way for reliable, ultrafast, and

secure communication networks, addressing the demands of
emerging networks for 5G, 6G, and even more advanced
communication systems.495 Nanomaterial-enabled hardware
will underpin future communication infrastructure by enhanc-
ing bandwidth, reducing latency, and ensuring data integrity on
a global scale.

ENSURING FOOD AND WATER SECURITY
21. How can nanotechnology improve sustainable

agriculture and crop protection? Nanotechnology o2ers
promising tools to enhance agricultural sustainability, crop
yield, and resilience, addressing the United Nations’ Sustain-
able Development Goal 2 of ending hunger and achieving food
security.496 Early research has demonstrated how nanomateri-
als can improve the delivery e0ciency and specificity of
pesticides, herbicides, fertilizers, and genetic materials to
plants.497−502 These nanoenabled agrochemicals reduce active
ingredient use and environmental runo2 while enhancing crop
resistance to pests and diseases.497,503,504
Nanoformulated fertilizers, such as those based on

incongruent dissolution, release essential nutrients more
precisely, reducing greenhouse gas emissions and mitigating
food insecurity exacerbated by climate change.505−507 Nano-
clays improve water retention and nutrient delivery in arid
soils, while carbon and TiO2 nanoparticles assist in soil
remediation by adsorbing pollutants.508−510 Nanotechnology
also improves disease and pathogen detection accuracy in
crops and helps protect plants against environmental stresses
like drought and nutrient deficiency.511
Despite these advances, environmental impacts of nanoma-

terials on soil microbiota, pH, and plant growth remain
underexplored and require further study.512−514 Insights from
the field of nanomedicine, especially lessons in drug delivery,
should be leveraged to accelerate the development of safe,
e2ective nanoagrochemicals that bolster agricultural capabil-
ities and performance in diverse environments, including
extraterrestrial ones, although techno-economic analyses need
to be done.515,516
22. How can nanotechnology be used to ensure

global access to clean and safe water? Global water
security depends on increasing access to clean water, including
in arid and contaminated regions; indeed, more than two
centuries of industrialization has polluted water supplies owing
to industrial processes. Porous nanomaterials such as MOFs,
covalent organic frameworks (COFs), and hydrogen-bonded
organic frameworks (HOFs) have emerged as powerful
materials for harvesting water from humid air.517−520 Their
high surface areas and tunable pore chemistries enable selective
and e0cient water capture.521 Optimizing hydrophilicity and
pore geometry tailors total uptake and working capacity.522
Integrating MOFs into solar- or heat-driven devices enables
passive, energy-e0cient water release, advancing decentralized
water harvesting technologies.523

Nanomaterials also improve desalination and purification
processes.524,525 Carbon nanotube and graphene oxide
membranes enhance water transport and salt rejection, while
zerovalent iron nanoparticles remove heavy metals.510,526−528

Rapid 3D printing of filtration resins, like poly(lactic acid)-
TiO2 composites, enables on-demand, decentralized water
purification with tailored contaminant capture.529−532 More-
over, nanomaterials coatings on widely available and cost-
e2ective sponge-based sorbents can be used to clean up
contaminated bodies of water.533−535 Such reusable, multiuse
sorbents are selective for the removal of oil/organics,
phosphate/fertilizer and metal contaminants. Continued
development and implementation of such sustainable
approaches are being commercially translated (i.e., Coral
Innovations). Future research must focus on scalable, cost-
e2ective synthesis and multicontaminant removal capabilities.
Nanomaterial-based sensors enhance water quality monitor-

ing by detecting contaminants such as heavy metals, organic
pollutants, and pathogens at trace levels.529,536−538 Portable,
low-cost devices like colorimetric strips and smartphone
readers are under development to improve accessibility.539−541

Integrating nanosensors with underwater vehicles enables in
situ, real-time monitoring.542 These innovations will be critical
to ensuring safe drinking water worldwide, supporting
environmental and public health.

SAFEGUARDING THE ENVIRONMENT
23. How can nanotechnology be applied to identify,

sequester, and remediate environmental toxins? Envi-
ronmental toxins and pollutants pose serious threats to both
human health and ecosystems. Nanotechnology o2ers
innovative solutions by leveraging engineered nanomaterials
designed to resist, to capture, and to remediate such harmful
substances.267,543−545 Nanomaterials can be tailored at the
surface and structural levels to adjust properties like hydro-
phobicity, electrostatic charge, pore size, surface area, and
active site characteristics, enabling selective microbial resist-
ance,546,547 targeted pollutant capture,548 and catalytic toxin
transformation.549 For example, nanoparticles based on earth-
abundant metals like aluminum (Al) and copper−iron (Cu−
Fe) have proven highly e2ective in catalyzing the conversion of
environmental toxins such as ammonia and hydrogen
sulfide.550−552 Additionally, metal-oxide and carbon nanoma-
terials and dendrimers are extensively employed in remediation
technologies.553
MOFs present another powerful approach due to their

customizable pores and surface chemistry that facilitate toxin
adsorption and degradation.554−557 Some MOFs incorporate
catalytic sites that break down hazardous compounds,
including organophosphorus toxins, into less harmful by-
products.556 Such MOFs are used in protective gear against
chemical threats.558 Emerging challenges, such as persistent
organic pollutants and microplastics, necessitate next-gener-
ation nanomaterials with enhanced selectivity and e0ciency.543
Data-driven materials design and ML platforms accelerate the
development of cost-e2ective, earth-abundant remediation
materials.559,560 Smart adaptive nanomaterials that respond
dynamically to environmental stimuli are also being ex-
plored.561
Nanoparticle-based cross-linking within hybrid materials

imparts dynamic, robust, and recyclable properties, enabling
extended operational lifetimes and facile separation and
reuse.267 Integrating these nanotechnologies with renewable
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energy systems could yield comprehensive pollution manage-
ment solutions.548 The convergence of advanced synthesis,
characterization, and sustainability drives the development of
increasingly e2ective and environmentally conscious nanoma-
terial-based remediation strategies.

SPURRING THE GLOBAL CLEAN ENERGY TRANSITION
24. How can nanomaterials advance clean energy

generation and sustainable fuel production? Nanoma-
terials play transformative roles in clean energy generation and
the sustainable production of fuels, o2ering new pathways to
reduce reliance on fossil resources.304−306,562 The global
challenge of generating abundant renewable electricity has
benefited greatly from nanoscience advancements in solar,
wind, hydroelectric, and tidal technologies. For example,
photovoltaic (PV) cells have been enhanced through nano-
engineered semiconductor surfaces, improved metal−semi-
conductor contacts, and plasmonic antennas, which increase
charge separation and optical absorption e0ciency. Silicon-
based PV technologies have evolved alongside halide perov-
skite photovoltaics, the latter achieving single-junction
e0ciencies over 26% through improved interfacial passivation,
charge carrier lifetimes, and stability, while lowering cost and
processing constraints compared to traditional materials.
Nanotechnology also advances ocean wave energy harvest-

ing using nanolayered metals or graphene, which confine
charge motion via ionic strength gradients. These materials can
be deposited onto marine-grade substrates, enabling large-scale
integration in coastal infrastructure; however, challenges
remain due to corrosive ocean environments and scaling
di0culties.563−565

In addition, nanomaterials catalyze key chemical reactions
essential for sustainable fuel production. Many industrial
chemical processes are major greenhouse gas sources;
transitioning to reactions powered by electricity rather than
combustion is crucial. Nanocatalysts enable sustainable
synthesis of hydrogen (H2), ammonia (NH3), methanol
(CH3OH), ethylene, propylene, and aromatics, preferably
from waste feedstocks.304−306,562,566,567 Photoelectrochemical
cells employing nanomaterials can directly convert solar energy
to hydrogen via water splitting, enhancing economic viability
and environmental sustainability. Plasmonic antenna-reactor
nanoparticles catalyze dry methane reforming, converting CO2
and CH4the two most abundant greenhouse gasesinto
syngas (H2 + CO), a precursor for synthetic fuels.
Nanostructuring allows discovery of novel active sites,

unique alloy compositions, and improved atom economy
through increased surface area-to-volume ratios. Furthermore,
understanding nanoparticle behavior under reaction conditions
using advanced hardware, software, and AI/ML tools is critical
to optimize catalyst performance and accelerate clean energy
technologies. Continued research into nanomaterials for
energy generation promises significant progress toward a
sustainable global energy transition.
25. How do nanomaterials improve the eEciency of

energy storage and transport systems? E0cient,
compact, and reliable energy storage is essential for
applications ranging from portable electronics to grid
stabilization in renewable energy systems, such as solar and
wind.568 Nanomaterials significantly enhance energy storage
technologies, including batteries and supercapacitors, by
providing large specific surface areas and tailored nanostruc-
tures. These features increase electrode−electrolyte contact,

thereby improving charge rates, storage capacity, and
mitigating issues like volume expansion during charge−
discharge cycles.569−574

Nanoporous materials, including MOFs, zeolites, molecular
sieves, and porous carbons, o2er vast internal surface areas and
tunable pore chemistries, making them ideal for selective
storage and controlled release of gases and liquids relevant to
fuel storage.575−585 For instance, MOFs, metal hydrides,
carbon nanotubes, and graphene-based materials provide
high-capacity, rapid hydrogen absorption and desorption
kinetics, crucial for fuel cells in transportation.586,587
Industrial-scale production of MOFs by companies such as
NuMat highlights their commercial viability.588
Quantum e2ects and coupling phenomena within or

between nanomaterials open new avenues for system-level
improvements in energy storage and conversion.589,590 Spin-
selective processes, exciton−phonon interactions, and exciton-
polariton coupling can be engineered to optimize light
absorption, carrier extraction, and catalytic activity.591,592
Nanostructured step edges catalyze bond activation e0-
ciently,593 and nanoscale optical cavities amplify absorp-
tion,594,595 collectively enhancing photocatalytic and electro-
catalytic architectures.596
By harnessing these nanoscale phenomena, future energy

storage and transport technologies could achieve higher
e0ciencies, longer lifetimes, and improved integration with
renewable energy sources, supporting sustainable energy
infrastructures worldwide.

26. How can nanomaterials address the demand for
rare-earth elements amid supply and environmental
challenges? Rare-earth elements (REEs) such as scandium,
yttrium, and lanthanum are vital for advanced technologies,
including renewable energy devices, electric vehicles (EVs),
and high-performance magnets due to their unique electronic,
magnetic, and luminescent properties.597 However, global REE
reserves are geographically concentratedprimarily in China,
with significant deposits also in Vietnam, Russia, and Brazil
leading to supply vulnerabilities and environmental concerns
linked to mining.598 These challenges drive the need for
sustainable REE extraction, separation, and recycling meth-
ods.599
Nanomaterials o2er promising solutions due to their high

surface-area-to-volume ratios and tunable structures. Materials
such as MOFs, carbon nanotubes, graphene, and nanoscale
collectors can be engineered to bind selectively and to extract
REEs from ores and electronic waste streams, improving
e0ciency and sustainability of recovery processes.600−603

Nanomaterial-enhanced filtration systems can increase separa-
tion e0cacy in mining and recycling operations.604−606

Cerium-doped nanocatalysts facilitate material breakdown to
improve REE recovery, while bioinspired nanotechnologies
utilize mussel-inspired nanocellulose coatings and cyanobac-
teria for selective REE binding from aqueous media without
harmful chemicals.607 Biodegradable protein-based adsorbents
and bionanoparticles are also being developed for sustainable
REE extraction.608,609
Another strategy is to reduce reliance on REEs by

developing alternative materials.610 AI is being used to guide
materials discovery and to accelerate the identification of REE-
free or reduced-REE materials. Examples include Zr2Co11 and
Fe−Co-based nanoparticle magnets that eliminate REEs, and
Pt-REE alloy nanoparticle catalysts designed for lower REE
content in hydrogen fuel cells and petroleum refining.611−613
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These advances promote a sustainable supply chain for REEs
critical to modern technology while addressing environmental
and geopolitical concerns.

IMPROVING HUMAN HEALTH AND SAVING HUMAN
LIFE
27. How can nanoscience enhance the well-being

and performance of healthy individuals? Nanomedicine
can be used to treat disease and to improve health,
performance, and preventive care for healthy individuals.614,615
A landmark example is the mRNA COVID-19 vaccine, which
utilized nanotechnology for e2ective delivery and immune
activation. Preventive medicine, including vaccines, has
dramatically reduced infectious disease burdens and certain
cancers.616−618 Structural nanomedicine improves vaccine
stability and delivery, enhancing immune responses and
minimizing side e2ects.619−621

Nanotechnology also enables performance enhancement in
areas such as muscle regulation, sensory augmentation via
wearable devices, aging delay, and cognitive function improve-
ments through targeted delivery and brain-computer inter-
faces.622−624 Gene-editing tools like CRISPR, supported by
nanoscale delivery systems, hold potential not only for treating
genetic disorders but also for safely modifying biological
moieties in otherwise healthy individuals.
Additionally, exogenous wearable, injectable, and inhalable

nanosensors facilitate continuous monitoring of physical and
cognitive metrics.625−629 These sensors enable real-time data
collection on health, exertion, recovery, and attention,
informing personalized optimization strategies in athletics,
education, and daily activities. Integration into training
regimens and learning environments allows fine-tuning of
performance and well-being, enhancing quality of life.
Nanoscience-driven advances in preventive medicine,

performance monitoring, and cognitive enhancement o2er
exciting prospects for improving health and human potential,
moving toward a future where technology supports proactive,
personalized wellness.
28. What are the key challenges in developing

nanotechnology-based tools for early disease detec-
tion? Nanotechnology promises transformative advances in
early, noninvasive disease detection, crucial for timely
interventions and patient self-monitoring.630,631 E2ective
diagnostic tools require three key components: target
recognition, signal transduction, and signal readout.632−634

Nanomaterials contribute significantly by enabling rapid,
sensitive detection beyond symptom-based methods.
Target recognition involves detecting disease-specific

molecular markers using highly selective biorecognition
elements such as DNA aptamers, spherical nucleic acids
(SNAs), and antibodies that bind targets at ultralow
concentrations.635,636 Improving the specificity and stability
of these nanoscale and biological components in complex
biological fluids is a critical focus for enhancing real-world
diagnostic performance.
Signal transduction converts recognition events into

measurable signals. Nanoparticles amplify signal strength
dramatically, increasing assay sensitivity.637,638 Therefore, it
should be an ongoing research priority to optimize nano-
particle systems to enhance signal fold-change.
Finally, signal readout must provide clear, multiplexed

outputs. Nanotechnology enables multiplexed detection via
quantum dot fluorescence, gold nanoparticle optical contrast,

and other modalities, allowing simultaneous monitoring of
multiple biomarkers.639−641 Increasing multiplexing capacity
while minimizing sample volumes remains an important
challenge.
Integration of these components into cohesive, reliable

diagnostic platforms is essential for clinical adoption. AI-driven
design and analysis tools can optimize recognition elements,
signal processing, and readout, improving diagnostic accuracy
and enabling global healthcare impact. Overcoming these
challenges will facilitate the widespread deployment of
nanotechnology-enabled early detection tools.

29. What nanotechnology advances are essential to
enable practical point-of-care diagnostics and stable
oS-the-shelf nanomedicines? Current antigen-based point-
of-care (POC) diagnostic tests, such as those used for COVID-
19, still rely on technology developed in the 1960s, for example
in pregnancy tests, limiting their sensitivity and applicability.642
To broaden access to a2ordable, reliable diagnostics
especially in low-resource settings lacking laboratory infra-
structureadvanced POC platforms leveraging nanotechnol-
ogy are needed.633,643 Nanomaterials can significantly improve
these platforms by enhancing target specificity, amplifying
detection signals, reducing power consumption, and minimiz-
ing device size, all of which increase portability and
practicality.644,645
In parallel, developing stable, o2-the-shelf nanomedicines

that maintain e0cacy during long-term storage and transport is
crucial.646 Scalable 3D nanosca2old biomanufacturing meth-
ods o2er cost-e2ective, high-throughput production of
engineered cells and nanomedicines that do not require
individual personalization each time, thus enabling broader
distribution. Self-assembling nanomaterials such as DNA
origami-based vaccines provide modular platforms that
simplify targeted therapies and reduce the complexity of
individualized treatments.647 Additionally, MOFs have been
shown to encapsulate sensitive biologics, creating formulations
that withstand shipping and storage stresses without losing
potency.648,649
Achieving these goals requires close collaboration among

nanotechnology researchers, pharmaceutical developers, and
healthcare providers. Moreover, clear regulatory guidelines for
safety, e0cacy, and nanopharmaceutical quality standards are
critical to enable widespread adoption. These advances could
democratize healthcare by delivering powerful diagnostics and
therapeutics directly to diverse populations worldwide, over-
coming current infrastructure and supply chain limitations.

IMPLICATIONS FOR SOCIETY
This Nano Focus has examined how nanoscience and
nanotechnology have revolutionized science and engineer-
ingfrom advances in synthesis to the development of new
tools and methodsand how these scientific breakthroughs
have translated into technological innovations. We have
highlighted key questions across these areas and proposed
potential solutions to advance the field. In addition to their
direct impacts, nanoscience and nanotechnology have also
reshaped broader societal perspectives. The development of
novel materials and systems brings unique challenges in areas
such as education, ethics, policy, and intellectual property,
among others.
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TEACHING NANOSCIENCE AND NANOTECHNOLOGY
30. How can nanoscience and nanotechnology be

integrated eSectively into educational curricula and
public outreach? Nanoscience and nanotechnology repre-
sent transformative scientific fields with interdisciplinary
foundations, making their integration into traditional curricula
complex.650 A key question is whether nanoscience topics
should be embedded in existing chemistry, physics, and
biology courses, or o2ered as standalone electives or degree
programs, possibly within dedicated nanoscience depart-
ments.651,652 Approaches vary widely, with some institutions
focusing on graduate research exposure, while others
emphasize undergraduate coursework. Collaborations with
industry and government laboratories to align education with
workforce demands through internships and cooperative
programs have also been explored.653
For nanotechnology’s economic and societal growth, it is

essential to engage learners across educational levels. The U.S.
National Nanotechnology Initiative (NNI) promotes work-
force expansion via public outreach and education, including
e2orts to introduce nanoscience concepts in K−12 education,
which may inspire students and indirectly educate their
families.654−656 Resources include media portrayals (e.g.,
Black Panther, Ant-Man), interactive experiences such as
Disney World’s “Take a Nanooze Break”, and educational
books.657,658 However, K−12 curricula often face challenges in
accommodating new content due to crowded schedules and
limited resources.
Digital platforms are increasingly vital in expanding

nanoscience education, with online modules, simulation
tools, and remote laboratories providing broader accessibil-
ity.659 Nonetheless, hands-on laboratory experiences remain
critical to e2ective STEM learning. Targeted funding to train
teachers and support immersive university-community pro-
grams can foster lasting engagement. Partnerships between
universities and community or technical colleges are also
promising to build a diverse nanotechnology work-
force.655,659−661 These educational strategies aim to cultivate
a scientifically literate public and prepare future innovators.

UNDERSTANDING ETHICAL RESPONSIBILITIES
31. What are the key ethical challenges posed by

nanoscience and nanotechnology, and who should
govern their ethical standards? Nanoscience and nano-
technology raise ethical issues common to emerging
technologies: balancing innovation with safety, privacy, and
societal impact. However, the rapid pace of development has
often outstripped the formulation of ethical guidelines and
regulations.662,663 Future applicationssuch as nanobots for
surveillance, nanoparticle tracers for tracking, or performance-
enhancing nanomedicinesintroduce complex dilemmas
requiring careful ethical scrutiny.664−667

Ethical governance should involve the communities a2ected
by nanotechnology, including researchers, policymakers,
healthcare providers, and the public, to assess risks and
benefits collaboratively. Transparent communication about the
potential implications of nanotechnologies is crucial to build
trust and enable informed societal decisions. Policymakers
must engage the public proactively to educate and to solicit
input on ethical standards.
A central challenge is balancing intellectual property

protections that incentivize innovation with ensuring equitable

access to nanotechnologies.668−670 This includes safeguarding
privacy while promoting transparency and public benefit.
Ethical frameworks must evolve dynamically alongside
technological advances, guided by multidisciplinary input and
international dialogue to address global impacts. Ultimately,
ethical stewardship should enable responsible innovation that
maximizes societal benefit while minimizing harm.

INTEGRATING NANOSCIENCE AND PUBLIC POLICY
32. What are the main public policy challenges for

nanoscience, and how can global coordination
enhance regulation and innovation? Nanoscience and
nanotechnology have become integral to many commercial
products, from quantum dot TVs (Samsung, Sony) to lipid
nanoparticle drug delivery systems (Evonik) and advanced
materials (DuPont, BASF).671 Regulatory frameworks di2er by
region; in the U.S., the FDA regulates many nanomaterials,
while Europe applies REACH regulations with member states
overseeing compliance.672−674 These frameworks ensure safety
but can fragment risk assessment and market access,
complicating global exchange.
Global coordination is essential to harmonize regulations,

reduce trade barriers, and create consistent safety standards.
International bodies such as the International Organization for
Standardization (ISO), the Organisation for Economic Co-
operation and Development (OECD), and the World Health
Organization (WHO) play key roles in developing and
updating global regulations and testing protocols for nanoma-
terials.675−681 Policies must be adaptive as new materials with
novel properties emerge, addressing classification, handling,
disposal, and recycling challenges.
A responsible policy approach also requires assessing long-

term environmental and health impacts. For example, while
heavy metal nanoparticles like those containing lead or
mercury pose toxicity risks, they remain critical for applications
like catalysis and imaging.674,682,683 Balancing these risks with
benefits is a continuous regulatory challenge. Ultimately,
coordinated global policies can foster innovation while
protecting public and environmental health, enabling nano-
technology’s sustainable integration into economies worldwide.

INTEGRATING NANOSCIENCE AND
NANOTECHNOLOGY WITH INTELLECTUAL PROPERTY

33. How can intellectual property (IP) frameworks
support nanomaterial innovation while ensuring broad
societal benefit? Balancing open innovation with protecting
proprietary discoveries is vital for advancing nanoscience and
translating research into public benefit. Nanoscience generates
vast data sets describing material properties and interactions
across various environments, often produced via high-
throughput experiments and theoretical models.684 Both AI
and ML accelerate discovery by analyzing trends and
optimizing materials for specific uses.685−687 However, sharing
data widely while protecting IP poses a significant challenge.
Adoption of FAIR principles (Findable, Accessible, Inter-

operable, Reusable) for data management promotes accessi-
bility and reuse of nanomaterial data sets.688 Emerging IP
frameworks may require clear documentation of human input
in AI-assisted inventions to ensure patentability without stifling
collaboration. A hybrid model may evolve where foundational
data remains open, while specific, application-driven innova-
tions receive patent protection.
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Bridging fundamental research and commercial application
needs new funding structures and policies encouraging
precompetitive collaboration. Public-private partnerships can
facilitate data sharing while preserving rights necessary for
market entry. Supporting environments that foster open
science alongside attractive IP protections will accelerate
innovation and maximize societal impact. In sum, thoughtful
IP management is key to unlocking nanotechnology’s full
potential, balancing innovation incentives with broad access
and societal benefit.

SUMMARY AND OUTLOOK
Although the questions have been grouped by themes
foundational understanding, tools and techniques, impactful
applications, and societal implicationsthe responses reveal
the deep interdependence and interdisciplinarity of these areas.
Several key themes have emerged. Nanoscience and nano-
technology will advance significantly as we move closer to 1)
Achieving atomically precise nanoparticles and nanostructures
and gaining the ability to analyze, understand, and control their
composition over timesimilar to how we write and
manipulate chemical reactions for molecules; 2) Developing
in situ and operando characterization tools for single particles
and structures, shifting from ensemble-averaged data to
atomistic insights, as is possible in many molecular systems;
3) Using the nanoscale as a true bridge between the quantum
and macro scalesunderstanding transitions across scales,
controlling properties within a single system, and producing
materials at scales relevant to real-world applications; 4)
Leveraging AI and ML to accelerate all aspects of the field,
from discovery and synthesis to application; and 5) Enhancing
public understanding, societal integration, and global collabo-
rationrecognizing that if chemistry is the “central science,”
then nanoscience and nanotechnology may well be the
“central” central science. In summary, by posing and
addressing 33 key questions in nanoscience and nano-
technology, we have established a framework to inspire and
to guide future research across the field.
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Poltavsky, I.; Schütt, K. T.; Tkatchenko, A.; Müller, K.-R. Machine
Learning Force Fields. Chem. Rev. 2021, 121, 10142−10186.
(264) Meuwly, M. Machine Learning for Chemical Reactions. Chem.
Rev. 2021, 121, 10218−10239.
(265) Bissell, R. A.; Córdova, E.; Kaifer, A. E.; Stoddart, J. F. A
Chemically and Electrochemically Switchable Molecular Shuttle.
Nature 1994, 369, 133−137.
(266) Li, C.; Lau, G. C.; Yuan, H.; Aggarwal, A.; Dominguez, V. L.;
Liu, S.; Sai, H.; Palmer, L. C.; Sather, N. A.; Pearson, T. J.; Freedman,
D. E.; Amiri, P. K.; de la Cruz, M. O.; Stupp, S. I. Fast and
Programmable Locomotion of Hydrogel-Metal Hybrids Under Light
and Magnetic Fields. Sci. Robot. 2020, 5, eabb9822.
(267) Yu, J.-C.; Browne, R. A.; Seo, S. E. Mechanically Robust, Self-
Healing Polymer Nanocomposites with Tailorable Nanoparticle-
Based Bonds. Macromolecules 2024, 57, 9059−9066.
(268) Myakonkaya, O.; Guibert, C.; Eastoe, J.; Grillo, I. Recovery of
Nanoparticles Made Easy. Langmuir 2010, 26, 3794−3797.
(269) Grassian, V. H.; Haes, A. J.; Mudunkotuwa, I. A.; Demokritou,
P.; Kane, A. B.; Murphy, C. J.; Hutchison, J. E.; Isaacs, J. A.; Jun, Y.-S.;
Karn, B.; Khondaker, S. I.; Larsen, S. C.; Lau, B. L. T.; Pettibone, J.
M.; Sadik, O. A.; Saleh, N. B.; Teague, C. NanoEHS - Defining
Fundamental Science Needs: No Easy Feat When the Simple Itself is
Complex. Environ. Sci. Nano 2016, 3, 15−27.

(270) Pati, P.; McGinnis, S.; Vikesland, P. J. Waste Not Want Not:
Life Cycle Implications of Gold Recovery and Recycling from
Nanowaste. Environ. Sci. Nano 2016, 3, 1133−1143.
(271) Salafi, T.; Zeming, K. K.; Zhang, Y. Advancements in
Microfluidics for Nanoparticle Separation. Lab Chip 2017, 17, 11−33.
(272) Mondal, M. S.; Paul, A.; Rhaman, M. Recycling of Silver
Nanoparticles from Electronic Waste via green Synthesis and
Application of AgNPs-Chitosan Based Nanocomposite on Textile
Material. Sci. Rep. 2023, 13, 13798.
(273) Neuhoff, M. J.; Wang, Y.; Vantangoli, N. J.; Poirier, M. G.;
Castro, C. E.; Pfeifer, W. G. Recycling Materials for Sustainable DNA
Origami Manufacturing. Nano Lett. 2024, 24, 12080−12087.
(274) Reijnders, L. Recycling of Non-Product Outputs Containing
Rare Elements Originating in Nanomaterial Syntheses. Environ. Sci.
Nano 2024, 11, 684−687.
(275) Andrew, L. J.; Lizundia, E.; MacLachlan, M. J. Designing for
Degradation: Transient Devices Enabled by (Nano)Cellulose. Adv.
Mater. 2025, 37, 2401560.
(276) Liu, Z.; Frasconi, M.; Lei, J.; Brown, Z. J.; Zhu, Z.; Cao, D.;
Iehl, J.; Liu, G.; Fahrenbach, A. C.; Botros, Y. Y.; Farha, O. K.; Hupp,
J. T.; Mirkin, C. A.; Fraser Stoddart, J. Selective Isolation of Gold
Facilitated by Second-Sphere Coordination with α-Cyclodextrin. Nat.
Commun. 2013, 4, 1855.
(277) Moghimi, S. M.; Hunter, A. C.; Murray, J. C. Nanomedicine:
Current Status and Future Prospects. FASEB J. 2005, 19, 311−330.
(278) Patra, J. K.; Das, G.; Fraceto, L. F.; Campos, E. V. R.;
Rodriguez-Torres, M. d. P.; Acosta-Torres, L. S.; Diaz-Torres, L. A.;
Grillo, R.; Swamy, M. K.; Sharma, S.; Habtemariam, S.; Shin, H.-S.
Nano Based Drug Delivery Systems: Recent Developments and
Future Prospects. J. Nanobiotechnology 2018, 16, 71.
(279) Kyriakides, T. R; Raj, A.; Tseng, T. H; Xiao, H.; Nguyen, R.;
Mohammed, F. S; Halder, S.; Xu, M.; Wu, M. J; Bao, S.; Sheu, W. C
Biocompatibility of Nanomaterials and their Immunological Proper-
ties. Biomed. Mater. 2021, 16, 042005.
(280) Cabral, H.; Li, J.; Miyata, K.; Kataoka, K. Controlling the
Biodistribution and Clearance of Nanomedicines. Nat. Rev. Bioeng.
2024, 2, 214−232.
(281) Wolfram, J.; Zhu, M.; Yang, Y.; Shen, J.; Gentile, E.; Paolino,
D.; Fresta, M.; Nie, G.; Chen, C.; Shen, H.; Ferrari, M.; Zhao, Y.
Safety of Nanoparticles in Medicine. Curr. Drug Targets 2015, 16,
1671−1681.
(282) Moss, D. M.; Siccardi, M. Optimizing Nanomedicine
Pharmacokinetics Using Physiologically Based Pharmacokinetics
Modeling. Br. J. Pharmacol. 2014, 171, 3963−3979.
(283) Cui, X.; Wang, X.; Chang, X.; Bao, L.; Wu, J.; Tan, Z.; Chen,
J.; Li, J.; Gao, X.; Ke, Pu C.; Chen, C. A New Capacity of Gut
Microbiota: Fermentation of Engineered Inorganic Carbon Nanoma-
terials into Endogenous Organic Metabolites. Proc. Natl. Acad. Sci.
U.S.A. 2023, 120, e2218739120.
(284) Rosi, N. L.; Giljohann, D. A.; Thaxton, C. S.; Lytton-Jean, A.
K. R.; Han, M. S.; Mirkin, C. A. Oligonucleotide-Modified Gold
Nanoparticles for Intracellular Gene Regulation. Science 2006, 312,
1027−1030.
(285) Yang, L.; Zhang, X.; Ye, M.; Jiang, J.; Yang, R.; Fu, T.; Chen,
Y.; Wang, K.; Liu, C.; Tan, W. Aptamer-Conjugated Nanomaterials
and their Applications. Adv. Drug. Delivery Rev. 2011, 63, 1361−1370.
(286) Su, H.; Koo, J. M.; Cui, H. One-Component Nanomedicine. J.
Contr. Release 2015, 219, 383−395.
(287) Tan, X.; Li, B. B.; Lu, X.; Jia, F.; Santori, C.; Menon, P.; Li, H.;
Zhang, B.; Zhao, J. J.; Zhang, K. Light-Triggered, Self-Immolative
Nucleic Acid-Drug Nanostructures. J. Am. Chem. Soc. 2015, 137,
6112−6115.
(288) Qian, E. A.; Wixtrom, A. I.; Axtell, J. C.; Saebi, A.; Jung, D.;
Rehak, P.; Han, Y.; Moully, E. H.; Mosallaei, D.; Chow, S.; Messina,
M. S.; Wang, J. Y.; Royappa, A. T.; Rheingold, A. L.; Maynard, H. D.;
Král, P.; Spokoyny, A. M. Atomically Precise Organomimetic Cluster
Nanomolecules Assembled via Perfluoroaryl-Thiol SNAr Chemistry.
Nat. Chem. 2017, 9, 333−340.

ACS Nano www.acsnano.org Nano Focus

https://doi.org/10.1021/acsnano.5c12854
ACS Nano 2025, 19, 31933−31968

31957

https://doi.org/10.1002/wcms.1620
https://doi.org/10.1021/acs.jpcb.2c08731?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/acs.jpcb.2c08731?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.3389/fchem.2023.1106495
https://doi.org/10.3389/fchem.2023.1106495?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/acs.chemrev.1c00107?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/acs.chemrev.1c00107?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/acs.chemrev.1c00107?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1038/s41570-023-00516-8
https://doi.org/10.1038/s41570-023-00516-8
https://doi.org/10.1021/acs.chemrev.2c00788?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/acs.chemrev.2c00788?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1109/TMTT.1975.1128640
https://doi.org/10.1109/TMTT.1975.1128640
https://doi.org/10.1109/TMTT.1975.1128640
https://doi.org/10.1238/Physica.Topical.076a00127
https://doi.org/10.1238/Physica.Topical.076a00127
https://doi.org/10.1088/0034-4885/69/5/R02
https://doi.org/10.1063/1.5128076
https://doi.org/10.1063/1.5128076
https://doi.org/10.1063/1.5128076
https://doi.org/10.1021/acs.jctc.8b01232?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/acs.jctc.8b01232?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/acs.jctc.8b01232?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1103/PhysRevA.99.063819
https://doi.org/10.1103/PhysRevA.99.063819
https://doi.org/10.1103/PhysRevA.101.033831
https://doi.org/10.1021/acs.chemrev.0c01111?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/acs.chemrev.0c01111?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/acs.chemrev.1c00033?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1038/369133a0
https://doi.org/10.1038/369133a0
https://doi.org/10.1126/scirobotics.abb9822
https://doi.org/10.1126/scirobotics.abb9822
https://doi.org/10.1126/scirobotics.abb9822
https://doi.org/10.1021/acs.macromol.4c01013?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/acs.macromol.4c01013?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/acs.macromol.4c01013?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/la100111b?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/la100111b?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1039/C5EN00112A
https://doi.org/10.1039/C5EN00112A
https://doi.org/10.1039/C5EN00112A
https://doi.org/10.1039/C6EN00181E
https://doi.org/10.1039/C6EN00181E
https://doi.org/10.1039/C6EN00181E
https://doi.org/10.1039/C6LC01045H
https://doi.org/10.1039/C6LC01045H
https://doi.org/10.1038/s41598-023-40668-7
https://doi.org/10.1038/s41598-023-40668-7
https://doi.org/10.1038/s41598-023-40668-7
https://doi.org/10.1038/s41598-023-40668-7
https://doi.org/10.1021/acs.nanolett.4c02695?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/acs.nanolett.4c02695?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1039/D3EN00795B
https://doi.org/10.1039/D3EN00795B
https://doi.org/10.1002/adma.202401560
https://doi.org/10.1002/adma.202401560
https://doi.org/10.1038/ncomms2891
https://doi.org/10.1038/ncomms2891
https://doi.org/10.1096/fj.04-2747rev
https://doi.org/10.1096/fj.04-2747rev
https://doi.org/10.1186/s12951-018-0392-8
https://doi.org/10.1186/s12951-018-0392-8
https://doi.org/10.1088/1748-605X/abe5fa
https://doi.org/10.1088/1748-605X/abe5fa
https://doi.org/10.1038/s44222-023-00138-1
https://doi.org/10.1038/s44222-023-00138-1
https://doi.org/10.2174/1389450115666140804124808
https://doi.org/10.1111/bph.12604
https://doi.org/10.1111/bph.12604
https://doi.org/10.1111/bph.12604
https://doi.org/10.1073/pnas.2218739120
https://doi.org/10.1073/pnas.2218739120
https://doi.org/10.1073/pnas.2218739120
https://doi.org/10.1126/science.1125559
https://doi.org/10.1126/science.1125559
https://doi.org/10.1016/j.addr.2011.10.002
https://doi.org/10.1016/j.addr.2011.10.002
https://doi.org/10.1016/j.jconrel.2015.09.056
https://doi.org/10.1021/jacs.5b00795?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/jacs.5b00795?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1038/nchem.2686
https://doi.org/10.1038/nchem.2686
www.acsnano.org?ref=pdf
https://doi.org/10.1021/acsnano.5c12854?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as


(289) Li, H.; Zhang, B.; Lu, X.; Tan, X.; Jia, F.; Xiao, Y.; Cheng, Z.;
Li, Y.; Silva, D. O.; Schrekker, H. S.; Zhang, K.; Mirkin, C. A.
Molecular Spherical Nucleic Acids. Proc. Natl. Acad. Sci. U.S.A. 2018,
115, 4340−4344.
(290) Ebrahimi, S. B.; Samanta, D.; Mirkin, C. A. DNA-Based
Nanostructures for Live-Cell Analysis. J. Am. Chem. Soc. 2020, 142,
11343−11356.
(291) Ferrer, J. R.; Sinegra, A. J.; Ivancic, D.; Yeap, X. Y.; Qiu, L.;
Wang, J.-J.; Zhang, Z. J.; Wertheim, J. A.; Mirkin, C. A. Structure-
Dependent Biodistribution of Liposomal Spherical Nucleic Acids.
ACS Nano 2020, 14, 1682−1693.
(292) Keller, A.; Linko, V. Challenges and Perspectives of DNA
Nanostructures in Biomedicine. Angew. Chem. Int. Ed. 2020, 59,
15818−15833.
(293) Distler, M. E.; Teplensky, M. H.; Bujold, K. E.; Kusmierz, C.
D.; Evangelopoulos, M.; Mirkin, C. A. DNA Dendrons as Agents for
Intracellular Delivery. J. Am. Chem. Soc. 2021, 143, 13513−13518.
(294) Divine, R.; Dang, H. V.; Ueda, G.; Fallas, J. A.; Vulovic, I.;
Sheffler, W.; Saini, S.; Zhao, Y. T.; Raj, I. X.; Morawski, P. A.;
Jennewein, M. F.; Homad, L. J.; Wan, Y.-H.; Tooley, M. R.; Seeger,
F.; Etemadi, A.; Fahning, M. L.; Lazarovits, J.; Roederer, A.; Walls, A.
C.; et al. Designed Proteins Assemble Antibodies into Modular
Nanocages. Science 2021, 372, eabd9994.
(295) Teplensky, M. H.; Dittmar, J. W.; Qin, L.; Wang, S.;
Evangelopoulos, M.; Zhang, B.; Mirkin, C. A. Spherical Nucleic Acid
Vaccine Structure Markedly Influences Adaptive Immune Responses
of Clinically Utilized Prostate Cancer Targets. Adv. Healthc. Mater.
2021, 10, e2101262.
(296) Winegar, P. H.; Figg, C. A.; Teplensky, M. H.; Ramani, N.;
Mirkin, C. A. Modular Nucleic Acid Scaffolds for Synthesizing
Monodisperse and Sequence-Encoded Antibody Oligomers. Chem.
2022, 8, 3018−3030.
(297) Fang, Y.; Cai, J.; Ren, M.; Zhong, T.; Wang, D.; Zhang, K.
Inhalable Bottlebrush Polymer Bioconjugates as Vectors for Efficient
Pulmonary Delivery of Oligonucleotides. ACS Nano 2024, 18, 592−
599.
(298) Mahmoudi, M.; Landry, M. P.; Moore, A.; Coreas, R. The
Protein Corona from Nanomedicine to Environmental Science. Nat.
Rev. Mater. 2023, 8, 422−438.
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