
A heterogeneous pharmaco-transcriptomic landscape induced by targeting a single 
oncogenic kinase 
 
Ross M. Giglio1, Nicholas Hou2, Adeya Wyatt2, Justin Hong3, Lingting Shi10, Mathini Vaikunthan2, 
Henry Fuchs2, Jose Pomarino Nima2, Seth W. Malinowski4, Keith L. Ligon4,5, José R. McFaline-
Figueroa6, Nir Yosef7,8,9, Elham Azizi2,3,10,11,12, José L. McFaline-Figueroa2,10,11,# 
 
1Department of Molecular Pharmacology and Therapeutics, Columbia University Medical Center, 
New York, NY 10032, USA. 
2Department of Biomedical Engineering, Columbia University, New York, NY 10027, USA. 
3Department of Computer Science, Columbia University, New York, NY 10027, USA. 
4Department of Oncologic Pathology, Brigham and Women's Hospital, Boston Children's Hospital, 
Dana-Farber Cancer Institute, Boston, MA 02215, USA. 
5Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA. 
6Center for Neuro-Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA. 
7Department of Electrical Engineering and Computer Sciences, University of California, Berkeley, 
Berkeley, CA 94720, USA. 
8Center for Computational Biology, University of California, Berkeley, Berkeley, CA 94720, USA. 
9Department of Systems Immunology, Weizmann Institute of Science, Rehovot, Israel. 
10Irving Institute for Cancer Dynamics, Columbia University, New York, NY 10027, USA. 
11Herbert Irving Comprehensive Cancer Center, Columbia University, New York, NY 10032, USA 
12Data Science Institute, Columbia University, New York, NY 10027, USA. 
 
#Correspondence: jm5200@columbia.edu 
 
  

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted June 4, 2025. ; https://doi.org/10.1101/2024.04.08.587960doi: bioRxiv preprint 

mailto:jm5200@columbia.edu
https://doi.org/10.1101/2024.04.08.587960
http://creativecommons.org/licenses/by-nc-nd/4.0/


Abstract 
 
Over-activation of the epidermal growth factor receptor (EGFR) is a hallmark of glioblastoma. 
However, EGFR-targeted therapies have led to minimal clinical response. While delivery of EGFR 
inhibitors (EGFRis) to the brain constitutes a major challenge, how additional drug-specific 
features alter efficacy remains poorly understood. We apply highly multiplex single-cell chemical 
genomics to define the molecular response of glioblastoma to EGFRis. Using a deep generative 
framework, we identify shared and drug-specific transcriptional programs that group EGFRis into 
distinct molecular classes. We identify programs that differ by the chemical properties of EGFRis, 
including induction of adaptive transcription and modulation of immunogenic gene expression. 
Finally, we demonstrate that pro-immunogenic expression changes associated with a subset of 
tyrphostin family EGFRis increase the ability of cytotoxic T-cells to eradicate tumor cells. Our 
study provides a framework that considers each agent's unique and often unknown poly-
pharmacology to prioritize compounds that induce clinically favorable molecular responses. 
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Introduction 
 
The response of cancer to therapy is driven by a complex interplay between a tumor’s genetic 
background and the mode of anti-tumor therapy. The development of bulk shRNA and CRISPR-
based genome-wide screens has drastically increased our ability to identify the genetic 
requirements of cancer cell response to therapy. These screens use gross phenotypic assays 
(e.g., viability), specific molecular measurements (reporter activity), or, more recently, single-cell 
profiling as readouts1–4. Variability across the drug’s mechanisms of action and polypharmacology 
can also result in substantial heterogeneity in a tumor’s response to therapy. Additionally, the 
classification of a drug by its predicted or previously annotated target has not always aligned with 
functional outcomes5,6, and in some cases, has led to inefficacy or unwanted off-target toxicity in 
clinical settings7,8. Altogether, we lack a comprehensive understanding of how different 
approaches to targeting oncogenic activity lead to heterogeneity in the molecular response to 
therapy. 
 
A prime example of variable response to therapy is observed in IDH-wild type glioblastoma (GBM) 
- the most common and aggressive primary brain cancer. Despite a multimodal treatment regimen 
composed of surgical resection, radiotherapy, chemotherapy, and tumor-treating fields, most 
patients succumb to their disease within 2 years of diagnosis9,10. Large-scale efforts have defined 
the genomic landscape of GBM. These studies identified near-ubiquitous overactivation of 
receptor tyrosine kinase (RTK) signaling, loss of the negative regulation of the RAS/MAPK and 
PI3K effector pathways, and inactivation of the Rb and p53 tumor suppressor pathways as core 
alterations in oncogenic signaling11,12. Unfortunately, this genetic characterization of the disease 
has yet to translate into a therapeutic gain despite numerous clinical evaluations of targeted 
therapies in GBM. 
 
Amplification and over-activating mutations in the epidermal growth factor receptor (EGFR) 
tyrosine kinase are found in approximately half of all GBM patients11, with the most prevalent 
mutation being truncation of exons 2-7 of EGFRs extracellular domain (EGFRvIII) which render 
the kinase constitutively active. Although targeting of EGFR has demonstrated clinical efficacy in 
EGFR-mutated non-small cell lung cancer, no such benefit has been identified in GBM despite 
strong selection for EGFR activity in the disease. This inefficacy is consequent to a myriad of 
factors, including poor brain penetrance of small molecule inhibitors across the blood-brain 
barrier, though few studies have focused on the mechanisms of innate and adaptive resistance 
to brain-penetrant agents. A case study detailing the clinical response with a brain-penetrant 
EGFR inhibitor has renewed interest in the use of these inhibitors in GBM13. More recently, a 
retrospective study found that a subset of patients treated with a combination of an EGFR inhibitor 
(osimertinib) and an anti-angiogenic (bevacizumab) experienced a long-term benefit14. In addition, 
resistance to the treatment was associated with secondary mutations in RTK-associated pathway 
components (MET, IGF1R, PTEN, PDGFR). These resistance mechanisms highlight the central 
role of EGFR and RTK signaling in the disease, the importance of understanding how GBM 
responds to the loss of EGFR activity, and the need to identify therapies that block RTK activity 
while leveraging their polypharmacology to minimize the emergence of resistant subclones. 
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Here, we apply ultra-high throughput single-cell chemical transcriptomic profiling to map variability 
in tumor cell response to targeting a single oncogenic event in one tumor type. We focus on the 
single-cell molecular profiling of patient-derived neurosphere GBM models (patient-derived cell 
lines or PDCLs) treated with 72 compounds and biomolecules with anti-EGFR activity and 
controls across ~1,800 unique conditions (PDCL x EGFRi x dose). We first examine the changes 
in gene expression networks associated with RTK signaling, tumor cell proliferation, and adaptive 
transcriptional resistance to identify EGFR inhibitors that decrease viability with minimal induction 
of a resistance program in surviving cells. We then use Multi-resolution Variational Inference 
(MrVI)15, a hierarchical probabilistic model that learns cell-specific sample stratifications, to 
identify drug-dose combinations with similar effects on distinct molecular programs. We leverage 
the information on how each compound alters these programs in each genetic background to 
arrive at a molecular classification of EGFR inhibitors. Amongst the transcriptional programs 
modulated by distinct EGFR inhibitors, we focus on expression changes of clinical interest, 
primarily the upregulation of the antigen processing and presentation machinery (APM), 
identifying a subset of tyrphostin family inhibitors that regulate MHC class I signaling and 
demonstrating a functional outcome associated with upregulation.  
 
Results  
 
Single-cell chemical transcriptomics identifies shared and distinct expression changes 
driven by a drug’s polypharmacology. 
 
Transcriptomic profiling of chemically exposed cells can identify commonalities in molecular 
response across compounds with similar mechanisms of action5. Their recent application at 
single-cell resolution allowed for a detailed description of how chemical perturbation alters cellular 
states and provided insight into the mechanisms of action not apparent across population-
averaged data16. However, studies have yet to examine whether this approach can detect subtle 
differences in response within a compound class that inform on a drug’s off-target effects and 
polypharmacology.  
 
To determine whether single-cell chemical transcriptomics profiling can identify differences in 
response across compounds targeting the same molecular activity, we devised a pilot screen 
using six small molecules that inhibit EGFR activity (afatinib, brigatinib, CUDC-101, EAI045, 
neratinib, osimertinib). Four of the six inhibitors target EGFR irreversibly (afatinib, EAI045, 
neratinib, osimertinib), one binds an allosteric site (EAI045), and two have been designed with 
activity against another enzyme (brigatinib17: an ALK inhibitor with anti-EGFR activity; CUDC-
10118: a bifunctional EGFR & HDAC class I/II inhibitor). We exposed 3 established glioblastoma 
cell lines (A172, T98G, U87MG) and 1 PDCL (BT333) to 7 doses (0.005 - 10 µM) of each 
compound or DMSO vehicle control for 24 hours. To determine the effect of each compound on 
transcription, we processed conditions across two replicates via sci-Plex multiplexing and 
subjected cells to single-cell combinatorial indexing RNA-seq19 (Fig. 1A). After filtering, we 
collected 188,746 single-cell transcriptomes across our 4 GBM models and 43 exposures for a 
total of 172 unique conditions (Supp. Fig. 1A-B). 
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Differential expression (DE) analysis identified robust changes in gene expression in response to 
exposure to 5 of the 6 EGFR inhibitors as a function of dose (median of 733 DE genes per EGFRi, 
FDR < 0.1%, normalized beta > 0.05, Supp. Fig. 1B-C).  We used integration20, dimensionality 
reduction19,21, and Leiden community detection 22 to visualize the similarities and differences in 
response across our models, which varied as a function of the precise inhibitor used (Fig. 1B-D). 
For example, exposure to high doses of either afatinib, brigatinib, neratinib or osimertinib led to 
the induction of a cell state associated with increased MTOR and decreased KRAS signaling 
(cluster 7, Fig. 1D). Conversely, cells exposed to high doses of the dual EGFR/HDAC inhibitor 
CUDC-101 gave rise to a distinct cell state associated with changes in TNF-ɑ signaling and an 
IFN response (cluster 6, Fig. 1D). To further explore whether the response to each inhibitor was 
similar across our GBM models, we performed a joint analysis to summarize the covariance of 
gene-level effects across the union of dose-dependent DE genes, which we previously showed 
can recover commonalities in drug-induced expression programs16 (Fig. 1F-H, Supp. Fig. 1D). 
The results of our analysis also suggest that transcriptional response to a compound is similar 
across our models. 
 
We next used hierarchical clustering to group modules of dose-dependent DE genes that covary 
across our experiment, identifying 17 and 15 modules of genes (each composed of > 30 genes) 
that are similarly and uniquely upregulated or downregulated, respectively, by one or more 
EGFRis (Fig I-L, Supp. Fig. 2A-C, Supp. Table S1). Amongst these gene modules, we identified 
a 48 gene signature that was upregulated in a dose-dependent manner broadly across all EGFR 
inhibitors, leading to a measurable effect on transcription (shared EGFR module, Fig. 1I-K). 
Interestingly, this signature had a significant and negative correlation with overall survival across 
two GBM cohorts from Brennan et al.11 and The Cancer Genome Atlas (TCGA PanCancer)23 (Fig. 
1M and Supp. Fig. 2D). Given that these cohorts are unlikely to contain patients treated with 
EGFR targeted therapy, this gene module may report on a general feature of populations of cells 
that survive cytotoxic or genotoxic therapy. Consistent with this hypothesis, this gene module 
correlates with increasing tumor grade and inversely correlates with survival across all gliomas 
(TCGA PanCancer, Supp. Fig. 2D-F). 
 
In addition to identifying broadly shared programs, our analysis identified transcriptional changes 
specific to one or a subset of compounds. We identified modules of genes unique to CUDC-101 
exposure, which likely report on transcriptional effects downstream of HDAC class I/II inhibition 
(Fig. 1K, Supp. Fig. 2A-C). We also identified a shared 70 gene signature between CUDC-101 
and osimertinib-exposed cells (Fig. 1L, Supp. Fig. 2A-C). Interestingly, the EGFR targeting 
quinazoline functional group of CUDC-10118 is most structurally similar to that of afatinib24, not 
osimertinib, among the 6 compounds tested. Moreover, this module is weakly correlated with 
proliferation index (Supp. Fig. 2G-H), suggesting this shared program is not simply a 
consequence of loss of viability. Overall, and towards our goal of classifying compounds by their 
polypharmacology, our results show that a single-cell chemical transcriptomics approach 
captures differences between compounds targeting the same oncogenic alteration, including 
unexpected associations not readily explained by a drug’s molecular structure. 
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Figure 1. Single-cell chemical transcriptomics recovers drug-induced expression 
signatures that vary due to a compound’s polypharmacology. A. Schematic depicting 
comprehensive screening of EGFR inhibitors in GBM. B-C. Integrated UMAPs of A172, T98G, 
U87MG, and BT333 GBM models exposed to one of 6 EGFR inhibitors or DMSO control. Color 
denotes the EGFR inhibitor (B) or the dose of inhibitor (C) that a cell was exposed to. D. Left: 
Integrated UMAP as in B-C colored by the cluster assignment from Leiden-based community 
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detection of in sample-integrated aligned PCA space. Right: Results of gene set enrichment 
analysis for MSigDB Hallmarks gene sets of biological processes that are significantly enriched 
(FDR < 5%, hypergeometric test) amongst differentially expressed genes (FDR < 0.1%, see 
Methods) for clusters associated with proliferation (clusters 3 & 4) and those that are dependent 
on EGFR inhibitor exposure (clusters 5 and 6). E. Distribution of GBM cells across clusters from 
D. F-H. UMAP projections summarizing the correlation (Pearson’s coefficient of effects size 
estimates across the union of differentially expressed genes) between cell line-drug effects on 
transcription, annotated by cell line and exposure (F), relative proliferation index (PI) (G), and 
relative aggregate expression of genes associated with active KRAS signaling (H). I-J. Violin plots 
of the aggregate expression of a shared EGFR inhibitor transcriptional module across BT333 cells 
exposed to a 10 µM dose of the specified EGFRi or DMSO control (I) or increasing doses of 
osimertinib (J). Dashed line denotes the median aggregate expression of DMSO control. K-L. 
Violin plots of the aggregate expression of a CUDC-101 specific (K) or shared CUDC-
101/osimertinib (L) transcriptional module across BT333 cells exposed to a 10 µM dose of the 
specified EGFRi or DMSO control. Dashed line denotes the median aggregate expression of 
DMSO control. M. Overall survival of GBM patients from Brennan et al. 11 grouped by the relative 
expression of the shared EGFR inhibitor transcriptional module (n = 152 patients, p: Wilcoxin-
Gehan test).  
 
Natively heterogeneous patient-derived GBM models vary in the expression of key RTK 
pathway components and evolution of cell states in response to EGFR inhibition. 
 
To comprehensively define pharmacological variability in the transcriptional response to EGFR 
inhibition, we profiled three PDCL cultures. In addition to being amenable to screening a large 
number of exposure conditions, these models maintain the genetic and molecular diversity 
observed in GBM tumors25–27. The three models chosen are representative of the diversity of 
EGFR status in the disease. All lines display amplification of the receptor, and two of three carry 
extracellular mutations that render EGFR constitutively active (Fig. 2A). In addition, the tumor 
suppressor landscape of these models is also representative of GBM, including mutations in 
negative regulators of the RTK pathway (NF1, PTEN) and the p53 and Rb pathways (TP53, 
CDKN2A, CDKN2B) (Fig. 2A). 
 
Multiplex single-cell RNA-seq profiling of PDCL cultures identified substantial heterogeneity in the 
expression of genes associated with EGFR and RTK signaling. For example, while all three cell 
lines expressed EGFR, the expression of EGFR dimerization partners varied, with ERBB2, 
ERBB3, and MET highest in BT112 cells (Supp. Fig. 3A). The expression of other RTKs and 
RTK pathway components were similarly variable across models, including the expression of 
FGFR and RAF family members (Supp. Fig. 3A). We also identified heterogeneity in the 
expression of genes associated with TP53, RB, and CDK signaling (Supp. Fig. 3B-C).   
 
Our analysis identified subpopulations within two of the three PDCL models profiled (Fig. 2B, 2G, 
Supp. Fig. 3D), which could not be explained solely by differences in proliferation or transcripts 
captured per cell (Fig. 2C-D, 2H-I, Supp. Fig. 3E-H). Examining the genes that vary across 
subpopulations (Supp. Table S2) revealed RTK pathway components whose expression differed, 
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including BRAF expression in BT228 cells and FGFR1 expression in BT333 cells (FDR < 1%, 
Fig. 2E-F, 2J-K). Previous studies have demonstrated that transcriptional plasticity renders a 
subset of cancer cells resistant to the effect of BRAF kinase inhibition in BRAFV600E-driven 
melanoma cells28. Similarly, this pre-existing heterogeneity in RTK pathway-associated gene 
expression may contribute to their ability to adapt and recur after targeting oncogenic driver 
mutations such as EGFR. 
 
We exposed PDCL models to each of 71 EGFR targeting small molecule inhibitors (Supp. Table 
S3), an EGFR neutralizing antibody (Panitumumab), a small molecule activator of EGFR 
(NSC228155), and puromycin (viability control) each at 4 doses, or PBS, Media, or DMSO 
controls for 24 hours and in replicate for a total of ~1,800 unique conditions. These EGFR 
targeting compounds serve as a comprehensive panel of EGFR inhibitors varying by generation, 
FDA approval, binding mechanism, activity against EGFR mutants, and known additional targets 
(Fig. 2L, Supp. Table S3). We subjected EGFR inhibitor-exposed samples to a modified version 
of our multiplex single-cell RNA-seq workflow (sci-Plex-v2) that incorporates advances in 
transcript capture29,30 and captures isoform information30 while remaining compatible with sci-Plex 
multiplexing, capturing a total of 181,485 cells with a median of 165 cells per unique combination 
of PDCL, drug, and dose (Supp. Fig. 4A-D), similar to the complexity per condition of prior large-
scale single-cell chemical genomics screens 16. In our large screen, we again identified 
subpopulations associated with increased BRAF and FGFR1 expression. In BT228 cells, the 
proportion of cluster 3 (Fig. 2M) associated with BRAF high cells (Fig. 2N) appeared to expand 
moderately as a function of EGFR inhibition (Fig. 2O). This effect was more pronounced when 
examining the proportion of BRAF high cells exposed to osimertinib (Fig. 2P), the strongest 
inducer of the shared EGFR signature in our pilot screen (Fig. 1I). In contrast, BT333 FGFR1 high 
cells did not appear to expand in response to EGFR inhibition (Fig. 2Q-R). These results are 
consistent with studies demonstrating that heterogeneity in the expression of factors associated 
with RTK signaling can be selected for upon treatment with inhibitors targeting RTK pathway 
overactivation28. 
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Figure 2. Inter- and intra-model variation in RTK pathway expression across patient-
derived glioblastoma models and selection upon EGFR inhibition. A. Genetic status of 
EGFR and key GBM-associated genes. B-K. UMAP embeddings of untreated BT228 (B-F) and 
BT333 (G-K) PDCLs colored by cluster (B, G), the aggregate expression of genes associated 
with proliferation (C, H), and total number of transcripts (UMIs) captured per cell (D, I), the 
expression of BRAF (E, J) and FGRF1 (F, K) as percent of maximal expression. Dotted circles in 
E-F & J-K denote subpopulations across BT228 and BT333 with a significant difference in BRAF 
and FGFR1 expression (quasi-Poisson regression, Wald test, FDR < 1%). L. Characteristics of 
the panel of 72 EGFR modulating compounds and biomolecules in our screen. M-N. UMAP 
embedding of BT228 cells exposed to 72 EGFR modulating compounds and controls with cells 
colored by cluster (M) and BRAF expression as percent of maximal expression (N). O. Percentage 
of BRAF high BT228 cells (cluster 3 in panel M) for cells treated with vehicle controls or the highest 
dose of EGFRi’s. Error bars denote the standard deviation from the mean across replicates. P. 
Percentage of BRAF high BT228 cells (cluster 3 in panel M) for cells treated with DMSO or 10µM 
osimertinib. Error bars as in O. Q. UMAP embedding of BT333 cells exposed to 72 EGFR 
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modulating compounds and controls with cells colored by FGFR1 expression as percent of 
maximal expression. R. Percentage of FGFR1 high BT333 cells (cluster 4 in G) for cells treated 
with vehicle controls or the highest dose of EGFRi’s. Error bars as in O. 
 
The global transcriptional response to EGFR inhibition is only partially shaped by a drug’s 
effect on proliferative- and resistance-associated gene expression. 
 
Exposure to our library of EGFR-targeting compounds had profound effects on transcription, with 
a mean of 6761 DE genes per PDCL and 662 DE genes per compound (FDR < 1%, Supp. Fig. 
4E, Supp. Table S4). We first investigated how a compound’s impact on global gene expression 
is linked to its potency in altering expression programs associated with proliferation. Across all 
PDCLs, we identified subsets of EGFRis that led to decreases in the expression of MKI67 and an 
aggregate score of proliferative gene expression that also displayed substantial effects on global 
transcription (Fig. 3A, Supp. Fig. 5A-C & Supp. Fig. 6A). For example, CUDC-101 and 
tyrphostin9 led to pronounced dose-dependent decreases in MKI67 and proliferative gene 
expression and had some of our screen's largest effects on global transcription (as # of DEGs). 
However, although MKI67 and total gene expression changes were strongly negatively correlated, 
the relationship appeared weaker for some inhibitors such as EGFRInhibitor in BT112, afatinib in 
BT228, and PD153035 in BT333 (Fig. 3A, Supp. Fig. 6A). Therefore, the results suggest that 
the mode of EGFR targeting differentially impacts the expression of diverse gene modules, with 
or without effects on proliferation.  
 
Given the minimal efficacy of EGFR inhibitors in inducing a clinical response in GBM patients in 
the clinic, we next examined the expression of programs associated with acquired resistance to 
therapy. Recently, we identified an adaptive resistance signature across established GBM cell 
lines and glioma stem cell models in response to the inhibition of RTK signaling, most prominently 
by inhibition of MEK via trametinib31. Across the EGFRi signatures from our pilot screen, we found 
that the shared EGFR signature (Fig. 1I-J), associated with decreased patient survival (Fig. 1M, 
Supp. Fig. 2D) and tumor grade (Supp. Fig. 2E), had the highest overlap with our adaptive 
program (Supp. Fig. 2C), suggesting it perhaps reports on tyrosine kinase activity (at baseline or 
after adaptation). To determine whether EGFR inhibitors in our screen differentially activate this 
program, we scored cells by its aggregate expression (Fig. 3B). Amongst the compounds that led 
to the strongest induction of the adaptive signature were several compounds with pronounced 
effects on proliferative gene expression, such as osimertinib, AZ5104 and WZ3146 (Fig 3A, 
Supp. Fig. 6B), members of the pyrimidine chemical class of EGFR inhibitors, a class that is 
enriched amongst compounds with the strongest effect on adaptive gene expression (Fig. 3B). 
Importantly, this induction was not observed for our puromycin viability control, suggesting that 
induction of the adaptive program is not merely a consequence of loss of viability. This analysis 
also identified several compounds that led to decreased proliferative gene expression with 
minimal induction of adaptive gene expression. For example, MTX-211, a dual EGFR and PI3K 
inhibitor, displayed the strongest ability to affect proliferative gene expression while minimizing 
adaptive gene expression in all PDCL models (blue highlight in Fig. 3A-B, Supp. Fig. 6B).  
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We next investigated the association between the induction of adaptive transcription and the 
ability of cells to persist upon repeated exposure to EGFR inhibitors. We exposed PDCLs to an 
initial dose of the drug at day 0, a rechallenge at day 3, and profiled cells 7 days post-initial 
exposure using sci-Plex-v2. Examining the dynamics of adaptive transcription between cells 
exposed to acute or repeated exposure revealed chemical and PDCL-dependent changes in the 
acquisition and maintenance of the adaptive resistance program. For instance, adaptive program 
scores decreased for BT228 and BT333 cells after repeated exposure to osimertinib but not 
BT112 (Fig. 3C, top). Examining the proportion of cells at each condition as a proxy for viability16 
revealed that decreases in the adaptive program were associated with decreases in cell viability 
to repeated osimertinib exposure in BT228 and BT333 but not BT112 (Fig. 3C, bottom). In 
contrast, cell viability decreased across all PDCLs in response to repeated MTX-211 exposure, 
consistent with minimal acute or long-term induction of the adaptive transcription program (Fig. 
3D). More broadly, we observed that chemicals that increase adaptive transcription upon 
repeated exposures were less effective in decreasing viability compared to compounds where the 
program is not induced, maintained or subsided (Fig. 3E). Taken together, our results provide 
evidence that a survey of the differences in the induction of molecular programs across related 
inhibitors can prioritize chemicals based on maximizing cytotoxicity while minimizing the induction 
of resistance programs (Fig. 3F). 
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Figure 3. Response to EGFR inhibition is imperfectly correlated to the effect on 
proliferative transcription. A. Relationship between the total number of differentially expressed 
genes as a function of EGFR inhibitor dose (quasi-poisson regression, Wald test FDR < 1%) for 
the specified EGFR inhibitor (top annotations) with the relative expression of the proliferation 
marker MKI67 across BT112, BT228, and BT333 PDCLs. The chemicals osimertinib and MTX-
211 are highlighted pink and blue, respectively. B.  Heatmap of z-scored mean aggregate 
expression of genes previously associated with adaptation31 to inhibition of the RTK pathway for 
BT112, BT228, and BT333, annotated by chemical classification and EGFR binding mechanism. 
The chemicals osimertinib and MTX-211 are highlighted pink and blue, respectively. C-D. 
Adaptive resistance changes between 24hr and 7d time points for 10uM EGFRi, with osimertinib 
(C) and MTX-211 (D) highlighted (top). Viability, as the proportion of cells treated with osimertinib 
(C) and MTX-211 (D) compared to all 10uM treated cells with respect to time point (bottom).  
Osimertinib decreases viability for BT228 and BT333 but not BT112, while MTX-211 decreases 
viability across PDCLs, consistent with adaptive resistance changes. E. Adaptive resistance 
changes between 24hr and 7d time points for 10uM EGFRi (top), with inhibitors highlighted and 
binned by adaptive resistance dynamics, specifically as increasing vs maintain/subside. The 
group in which there is minimized induction of the program is characterized by a significantly 
larger drop in viability (bottom, Wilcoxon test). F. A model demonstrating the prioritization of 
inhibitors for use in GBM that decrease viability and minimize the induction of adaptation. 
 
A classification of anti-EGFR agents by their induction of molecular programs. 
 
We next sought to classify our panel of EGFRis and summarize their relative effect on 
transcription as well as their unique and shared polypharmacology. We used MrVI15, a deep 
generative model that performs sample stratification at single-cell resolution, to annotate EGFRi-
induced transcriptional responses and classify EGFRis by their ability to induce them (Fig. 4A). 
MrVI’s hierarchical probabilistic framework presumes cells to be generated from nested 
experimental designs, such as our study, in which each sample, defined as a drug-dose treatment 
condition, is drawn from one of several experimental batches. MrVI learns two distinct latent 
feature spaces from a given scRNA-seq dataset, a sample-unaware U-space that is decoupled 
from the sample-of-origin, and a sample-aware Z-space that incorporates sample-of-origin effects 
while accounting for technical factors across both spaces. These latent spaces can be used to 
dissect sample-specific heterogeneity in cell states across populations of interest in downstream 
analyses (Supp. Fig. 7).  
 
We trained separate models for each of our 3 PDCLs with unique drug-dose combinations defined 
as the sample-of-origin and batch replicate as the technical factor. We used the union of the top 
100 highly variable genes for each unique PDCL-drug subset as features (total of 2,767 genes). 
MrVI defines the distance between samples for a given cell as the Euclidean distance between 
sample-specific counterfactual cell states, also known as the sample-sample distance. The single-
cell resolution of the sample-sample distances reveals heterogeneous transcriptional responses 
to drug-dose treatment, even within individual drug-dose conditions (Supp. Fig. 10, Supp. Fig. 
11 & Supp. Fig. 12). Hierarchical clustering of the mean sample-sample distances across cells 
revealed 22, 21, and 23 distinct groups of drug-dose combinations that resulted in similar 
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transcriptional responses in BT112, BT228, and BT333 PDCLs (termed Response Modules or 
RMs) (Fig. 4B & Supp. Fig. 8A). For example, in BT228, control treatments (DMSO, PBS, and 
media) and cells exposed to several EGFRis at low doses comprised RM14, which altogether 
represent exposures with minimal effects on transcription. The other response groups vary in their 
composition of chemicals and doses; for instance, RM1 and RM3 are comprised of CUDC-101 at 
high (1uM and 10uM, respectively) doses, while RM8 is represented by 29 unique chemicals 
ranging from 100nM to 10uM (Supp. Fig. 9). 
 
We used covariate-specific differential expression analysis to identify differentially expressed 
(DE) genes in cells of each RM compared to DMSO as a function of the counterfactual-based 
sample-sample distances identifying 563, 929, and 1021 DE genes for BT112, BT228, and BT333 
PDCLs (LFC > 0.1 and FDR < 5%) (Supp. Fig. 13, Supp. Fig. 14 & Supp. Fig. 15, see Methods). 
Gene set enrichment analysis across DE genes using the MSigDB Hallmark, MSigDB Oncogenic 
Signatures, Kinase Perturbations from GEO up and Kinase Perturbations from GEO down gene 
set collections revealed that RMs are enriched for genes associated with diverse biological 
processes, including the cell cycle, PI3K/mTOR signaling, kinase perturbation, induction of 
epithelial to mesenchymal transition (EMT) processes, increased KRAS or BRAF signaling, and 
TNF-alpha signaling through the NFkB pathway (Fig. 4C, Supp. Fig. 16).  
 
We next sought to use the ability of specific EGFRis to populate shared and distinct RMs to 
incorporate response modules across PDCLs. We hierarchically clustered RMs across PDCLs 
based on the normalized covariate-specific log-fold changes (LFC) in gene expression for the 
union of RM DE genes (Fig. 4A, Supp. Fig. 8B, Supp. Table S6). Although these RM clusters 
are largely occupied by one PDCL, they allow us to further summarize drug effects by collapsing 
drugs with similar RM cluster membership profiles (Fig. 4D-E, Supp. Fig. 17). This process 
resulted in 14 Transcriptional Drug Classes (TDCs) across 24 RM clusters with similar PDCL- 
and drug-specific responses (Supp. Table S5).  
 
Seven TDCs consisted of multiple agents, while seven TDCs consisted of single-agents, some of 
which were expected based on known protein target profiles. For example, CUDC-101 
(EGFRi/HDACi) and NSC228155 (EGFR activator, dimerization-domain binder32) were classified 
into distinct groups, TDC1 and TDC3, respectively. Control chemicals DMSO, PBS, and media 
were grouped in TDC6 along with compounds like EAI045, EBE-A22 (the inactive metabolite of 
PD153035), and cyasterone all of whom had little effect on transcription and viability (Fig. 3). 
Similarly, closely related compounds with strong effects on gene expression and similar EGFR 
off-target profiles grouped together; for instance, the ALK inhibitor brigatinib and its analog-
AP26113 were both members of TDC11, and osimertinib and its active metabolite AZ5104 were 
both members of TDC9.  
 
Interestingly, several drugs fell into or were excluded from TDCs in a manner that is not readily 
explained by their specificity (wild type vs mutant EGFR), drug generation, or chemical class. For 
instance, saracatinib, a SRC family TKI33 with an order of magnitude higher activity against wild 
type vs. mutant EGFR34, clustered within TDC11 with WZ3146 and nazartinib, both mutant EGFR 
(T790M) selective inhibitors35,36. Recently, WZ3146 was also found to target the SRC family 
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kinases LYN and FYN37, suggesting that nazartinib may have a similar off-target profile. TDC11 
also contains the pan-TKI inhibitors brigatinib, its analog-AP26113, and the molecular degrader 
gefitinib-PROTAC3. Interestingly, structural predictions and in vitro studies suggest that gefitinib 
can target SRC and the Src family kinase LCK as off-targets38. The differential TDC grouping for 
gefitinib-PROTAC3 and gefitinib and the former’s inclusion in TDC11 may highlight an unknown 
effect specific to the molecular degrader with regard to decreased activity of Src-family kinases.  
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Figure 4. EGFR inhibitor classification with MrVI. A. Schematic depicting utilization of MrVI 
and covariate-specific differential expression analysis to define transcriptional drug classes of 
EGFRi B. Heatmap of the mean normalized distances between drug-dose combinations across 
BT228 cells, estimated with MrVI. Hierarchical clusters were identified and labeled as Response 
Modules (RMs) C. Gene set enrichment analysis results for the up-regulated (top) and down-
regulated (bottom) genes of BT228 RM transcriptional signatures (FDR < 5%). Representative 
gene sets were chosen for visualization, and full GSEA results can be found in Supp. Fig. 16. D. 
Binary heatmap of each drugs’ membership across RM clusters. Hierarchical clustering of the 
drugs reveals generalized transcriptional drug classes (TDCs) of EGFRi. E. Circularized lollipop 
plots for individual drugs. An example plot before circularization is depicted for MTX-211. The 
color of the center indicates the TDC from (D). Each individual lollipop extending from the center 
represents the chemical’s 10uM mean aggregate expression of a RM’s upregulated genes 
detected by covariate-specific DE analysis, ordered by PDCL. The length of the line is proportional 
to the percent of cells within the drug’s high dose population expressing the RM signature score 
greater than the mean score amongst DMSO-treated cells respective of PDCL. The color of the 
line’s point is the log2-fold-change in mean RM signature score between the drug’s high dose 
population and DMSO-treated cells. F. Volcano plots displaying enrichment for APM MHC-I score 
across all TDCs for each PDCL. Beta coefficients and FDR values were obtained from a general 
linear regression model, in which APM MHC-I score was fitted to a singular term TDC. TDC4, 
represented by tyrphostin-family compounds, is highlighted as enriched for APM MHC-I in each 
PDCL. 
 
A subset of EGFR inhibitors modifies GBM tumor cell immunogenicity. 
 
GBM is one of the least immunogenic tumor types, displaying low expression of the antigen 
processing and presentation machinery (APM) and low infiltration of cytotoxic immune cells39,40. 
Several studies have identified changes in tumor cell immunogenicity as a function of inhibiting 
the kinase activity of EGFR41,42 or MEK43,44. Furthering prior studies, our profiling across a large 
number of compounds can provide insight into chemical classes of EGFR inhibitors that drive pro-
immunogenic response and report on whether an off-target effect contributes to this clinically 
beneficial outcome. We therefore evaluated whether any TDCs were enriched for genes 
associated with the MHC class I (MHC-CI) or MHC class II (MHC-CII) antigen processing and 
presentation machinery45,46. Our analysis identified TDC4, induced by tyrphostin compounds such 
as AG18, AG99, AG490, AG494, AG555, and tyrphostin9 as significantly enriched for MHC-CI 
APM genes across all three PDCLs (Fig. 4E-F).  
 
To more directly determine whether EGFR inhibition leads to increased APM expression in GBM 
PDCLs, we scored EGFRi-exposed PDCL cells for the expression of MHC-CI and MHC-CII 
genes. We used linear regression to identify compounds with a dose-dependent effect on APM 
expression. We identified 42 compounds significantly affecting MHC-CI APM expression and 46 
that significantly affected MHC-CII APM expression across one or more PDCLs (Fig. 5A-B). 
Consistent with our TDC analysis, there was a marked enrichment for tyrphostin class compounds 
amongst MHC-CI APM-modifying EGFR inhibitors (Fig. 5A). Of note, several of these tyrphostin 
compounds had minimal effects on proliferative and moderate effects on global gene expression 
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(AG18, AG490, AG494, AG555; Fig. 3A) yet led to consistent increases in APM scores. 
Examining changes at the level of individual genes revealed that changes induced by tyrphostins 
are distinct from other classes. For example, across conditions that increased MHC-CI APM 
expression in 2 or more PDCLs, all exposures were associated with increased B2M, CALR, 
CANX, HLA-A, HLA-B, and HLA-C expression. In contrast to tyrphostins, however, exposure to 
CUDC-101 either did not alter or was associated with the downregulation of factors such as 
ERAP2, PSMB5, PSMB6, PSMB7, and TAPBP (Fig. 5C, dashed boxes).  
 
Surprisingly, our puromycin viability control induced APM expression in 2 of 3 PDCLs. Previous 
studies have reported that low-dose puromycin has anti-tyrosine kinase activity independent of 
its effect on translation47. However, given that only a narrow subset of EGFRis modulate APM, it 
is more likely that other factors downstream of puromycin exposure (puromycilation, inhibition of 
translation) alter APM expression independent of modulation of tyrosine kinase, or at least EGFR, 
activity. We also identified broader effects of EGFRis on signaling pathways associated with 
immunogenicity, such as significant increases in JAK1, STAT1, and STAT3 expression by the 
dual EGFR/HDAC targeting agent CUDC-101 (Fig. 5E). However, while changes to MHC-CI APM 
expression were observed across all models, changes in MHC-CII APM were largely confined to 
BT333 (Fig. 5B, 5D), such as increases in the MHC-CII antigen-presenting subunits HLA-DMA 
and HLA-DMB47,48 (Fig. 5F-G).  
 
Lastly, we sought to determine whether changes in gene expression associated with tumor 
immunogenicity lead to functional changes in the interactions between GBM and immune cells, 
specifically, the ability of tyrphostin EGFRi’s to alter cytotoxic T-cell-mediated tumor cell killing. 
We used an allogeneic GBM:T-cell co-culture system consisting of GBM cells overexpressing the 
tumor antigen NY-ESO-149 and T-cells expressing anti-NY-ESO-1 T-cell receptors (TCR)50, 
similar to recent studies modeling GBM:T-cell interactions in vitro 51. We pre-treated NY-ESO-1 
GBM cells with a range of doses to tyrphostin family EGFRi’s (AG18, AG490, AG494, AG555, 
tyrphostin9) that increased APM expression across our PDCLs, EGFRi’s that do not alter APM 
expression but have a range of effects on transcription (CL-387785, OSI-420, osimertinib, 
PD153035) and DMSO vehicle control. We used CFSE labeling of GBM cells, measuring the 
fluorescent area of each well to quantify how EGFRi exposure alters tumor cell killing by cytotoxic 
T-cells (Fig. 5H). We then co-cultured pre-treated NY-ESO-1 GBM and terminally differentiated 
anti-NY-ESO-1 CD8+ T-cells at GBM:T-cell ratios of 1:0, 1:0.25, and 1:0.5, the latter ratios 
resulting in approximately 5 to 20% decreases in GBM cell viability 48 hours post-co-culture, 
respectively. To account for differences in viability across inhibitors, we normalized the fluorescent 
area to that of the no T-cell condition (Fig. 5I). Exposure of cells to tyrphostin9, the strongest 
inducer of MHC-CI APM machinery in the screen, led to a significant increase in T-cell mediated 
killing (Fig. 5I, 5J & Supp. Fig. 20). In addition, exposure of cells to AG18, AG490, AG494, and 
AG555 led to moderate increases in T-cell mediated killing at the lower GBM:T-cell ratio of 1:0.25 
(Supp. Fig. 20), consistent with their effect on APM expression (Fig. 5A, 5C). 
 
To the best of our knowledge, the known polypharmacology of these inhibitors does not provide 
a straightforward explanation of which molecular target is responsible for these changes in 
immunogenicity. However, our results suggest that EGFR is not the primary effector, given the 
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small subset of compounds that induce the response (Fig. 5A), their differing potency in modifying 
proliferative gene expression (Fig. 3A), and the lack of compensatory feedback that characterizes 
the most potent EGFR inhibitors in our screen (Fig. 3B). Our findings imply that the choice of 
EGFR inhibitor can result in complex molecular state changes with the potential to alter the 
immunogenicity of GBM and warrant further investigation for their implications for GBM 
immunotherapy. 
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Figure 5. A subset of EGFRi’s modulate immunogenicity. A-B. Circos heatmaps of beta 
coefficients for the dose term of a linear regression model of the effect of EGFR inhibition on the 
expression of genes associated with the MHC class I (A) or II (B) antigen processing and 
presentation machinery (APM) in one or more PDCLs. Only significant coefficients (FDR < 5%, 
Wald test) are shown. C. Heatmap of the effect of EGFR inhibition on genes associated with the 
MHC-CI APM for EGFRi’s that significantly increase aggregated MHC-CI APM expression in two 
or more PDCLs from (A). D. Heatmap of the effect of EGFR inhibition on genes associated with 
the MHC-CII APM for a subset of EGFRi’s that significantly increase aggregated MHC-CI APM 
expression in BT333 from (B). Note that EGFR activation using NSC228155 leads to decreases 
in MHC-CII APM. E. Percent of cells expressing JAK1, STAT1 or STAT3 after exposure to 10 µM 
CUDC-101 or DMSO vehicle control. Colors denote PDCL models: navy = BT112, dark red = 
BT228, dark green = BT333. Asterisks denote exposures that lead to a significant change in 
exposure relative to control (FDR < 5%). F-G. Percent of cells expressing HLA-DMA (F) or HLA-
DMB (G) after exposure to the top dose of the specified agent. Asterisks denote exposures that 
lead to a significant change in exposure relative to control (FDR < 5%). Colors as in (E). H. 
Example 488nM fluorescent CFSE image tile and identification of GBM-covered area with 
CellProfiler software. I. U87MG NY-ESO-1 cell viability post-10 µM tyrphostin9 or DMSO control 
in combination with increasing T-cell exposure (1:0.25, 1:0.5) quantified as CFSE pixel area of 
GBM:T-cell conditions 1:0.25 and 1:0.5, relative to 1:0 (drug alone) (nDMSO,T-cell = 18, nTyrphostin9,T-cell 
= 9). Wilcoxon test, * denotes p < 0.01. J. Proposed mechanism of tyrphostin9-induced APM 
machinery increasing GBM susceptibility to T-cell-mediated killing. 
 
Discussion 
 
Biochemical and chemical proteomic studies have established the fact that kinase inhibitors have 
varying degrees of selectivity for their intended targets52–55. In some cases, a drug’s higher degree 
of polypharmacology may enhance clinical efficacy56, while for others, off-target effects may result 
in unacceptable side-effects that lead to its failure in the clinic. In the context of glioblastoma, 
clinical trials for EGFR inhibitors have yielded little success despite the high prevalence of 
activating EGFR mutations in the patient population and despite the success in targeting EGFR 
across other tumor types. It is apparent that the molecular response in targeting this oncogenic 
activity is not fully understood. Here, in targeting EGFR with a diverse inhibitor library composed 
of small molecules and a biologic -- each with different chemical structure and binding properties 
-- we define a landscape of responses to an entire inhibitor class and further group the chemical 
agents into transcriptional drug classes based on the shared induction of molecular responses.  
 
Our high-throughput targeted screen allowed for the comparison of inhibitor efficacy by standard 
metrics such as proliferation (e.g. MKI67 or aggregate proliferation score) obtained with traditional 
viability-based assays. However, we show that an inhibitor’s impact on viability is not always 
correlated with global transcriptional response, indicating that inhibitor responses extend beyond 
viability, consistent with previous chemical genomic profiling efforts5,16. Moreover, we show that 
EGFRi differentially induce an adaptive resistance molecular response recently associated with 
MEK inhibition31 and that accounting for this adaptive response will help lead to identifying 
clinically effective compounds.  
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The generation of single-cell chemical genomics datasets necessitates the development of novel 
computational approaches that efficiently summarize the large-scale high-dimensional data to 
gain novel biological insight into the effects of chemical perturbation on cellular and molecular 
states. Recent studies have developed techniques that study transcriptional differences in 
patients, cell types/states, and molecular perturbation screens57–59. In addition to the development 
of large data resources that can help refine these efforts, we demonstrate the suitability of MrVI15, 
a recently developed deep generative model designed to estimate sample (drug-dose) 
heterogeneity at the cellular level while jointly correcting for batch effects, for summarizing 
transcriptional responses in large-scale genomics screens and grouping chemical agents by their 
shared induction of cellular states. We show that our experimental and analytical framework to 
refine the grouping of chemical agents targeting the same oncogene on the basis of their induction 
of distinct molecular programs is highly sensitive, revealing associations that reflect a drug’s 
polypharmacology. This framework enabled the discovery of off-target effects related to increased 
immunogenicity due to the induction of the antigen processing and presentation machinery. 
Future rational design of inhibitors could incorporate similar approaches to identify compounds 
that simultaneously block oncogenic kinase activity and have desirable off-target effect profiles 
that induce responses synergistic with combination immunotherapy.  
 
Our results provide motivation for the single-cell profiling of chemical inhibitors against a single 
target toward the multiplex identification and annotation of designed and off-target molecular 
programs. Thanks to advances in combinatorial indexing single-cell RNA-seq library generation 
methods29,30, hundreds of thousands to millions of cellular transcriptomes across thousands of 
unique conditions can be obtained robustly and at reasonable cost16,31,60. Previous studies have 
included large-scale efforts to establish atlases of molecular responses to a massive amount of 
perturbations across a spectrum of cancer cell lines, utilizing probe-based fluorescence for 
targeted gene expression measurements5, with limitations in drug repurposing applications 61. 
While these efforts can be beneficial for applications like annotating broad inhibitor mechanisms 
of action, there is a need for high-resolution cellular resolved characterization of responses to 
chemicals, limited to a chemical class and targeting a specific cancer type. Future endeavors that 
would further strengthen our approach include novel ways to incorporate methods like lineage 
tracing62, beneficial for answering questions of clonal expansion under inhibition63, across large-
scale experiments with limited cell, and therefore clonal, coverage per condition. Additionally, 
while we obtain a global view of EGFRi responses by studying three genetically-diverse models, 
future screens will need to incorporate EGFR genotype as a variable across a larger number of 
models to discover the effects of GBM-specific mutations or through the study of isogenic 
alterations in wildtype backgrounds.  
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Materials and Methods 
 
Cell culture 
A172, T98G, and U87MG glioblastoma cell lines were purchased from ATCC. Cells were cultured 
in DMEM media (ThermoScientific) supplemented with 10% fetal bovine serum and 1% 
penicillin/streptomycin (P/S, ThermoScientific) according to ATCC instructions. Glioma 
neurosphere cell lines BT112, BT228, and BT333 were obtained from the DFCI Center for Patient 
Derived Models (CPDM) under a material transfer agreement and maintained as described 
previously (Touat et al 2020 Nature). Briefly, cells were grown in Neurocult NS-A Proliferation 
Media (StemCell) supplemented with 0.0002% heparin (StemCell Technologies), EGF (20 ng/ml), 
and FGF (10 ng/ml; Miltenyi) in a humidified atmosphere of 5% CO2 at 37 °C on low-attachment 
plates 64 and were dissociated with Accutase (StemCell Technologies) for passaging and plating. 
 
Pilot screen chemical perturbation procedure and materials 
Cells were plated at a density of 2.5E4 cells/well onto 96-well flat-bottom plates for adherent cell 
lines and V-bottom plates for spheroid cell lines and were allowed to acclimate overnight. 
Chemical agents (SelleckChem) were purchased as a powder and resuspended in DMSO as 
10mM (afatinib, CUDC-101, EAI045, neratinib, osimertinib) or 5mM (brigatinib) stocks according 
to the manufacturer’s instructions. 10-fold dose concentrations (5nM, 10nM, 50nM, 100nM, 
500nM, 1uM, 5uM, 10uM) were prepared in media as 10X stocks and were added to cells with all 
wells were normalized to 0.2%v/v DMSO (final conc. in well). Nuclei were hashed, fixed, and 
harvested 24 hours post-exposure.  
 
Large screen chemical perturbation procedure and materials 
Cells were plated at a density of 2.5E4 cells/well on 96-well V-bottom plates as in the pilot screen. 
Chemical agents (SelleckChem) were purchased as frozen 10mM stocks in respective solvents 
(DMSO, 1X PBS). 10-fold dose concentrations (0.01uM, 0.1uM, 1uM, 10uM) were prepared in 
media at 10X stocks and added to cells. Wells were DMSO or PBS normalized according to drug 
solvent, and vehicle-treated wells were included. Nuclei were hashed, fixed, and harvested at 24 
hours post-exposure. For 7d time point exposures, cells were drugged initially in the same manner 
as in the 24hr condition. At 3 days post-exposure, wells were rechallenged with 10uL of drug in 
media equimolar to the well condition. Finally, nuclei hashed, fixed, and harvested at 7 days post-
initial exposure. 
 
Nuclei hashing and fixation 
Nuclei hashing and fixation procedures were adapted from Srivatsan et al. and Sziraki et al. 
Briefly, adherent cells were trypsinized and moved to V-bottom plates, and spheroid cells were 
dissociated in place. Upon washing with ice-cold 1X PBS, cells were lysed with EZ Lysis Buffer 
(Sigma) supplemented with 1% diethyl pyrocarbonate (Sigma), 0.1% SuperaseIn RNase Inhibitor 
(Thermo), and 500 fmol of hashing oligo. After lysis, nuclei were fixed with the addition of 1.25% 
formaldehyde in 1.25X PBS (final well conc. 1% and 1X, respectively) and incubated on ice for 
10 minutes. Nuclei were pooled into a plastic reservoir and moved into a 50mL conical for 
centrifugation at 650xg for 5 minutes at 4°C. Supernatant was removed from the nuclei pellet, and 
nuclei were washed once with nuclei suspension buffer (NSB; 10 mM Tris-HCl, pH 7.4, 10 mM 
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NaCl, 3 mM MgCl2, 1% Superase RNA Inhibitor (Thermo Fisher), 1% 0.2mg/mL Ultrapure BSA 
(New England Biosciences)). Nuclei were resuspended in NSB, slow-frozen in 10% DMSO, and 
stored at -80°C until sci-RNA-seq processing. 
 
Library preparation and sequencing 
Hashed nuclei were thawed and subjected to 3-level combinatorial indexing protocols adapted 
from previous methods (Cao et al, Martin et al, Sziraki et al). Nuclei were spun, resuspended in 
NSB, and sonicated at low power for 12s (Bioruptor). Upon counting, 21uL nuclei were moved to 
96-well low adhesion PCR plates with 2uL 10mM dNTP, 2uL 100uM indexed oligo-shortdT 
primers, 2uL 100uM indexed random hexamer primers, and 14uL of a reverse transcription 
master mix consisting of 14.29% 100mM DTT, 14.29% 100mM RNaseOUT Ribonuclease 
Inhibitor, 57.14% 5X SuperScript IV First-Strand Buffer, and 14.29% SuperScript IV Reverse 
Transcriptase. Reverse transcription was carried out with an increasing temperature gradient. 
Post-reverse transcription, nuclei were pooled and distributed as 10uL into a 96-well plate(s) for 
ligation steps. Briefly, 8uL of indexed ligation primers were added to each well, along with a 4.8uL 
3:2 master mix of T4 ligase buffer:T4 ligase (New England Biosciences, NEB) and 9.4uL of nuclei 
buffer with BSA (NBB; 10 mM Tris-HCl, pH 7.4, 10 mM NaCl, 3 mM MgCl2, 1% 0.2mg/mL 
Ultrapure BSA). Ligation was carried out at 25°C for 1 hour. Resulting nuclei were pooled, washed 
with NBB, and distributed as 1500 nuclei in 5uL NBB per well, where some plates were stored for 
future processing. Next, 5uL of a second strand synthesis mix consisting of 60% elution buffer 
(Qiagen), 27% second strand synthesis buffer (NEB), and 13% second strand synthesis enzyme 
mix (NEB) was added, and second strand synthesis was carried out at 16°C for 3 hours. Post-
second strand synthesis, tagmentation was performed at 55°C for 5 min after the addition of 
1/50uL of N7-adaptor loaded Tn5 and subsequent quenching with DNA binding buffer (Zymo) for 
5 min at room temperature. Resulting dsDNA was purified using a 1X SPRIbead clean-up within 
the 96-well plate, and the resulting product was subjected to USER digestion (80% ddH2O, 10% 
10X rCutsmart, 10% USER enzyme (NEB)). The dsDNA was eluted in buffer EB then moved to 
a clean 96-well plate. In addition to 16uL of eluted product, 2uL P5 PCR primer and 2uL P7 PCR 
primer were added to wells in an indexed well-specific combination. Further, 20uL 2X NEBnext 
PCR master mix (NEB) was added, and PCR to add the adaptors was carried out. The final PCR 
product was pooled and subjected to a 0.7X SPRIbead cleanup for library cDNA purification and 
1X cleanup for hash fraction purification. Library concentrations were determined by Qubit 
(Invitrogen) and were visualized by TapeStation DNA D1000. The resulting libraries were 
sequenced on the Illumina NextSeq550 for the pilot screen and on the Element Biosciences AVITI 
for the large EGFRi screen according to the manufacturer’s instructions.  
 
Data preprocessing and generation of count matrix 
Raw base call files were obtained from Illumina BaseSpace or AVITI storage and were used to 
generate fastq files using bcl2fastq v2.20.0.422 or bases2fastq version 1.5.0.962525890, 
respective of sequencing platform. A custom data processing pipeline, adapted from Srivatsan et 
al., was used to process fastq data into a single-cell count matrix. First, reverse transcription and 
ligation barcodes were assigned to reads with a mismatch allowance of 1bp, and reads assigned 
to oligo-shortdT primers were separated from those assigned to random hexamer primers. After 
index assignment, polyA sequences were trimmed using TrimGalore version 0.6.10 and CutAdapt 
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version 2.6. Upon polyA trimming, reads were aligned to human GRCh38 using the STAR aligner 
version 2.7.9a. Aligned reads were filtered for quality and duplicates and were assigned to genes 
using bedtools version 2.26.0, as described previously. The resulting unique read assignments 
from both primers were combined and collapsed by cell and gene, and a celldataset (CDS) object 
was generated using the raw sparse count matrix, cell annotations, and gene annotations with 
the R package monocle3. Cell barcodes were determined to be cells upon filtering the CDS by a 
UMI cutoff determined visually with the kneeplot of cell rank by UMI count. Lastly, doublets were 
detected with scrublet and were filtered based on the doublet score distribution. 
 
In parallel, hash assignments were determined from demultiplexed untrimmed oligo-shortdT 
reads as described previously (Srivatsan et al, McFaline-Figueroa et al). Briefly, hash barcodes 
were assigned to reads with a mismatch allowance of 1bp and if the read was adjacent to repeated 
A sequences, corresponding with hash sequence design. Duplicate hash reads were filtered by 
UMI and were collapsed into hash assignment counts by cell. Hashes were assigned to cells by 
two criteria: (1) a cell having ≥20 (pilot) and ≥5 (large screen) hash UMIS and (2) a ratio of the 
cell’s top hash UMI to second best hash UMI of 3 (pilot) or 2.5 (large screen). The monocle3 
package was used to manipulate 19,65,66, batch align 20, and visualize 21 the resulting data. 
 
Defining shared inhibitor signature 
For the pilot EGFRi screen, differentially expressed genes (DEGs) were calculated by fitting 
expression of a gene in each cell line/drug condition to a generalized linear model (GLM) modeled 
as a function of dose and replicate using the R package monocle3’s fit_models function. The tests 
were limited to genes expressed in at least 1% of all cells in the experiment. P-values for each 
DEG test were FDR corrected (Benjamini-Hochberg), and significant DEGs were defined as FDR 
< 0.01 and a normalized effect magnitude (beta coefficient) of > 0.05. The DEGs associated with 
each drug were joined for each cell line, and signatures were defined as the unique intersection 
of DEGs between all combinations of agents used. Of note, the inhibitor EAI045 was excluded 
from signature analysis given its low number of DEGs indicating its overall low impact on 
transcription. Only DEG intersections with at least 30 genes were analyzed. For each cell, genes 
for each signature were size-factor normalized, log transformed, and aggregated to amount to a 
signature score. 
 
Patient survival analysis 
GBM TCGA data (Cell 2013) was accessed and downloaded through the cBioPortal for Cancer 
Genomics, specifically clinical survival information and paired RNASeqV2 mRNA expression 
values. Normalized bulk expression values were log10(RSEM) transformed, and signature scores 
for each donor were calculated as the sum of expression across signature genes. Donors were 
categorized as high or low signature expression of the signature based on top and bottom 50% 
of the cohort. Using survival, ggsurvfit, and condsurv R packages, Kaplan-Meier curves were 
generated for each group and compared for significant differences in survival using the Gehan-
Wilcoxon test or Mantel-Haenszel as denoted. For signature comparison of other cancer types 
and glioma grade, TCGA PanCancer Atlas data was downloaded and processed in the same 
way. 
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Large-screen differential gene expression analysis and calculation of aggregated gene 
scores for proliferation, resistance, and APM gene programs 
As before, differentially expressed genes (DEGs) were calculated by fitting expression of a gene 
in each cell line/drug condition to a generalized linear model (GLM) modeled as a function of dose 
and replicate using the R package monocle3’s fit_models function. The tests were limited to the 
union of genes expressed in at least 1% of cells within each PDCL. P-values for each DEG test 
were FDR corrected (Benjamini-Hochberg), and significant DEGs were defined as FDR < 0.01 
and a normalized effect magnitude (beta coefficient) of > 0.05. 
 
Proliferation, resistance, and antigen-presentation machinery scores were calculated as in 
Srivatsan et al16. Briefly, for each cell, raw gene expression for genes within a program were 
retrieved from the count matrix and were size-factor normalized. The normalized expression 
values were aggregated by group and log normalized with a pseudocount of 1. Downstream 
scores were visualized as group medians or z-scored group means using R packages Pheatmap 
and ComplexHeatmap. GLMs of aggregate scores as a function of dose were fit using the R 
package speedglm. For resistance program scores that include both 24hr and 7d exposures, 
mean aggregate expression was z-scored jointly to visualize changes over time.  
 
U87MG NY-ESO-1 generation and induction of cytotoxic T-cell killing  
U87MG were engineered to express the antigen NY-ESO-1 constitutively. Briefly, a plasmid 
containing the sequences for NY-ESO-1 (CTAG1B) was ordered from OriGene Technologies. 
qPCR were performed to obtain the NY-ESO-1 fragments with forward and reverse primers. 
Overhangs were added to NY-ESO1 fragments by gibson ligation to insert into a vector backbone 
containing a blasticidin resistance sequence. Virus was produced by transfecting HEK293T cells 
with the plasmid and the Lipofectamine 3000 kit (Thermo Fisher Scientific). U87MG were 
transduced with the supernatant containing the NY-ESO-1 virus. After 72 hours of viral exposure, 
U87MG NY-ESO-1 cells were selected with 10ug/mL blasticidin in culture media for 3 days. Cells 
were regularly exposed to 1ug/mL blasticidin throughout expansion to ensure blasticidin 
resistance and NY-ESO-1 expression. 
 
For the GBM cytotoxic T-cell killing experiment, terminally differentiated human CD8+ anti-NY-
ESO-1 T-cells, derived by activation of CD8+ T cells via antigen presenting cells with NY-ESO-1 
peptide, were ordered from Charles River Lab. T cells were thawed according to the 
manufacturer's protocol and used for the experiment immediately. U87MG NY-ESO-1 cells were 
cultured and were subjected to TrypLE (Gibco) to be made single-cell in suspension. Cells were 
stained with CellTrace CFSE Cell Proliferation Kit (Invitrogen) according to instructions (5uM 
CFSE in 1X PBS, cell density 1E6/mL) to emit  fluorescence at 488nm and were subsequently 
plated in a 96-well flat bottom plate at a density of 10E3 cells/well, in media consisting of DMEM, 
10% FBS, and 10mM penicillin-streptomycin, as well as in standard culture conditions of 37°C, 
humidified 5% CO2/balance air environment. After adhering and acclimating overnight, the cells 
treated with 10uM EGFRi (AG18, AG490, AG494, AG555, Tyrphostin9, CL-387785, OSI-420, 
Osimertinib, or PD153035) or DMSO control — the inhibitors span transcriptional responses of 
proliferation, adaptive resistance, and antigen presentation. After 24 hours of EGFRi pre-
treatment, EGFRi-supplemented media was removed, and the GBM cells were exposed to T-cells 
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at various GBM:T-cell ratio (1:0 i.e no T-cells, 1:0.25, and 1:0.5). In total, there were 18 well 
replicates per DMSO + T-cell condition, and 11 well replicates for each EGFRi (excluding 
Tyrphostin9) + T-cell condition, and 9 well replicates for Tyrphostin9 + T-cell condition. T-cells 
and U87MG NY-ESO-1 cells were co-cultured in complete T-cell culture media consisting of RPMI 
1640 supplemented with 10mM HEPES, 10mM L-glutamine, 10% FBS, 0.34% β-
mercaptoethanol, and 10mM penicillin-streptomycin, as in 67. After 48 hours post-T-cell exposure, 
plates were imaged with the Zeiss confocal microscope and software, capturing 4x4 tiles of 50x 
total magnification images of wells with both brightfield and 488nm fluorescence. Tile images 
were stitched, exported as .tif files, and analyzed using CellProfiler 68. First, each raw 488nm 
image was cropped to each tile, excluding well edges, and fluorescent GBM cells were identified 
with the IdentifyPrimaryObjects function. The area occupied (pixels) was calculated with the 
MeasureImageAreaOccupied function, and the resulting data was exported for downstream 
analysis and visualization in R. The well area for each EGFRi + T-cell condition was aggregated 
and normalized to the respective plate-specific drug-alone condition CFSE area. 
 
MrVI model training  
MrVI15 is a deep generative model that performs sample stratification at single-cell resolution. As 
mentioned in the results, the model’s hierarchical probabilistic framework presumes cells to be 
generated from nested experimental designs, in which each sample is drawn from one of several 
experimental batches. MrVI learns two distinct latent feature spaces from a given scRNA-seq 
dataset, a sample-unaware U-space that is decoupled from the sample-of-origin and a sample-
aware Z-space that incorporates sample-of-origin effects while accounting for technical factors 
across both spaces. These latent spaces can be used to dissect sample-specific heterogeneity in 
cell states across populations of interest in downstream analyses. The updated version of MrVI 
we applied features multi-head cross-attention-based decoders from the U-space to the Z-space 
and from the Z-space to the observed space for improved integration. Additionally, the U-space 
can be constrained to a lower dimensional space relative to the Z-space to further improve the 
mixing of different samples in the U-space.  
 
We trained a MrVI model for each PDCL (i.e. BT112, BT228 and BT333) with the sample key 
defined as unique drug-dose combination and the batch key defined as replicate. For all trained 
models, we used the recommended default model arguments: n_latent=30; n_latent_u=10; 
qz_nn_flavor=“attention”; px_nn_flavor=“attention”; use_map (qz_kwargs)=True; stop_gradients 
(qz_kwargs)=False; stop_gradients_mlp (qz_kwargs)=True; dropout_rate (qz_kwargs)=0.03; 
stop_gradients (px_kwargs)=False; stop_gradients_mlp (px_kwargs)=True; h_activation 
(px_kwargs)=“nn.softmax”; low_dim_batch (px_kwargs)=True; dropout_rate (px_kwargs)=0.03; 
learn_z_u_prior_scale=False; z_u_prior=True; and u_prior_mixture=False. We used the 
following training arguments in tandem with the recommended default model arguments: 
max_epochs=100; batch_size=256; early_stopping=True; early_stopping_patience=15; 
check_val_every_n_epoch=1; train_size=0.9; lr (pl_kwargs)=2e-3; n_epochs_kl_warmup 
(plan_kwargs)=20; max_norm (plan_kwargs)=40; eps (plan_kwargs)=1e-8; and weight_decay 
(plan_kwargs)=1e-8. To select for gene features inputted into the MrVI models, we obtained the 
union of the 100 highly variable genes (determined in Scanpy) for each unique PDCL-drug data-
subset then filtered for expression in at least 5% of cells included in the total dataset. To visualize 
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the output of the MrVI models, we generated UMAPs from each the U and Z latent spaces. 
Specifically, we sought a single cluster with minimal substructure in the sample-unaware U-space 
that mapped to multiple clusters or blatant substructure in the sample-aware Z-space.  
 
Defining response modules 
The functional relationship between the sample-unaware U-space and the sample-aware Z-space 
in MrVI can be used to directly estimate single-cell resolution sample-sample distance matrices. 
The sample-sample distances are obtained by computing the Euclidean distances between 
sample-specific counterfactual cell states. To avoid technical factors, counterfactual cell state 
predictions are made at the level of the Z latent space. In the context of our study, MrVI enabled 
us to relate the transcriptional effects between unique drug-dose combinations with respect to 
each PDCL. As we expect each PDCL to be relatively homogeneous in their response to the 
treatments, we take the average of the normalized distance matrices across all of the cells of 
each PDCL so our downstream analysis is robust to noise in individual distance matrix estimates. 
Hierarchical clustering of the mean sample-sample distances across cells resulted in distinct 
response modules (RMs) containing drug-dose combinations that induced similar transcriptional 
responses in a given PDCL. The hierarchical clustering depth was evaluated and determined by 
observation of silhouette plots.  
 
Covariate-specific DE analysis 
To obtain a transcriptional signature for each RM we performed covariate-specific DE analysis for 
each PDCL, a procedure that leverages a fitted MrVI model. Along with updates to the model 
architecture, the updated version of MrVI includes local measures of differential expression and 
differential abundance at a single-cell resolution. In particular, the differential expression 
procedure takes in sample-specific covariates and compares the counterfactual Z latent vectors 
for a given U latent vector. By decoding the result of a covariate’s average impact in the Z latent 
space, MrVI can report log fold change (LFC) values for each gene. In simpler terms, the LFC 
values provide a gene-level characterization of each RM. In our analysis, we set DMSO-treated 
cells as the vehicle when measuring differential expression for each RM. The parameters we used 
to run the covariate-specific DE analysis function follow: batch_size=32; use_vmap=True; 
normalize_design_matrix=True; add_batch_specific_offsets=False; mc_samples=100; 
store_lfc=True; store_lfc_metadata_subset=None; store_baseline=False; eps_lfc=1e-3; 
filter_donors=False; lambd=0.0; and delta=0.3. To filter for genes included in each RM signature, 
we set a cutoff of absolute LFC value > 0.1 and Benjamin-Hochberg adjusted p-value < 0.05. 
Gene-level adjusted p-values are unobtainable from MrVI covariate-specific DE analysis. Hence, 
we utilized the p-values associated with general linear models (GLMs) fitted across all genes 
inputted into MrVI for each PDCL 69, performed with the R package monocle3’s fit_model function. 
In each GLM, RM and replicate are set as terms. As in the MrVI covariate-specific DE analysis, 
we set DMSO-treated cells to be vehicles. Resulting p-values were adjusted for multiple 
hypothesis correction with the Benjamini-Hochberg method.  
 
Defining response module clusters across PDCLs 
We merged the MrVI covariate-specific DE analysis LFCs for RMs across all PDCLs. The 
associated genes were filtered to include strictly the union of significant DEGs each RM signature 
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(FDR < 5% & LFC > 0.1). Hierarchical clustering of the normalized LFCs (z-scored for each gene) 
revealed RM clusters. The aim of hierarchical clustering here was to find drugs with similar 
transcriptional responses and normalizing LFCs helped relate RMs across PDCLs despite 
variation in the magnitude of their response to drug treatment. While the resulting RM clusters 
were largely representative of one PDCL, RMs with similar dynamics at the gene level were 
collapsed together indicating the RMs are representative of broader transcriptional programs. 
 
Defining Transcriptional Drug Classes (TDCs) 
We plotted binary membership of each drug across the RM clusters as a heatmap (i.e. whether a 
drug is present in an RM cluster across any of its doses). Hierarchical clustering of the drugs 
based on their RM clusters membership enabled the formation of generalized transcriptional drug 
classes (TDCs). TDCs represent groups of EGFRi’s that induce a distinct transcriptional response 
across the PDCLs.   
 
Gene set enrichment analysis  
For each response module, we filtered differentially expressed genes by FDR < 0.05 and an 
absolute LFC > 0.1. We performed gene set enrichment analysis (GSEA) separately for 
increasing and decreasing DEGs using the R package piano. Briefly, we utilized the function 
runGSAhyper to perform a Fisher’s exact test of the lists of genes against the gene sets “MSigDB 
Hallmark 2020”, “MSigDB Oncogenic Signatures'', “Kinase Perturbations from GEO up” and 
“Kinase Perturbations from GEO down” against a background of expressed genes. Resulting p-
values were adjusted for multiple hypothesis correction with the Benjamini- Hochberg method. 
Representative results are displayed in Figure 5 for conciseness, and results for RMs of each cell 
line can be found in Supp. Fig. 16.  
 
Visualization of similarity of EGFRi transcriptional effects 
Based on these TDCs, we generated lollipop plots representing the magnitude and heterogeneity 
of a drug’s expression of each response module (Fig. 4E, Supp. Fig. 17, Supp. Fig. 19). Briefly 
for a given drug, each response module’s respective up-regulated DE genes (identified by 
covariate-specific DE analysis) were aggregated, averaged, and log2 normalized to the mean of 
its correspondent DMSO control. In the lollipop plots, this quantity is represented by the size and 
color of each lollipop. Additionally, because aggregate score is calculated at the single-cell level, 
heterogeneity in response module expression could be characterized as percent cells within a 
drug’s high dose population with greater expression than DMSO control. This quantity is 
represented by the length of each lollipop. As a result, control condition lollipop plots for DMSO, 
media, and PBS appear largely monotone with even length. In these plots, the differences 
between TDCs is made more apparent. For instance, TDC5 contains only AZ5104, a 
demethylated metabolite of osimertinib which itself is part of TDC4. Although chemically the two 
compounds are almost identical, their drug class separation can be attributed to differences in 
response modules like BT333 RM9 and BT112 RM12 (Supp. Fig. 18). 
 
Data and code availability 
Raw and processed data can be accessed and downloaded from NCBI GEO under accession 
number GSE261618. The code necessary to reproduce the analyses in this study can be found 
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at github https://github.com/mcfaline-figueroa-lab/sci-Plex-EGFRi. The code to run MrVI can be 
found at https://github.com/YosefLab/mrvi under the “paper_reproducibility” tag.  
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Supplementary Figures 
 

 
Supplemental Figure 1. Pilot EGFRi screen QC and differential gene expression analysis 
A. Table of experimental summary metrics by cell line. B. Table of experimental summary metrics 
by chemical agent. C. Volcano plots displaying the differential gene expression results for all 
drugs within a cell line. Only the terms from the contribution of dose as log10(dose + 0.01) from 
the generalized linear model fit to expression is shown. D. Pairwise Pearson correlation 
coefficients between drug’s normalized beta coefficients for significant genes (FDR < 0.1%) for 
each cell line. 
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Supplemental Figure 2. Defining chemical signatures from DEGs in the pilot EGFRi screen. 
A. Upset plot displaying the unique intersections (non-overlapping) of DEGs between the five 
drugs that induced substantial transcriptional changes. DEGs were limited to those upregulated 
in at least one cell line (normalized beta coefficient > 0.05, FDR < 0.1%). Highlighted by a red box 
is the 48 gene signature shared by all five inhibitors. B. Heatmap of z-scored aggregate signature 
scores by cell line, drug, dose conditions. Hierarchical clustering of the columns shows that the 
defined signatures are representative shared drug effects across cell lines. Hierarchical clustering 
of the rows illustrates that the shared five inhibitor signature is transcriptionally distinct from the 
other defined signatures. C. Overlap of pilot EGFRi signature genes with a recently defined 
adaptive resistance signature across established GBM cell lines and glioma stem cell models in 
response to the inhibition of RTK signaling 16. Note that overlap does not correlate with signature 
size. D. Overall survival of glioma patients (by tumor grade) from TCGA 23 grouped by the relative 
expression (top and bottom 50%) of the shared EGFR inhibitor transcriptional module (p: Gehan-
Wilcoxon test). E. Aggregate expression distribution of the five inhibitor shared signature by 
glioma histologic grade from TCGA patient samples, arranged by highest median aggregate 
expression (left to right). F. Aggregate expression distribution of the five inhibitor shared signature 
by major cancer types from PanCancer TCGA patient samples, arranged by highest median 
aggregate expression (left to right). G. Heatmap of Pearson correlation coefficients between mean 
CUDC-101/Osimertinib signature aggregate score and mean proliferation index score, for EGFRi 
(10uM) pseudobulked by cell line and well replicate. The module is weakly anti-correlated with 
viability as measured by proliferation. H. Example of correlation between CUDC-101/osimertinib 
signature mean aggregate score and mean proliferation index score, for cells treated with 10uM 
CUDC-101 (left) and osimertinib (right).  
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Supplemental Figure 3. Inter- and intra-model variation in RTK pathway expression across 
patient-derived glioblastoma models. A. Expression of genes associated with receptor tyrosine 
kinase and EGFR-specific signaling across BT112, BT228, and BT333 patient-derived models 
(PDCLs). B. Expression of genes associated with senescence and apoptosis across PDCLs. C. 
Expression of genes associated with cell cycle control and therapeutic response across PDCLs. 
D. UMAP embeddings of BT112 colored by PCA cluster (D), the aggregate expression of genes 
associated with proliferation (E), and total number of transcripts (UMIs) captured per cell (F). G-
H. UMAP embedding as in C-E colored by the expression of BRAF (G) and FGRF1 (H).   
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Supplemental Figure 4. Comprehensive screen of EGFRi in patient-derived models of GBM 
using sci-Plex for a single-cell transcriptional readout. A. Outline of 24-hour large EGFRi 
library screen. B. Kneeplots for each PDCL as UMI vs cell rank with a cut-off at 500 UMI. C. The 
normalized gene expression of replicates of the screen is highly correlated across chemical 
agents (DMSO, 10uM Osimertinib, 10uM Tyrphostin9 from left to right). D. Table of experimental 
summary metrics by cell line. E. Differentially expressed genes per compound ordered by 
decreasing count. 
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Supplemental Figure 5. Visualizing EGFRi effects on proliferative gene expression in 
PDCLs. A. Heatmap of mean aggregate proliferation score as for each PDCL, drug, dose, as in 
Fig. 3A. B. UMAP projection of EGFRi PDCL, drug, dose points represented by features as log2 
normalized expression to DMSO control. Mean aggregate proliferation index is represented by 
the underlying viridis color scale, and select drugs are faceted and colored to highlight the 
differential effects of each drug-dose combination. C. UMAP projection of single-cells treated with 
EGFRi embedded individually for each PDCL. Mean aggregate proliferation index is represented 
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by the underlying viridis color scale, and a sample of cells that were exposed to 10uM EGFRi are 
faceted and colored to highlight differential effects. 
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Supplemental Figure 6. Correlation between MKI67 expression and global transcriptional 
impact or adaptive resistance signaling. A. MKI67 beta coefficient has a varying correlation 
with global transcriptional impact for BT112, BT228, and BT333 (left to right). The scatter plots 
represent the Pearson correlation within a cell line of inhibitor impact on MKI67 (normalized beta 
coefficient from quasi-Poisson regression of MKI67 as a function of dose) versus overall 
transcriptional changes (as total number of DEGs). B. Drug-dose group mean adaptive score 
versus mean MKI67 expression for BT112, BT228, and BT333 (left to right) reveals MTX-211 as 
an agent that alters viability while minimizing an adaptive response. Outside color of points 
denotes the dose while the fill color of points designates the ability to alter viability and adaptive 
signatures above or below the mean + sd or mean + 2sd of all drug-dose groups. 
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Supplemental Figure 7. MrVI learns a sample-unaware latent U-space embedding as well 
as a sample-aware latent Z-space embedding. UMAP dimensionality reduction is performed 
on U-space (top) and Z-space (bottom) latent embeddings, resulting in two-dimensional 
representations of (A) BT112, (B) BT228, and (C) BT333. Note that in the UMAPs of the Z-space, 
the largest clusters consist largely of cells treated with low doses or compounds that do not have 
a substantial molecular effect.  
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Supplemental Figure 8. Sample-sample distances represent transcriptional similarity 
between drug-dose conditions. Sample-sample distances for a given cell are more specifically 
computed by calculating the Euclidean distances between sample-specific counterfactual cell 
states. Counterfactual predictions are estimated by leveraging the functional relationship between 
the sample-unaware U-space and sample-aware Z-space. A. Mean sample-sample distances 
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across cells shown for BT112 and BT333, with the number of drug-dose conditions sampled for 
display. To sample, at most 10 random drug-dose conditions were selected from each response 
module. B. Log fold-changes (LFCs) across differentially expressed genes for each response 
module, as determined by covariate-specific differential expression analysis. Genes were 
considered differentially expressed if they had a LFC > 0.1 and an FDR < 5%. FDR values were 
obtained with pseudo-bulk general linear models.  
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Supplemental Figure 9. Drug-dose membership across response modules for each PDCL. 
The response module axes belonging to each PDCL are hierarchically clustered individually, and 
the drugs axis for each PDCL is clustered according to the hierarchical clustering of the BT112 
drug axis. Here, drugs are shown to be similarly grouped across cell lines in accordance to their 
ability to induce specific transcriptional responses.  
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Supplemental Figure 10. Violin plots displaying the distribution of counterfactual sample-
sample distances across drug-dose conditions for BT112. The sample-sample distances 
from a given cell’s drug-dose condition to all other drug-dose conditions, including its own, are 
included as individual points in the violin plots. Hence, the number of cells x the number of drug-
dose conditions data points are utilized. These plots exhibit the single-cell heterogeneity of drug-
dose-specific induced transcriptional responses uncovered by MrVI.  
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Supplemental Figure 11. Violin plots displaying the distribution of counterfactual sample-
sample distances across drug-dose conditions for BT228. The sample-sample distances 
from a given cell’s drug-dose condition to all other drug-dose conditions, including its own, are 
included as individual points in the violin plots. Hence, the number of cells x the number of drug-
dose conditions data points are utilized. These plots exhibit the single-cell heterogeneity of drug-
dose-specific induced transcriptional responses uncovered by MrVI.  
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Supplemental Figure 12. Violin plots displaying the distribution of counterfactual sample-
sample distances across drug-dose conditions for BT333. The sample-sample distances 
from a given cell’s drug-dose condition to all other drug-dose conditions, including its own, are 
included as individual points in the violin plots. Hence, the number of cells x the number of drug-
dose conditions data points are utilized. These plots exhibit the single-cell heterogeneity of drug-
dose-specific induced transcriptional responses uncovered by MrVI.   
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Supplemental Figure 13. Volcano plots to determine differentially expressed genes in 
response modules (RMs) for the BT112 patient-derived cell line (PDCL). The logFCs 
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(threshold = 0.1) were obtained with MrVI multivariate analysis and the FDR-adjusted p-values 
(threshold = 0.05) were obtained with pseudo-bulk general linear models.   
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Supplemental Figure 14. Volcano plots to determine differentially expressed genes in RMs 
for the BT228 PDCL. The logFCs (threshold = 0.1) were obtained with MrVI multivariate analysis 
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and the FDR-adjusted p-values (threshold = 0.05) were obtained with pseudo-bulk general linear 
models.   
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Supplemental Figure 15. Volcano plots to determine differentially expressed genes in RMs 
for the BT333 PDCL. The logFCs (threshold = 0.1) were obtained with MrVI multivariate analysis 
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and the FDR-adjusted p-values (threshold = 0.05) were obtained with pseudo-bulk general linear 
models.  
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Supplemental Figure 16. GSEA results for upregulated and downregulated RM DEGs for 
(A) BT112, (B) BT228, (C) BT333. Of note, several BT112 RMs were not significantly enriched 
for the tested gene sets after multiple hypothesis correction, but top gene sets are displayed. 
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Supplemental Figure 17. Transcriptional drug classification of EGFRi visualized by lollipop 
plots. Briefly, for a given drug, each response module’s respective up-regulated DE genes 
(identified by covariate-specific DE analysis) were aggregated, averaged, and log2 normalized to 
the mean of its corresponding DMSO control. This quantity is represented by the size and color 
of each lollipop. Additionally, because aggregate score is calculated at the single-cell level, 
heterogeneity in response module expression could be characterized as percent cells within a 
drug’s high dose population with greater expression than DMSO control. This quantity is 
represented by the length of each lollipop. The center color of each plot represents its TDC 
membership. 
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Supplemental Figure 18. Drugs within TDCs are more similar than drugs in other TDCs by 
response module expression. A. Pairwise Pearson correlation of a 10uM drug’s response 
module aggregate expression. B-D. Osimertinib RM expression is highly correlated with (B) 
AZ5104, a fellow member of TDC9. Osimertinib RM expression is less correlated with (C) 
Brigatinib and even less so with (D) MTX-211, which are part of TDC11 and TDC2, respectively.  
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Supplemental Figure 19. Lollipop plot examples labeled with representative gene sets. The 
quantities that determine the size and color of each lollipop are described in Supp. Fig. 17. GSEA 
enrichment analysis was performed with the up-regulated DE genes for each response module 
across PDCLs. Each lollipop is annotated with one to three of the most significantly enriched gene 
sets in the appropriate response module.  
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Supplemental Figure 20. Assessing GBM cytotoxic T-cell killing after pre-exposure to select 
EGFRi. A. Representative U87MG NY-ESO-1 brightfield (top) and fluorescent 488nm (bottom) 
48hr images for select EGFRi pre-treatment and GBM:T-cell ratios, denoted as titles. Osimertinib 
images were included to demonstrate its drastic effect on U87MG cells even absent of CD8+ T-
cells. B. CellProfiler pipeline example to illustrate the image processing pipeline. Briefly, raw 
488nm images were imported, cropped to well center, scanned to identify cells, and measured 
for area occupied by cells. C. Raw measurements of occupied CFSE area for 10uM EGFRi pre-
treated U87MG NY-ESO-1 at 48hrs post-T-cell addition. It is important to note that osimertinib 
high dose treatment maximally decreased U87MG CFSE area and that addition of T-cells did not 
lead to any further decrease. D. Quantifications as in Fig. 5 for cells exposed to the specified 
inhibitor and a 1:0.25 ratio of GBM:T-cells. The color of the bars denote TDC membership, and 
the inhibitors in J are ordered by increasing T-cell effect, as decreasing mean relative area. Error 
bars represent standard deviation from the mean across replicates (nDMSO,T-cell = 34, ndrug,T-cell = 11, 
nTyrphostin9,T-cell = 9).   
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Supplementary Tables 
 
Supplementary Table S1: Pilot screen: Differentially expressed genes as a function of dose 
for each EGFR inhibitor. 
 
Supplementary Table S2: Basal PDCL: Differentially expressed genes as a function of 
PDCL sub-clusters. 
 
Supplementary Table S3: Chemicals used in large EGFR inhibitors screen. 
 
Supplementary Table S4: Large-scale screen: Differentially expressed genes as a function 
of dose for each EGFR inhibitor. 
 
Supplementary Table S5: Membership of each drug within each TDC 
 
Supplementary Table S6: Large-scale screen: Differentially expressed genes as a function 
of MrVI-determined response module 
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