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Abstract 
Immune dysfunction in cancer is enacted by multiple programs, including tumor cell-intrinsic 
responses to distinct immune subpopulations. A subset of these immune evasion programs can 
be systematically recapitulated through direct tumor-immune interactions in vitro. Here, we 
present an integrated, high-throughput single-cell CRISPR screening framework focused on the 
protein kinome for mapping the tumor-intrinsic regulation of T cell-driven immune pressure in 
glioblastoma (GBM). We combine pooled CRISPR interference and activation (CRISPRi/a) with 
immune-matched NY-ESO-1 antigen-specific allogeneic GBM-T cell co-culture and massively 
multiplexed single-cell transcriptomics to systematically quantify how genetic perturbation 
reshapes baseline tumor state and adaptive responses across graded effector-to-target ratios. 
We further leverage deep generative models for analyzing pooled CRISPR screens to decipher 
the effects of genetic perturbations on the mechanisms of tumor resistance. This framework 
resolves distinct modules of immune evasion and survival, including the regulation of the 
antigen-presentation machinery, interferon/NF-κB signaling, oxidative stress resilience, and 
checkpoint/cytokine programs, while identifying perturbations that reroute the continuous tumor 
transcriptional trajectory induced by T cell engagement. A secondary chemical screen in 
patient-derived GBM cultures identified putative kinase targets of immune evasion phenotypes 
(e.g., EPHA2 and PDGFRA), whose inhibition leads to the blockade of evasive programs and 
enhances T cell-mediated GBM killing. Together, this workflow provides a scalable blueprint for 
comprehensive charting of the genetic control of tumor-immune interactions. 
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Introduction 
The clinical success of immunotherapy has fundamentally shifted the oncology landscape, yet 
the majority of patients with solid tumors fail to achieve durable responses1. Effective anti-tumor 
immunity requires sustained activation and effector function of cytotoxic T cells. However, 
tumors have evolved multiple mechanisms to evade immune destruction, operating both at a 
distance through soluble factors (TGF-β2, IL-103) and locally through direct physical interactions 
with infiltrating immune cells. The most clinically relevant examples are checkpoint pathways 
like PD-1/PD-L1 and CTLA-44 that engage in direct tumor-T cell contact to deliver inhibitory 
signals. The composition and deployment of immune evasion mechanisms varies substantially 
across cancer types, shaped by tissue context, mutational landscape, and the tumor 
microenvironment5–7. Despite extensive characterization of individual pathways, how 
tumor-intrinsic programs are dynamically engaged by direct tumor-immune interactions remains 
incompletely understood. 

 

Upon interacting with cancer cells, activated T cells release IFN-γ8 that induces upregulation of 
PD-L1 on tumor cells9. PD-L1 then engages PD-1 on T cells, suppressing their activation, 
proliferation, and effector function10, while maintaining Treg phenotypes11,12. In some cancer 
types, upregulation of PD-L1 has been associated with more aggressive disease and poorer 
clinical outcomes (e.g., hepatocellular carcinoma13, breast cancer14, gastric cancer15, prostate 
cancer16, glioblastoma multiforme (GBM)17). Thus, checkpoint inhibitors (PD-1/PD-L1) and 
cytokine therapy have been explored to reverse cytotoxic T cell dysfunction. The antigen 
processing and presentation pathway is also crucial for an efficient response to immune 
checkpoint inhibitor therapy18. Numerous cancer types frequently downregulate components of 
antigen processing and presentation machinery (APM)19–21 as a mechanism of immune evasion. 
Overcoming these barriers, adaptive immune checkpoint signaling coupled with defective 
antigen presentation, represents a critical unmet challenge for restoring effective anti-tumor 
immunity. 

 

Glioblastoma multiforme (GBM) represents an extreme manifestation of these immune evasion 
strategies, providing a compelling model to study tumor-intrinsic regulation of anti-tumor 
immunity. Despite an intense treatment regimen of radiation, chemotherapy, and tumor-treating 
fields, most patients succumb to the disease within 14-15 months of diagnosis, highlighting the 
dire need for more effective therapies22. GBM is considered an immunologically "cold" tumor 
that is particularly resistant to immunotherapy23–26. Nevertheless, T cell infiltration is detectable 
in primary tumors27, where infiltrating T cells exhibit a more GZMK phenotype that does not 
express high levels of classic cytotoxic markers such as GZMB, IFNG, and PRF128,29. Notably, 
robust T cell infiltration is also observed both in recurrent GBM30,31 and in the first clinical trial of 
EGFR-targeting CAR T cells in glioblastoma32. Moreover, emerging clinical evidence 
demonstrates that the subset of GBM patients who do respond to immunotherapy can achieve 
durable, lasting responses33,34, suggesting that tumor-intrinsic mechanisms may be 
therapeutically reprogrammed. These observations underscore the critical need to identify the 
tumor-intrinsic factors that modulate GBM immunogenicity and could be targeted to render 
tumors more susceptible to immune attack. At the same time, the availability of well-defined 
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antigen-specific T cell models and patient-derived cultures makes GBM a tractable system for 
scalable, mechanistic perturbation studies. 

 

Recently, single-cell CRISPR-based genetic screens were used to define the regulation driving 
immunogenicity in melanoma at the level of T cell-mediated tumor killing35, providing targets that 
could decrease immune evasion. In glioblastoma, Larson et al.36 performed a genome-wide 
CRISPR screen in U87 cells co-cultured with EGFR-targeted CAR T cells and identified the 
IFN-γ receptor pathway as a critical regulator of CAR T-mediated killing in solid tumors. 
However, existing studies have largely focused on binary survival readouts or limited immune 
contexts and have not systematically resolved how tumor-intrinsic programs are transcriptionally 
reconfigured across graded immune pressure at single-cell resolution. Such approaches are 
constrained by challenges in creating scalable model systems for screening and our incomplete 
understanding of brain immunity, making it unclear which factors to prioritize. 

 

Kinases play a crucial role in various cellular processes regulating a wide range of cellular 
activities37, including signal transduction and the cell cycle38. Dysregulation of kinase signaling is 
common in cancer. Fortunately, kinases are largely druggable targets, with 80 FDA-approved 
therapeutic agents currently available39. Giglio et al., previously identified EGFR inhibitors that 
can potentially modulate APM expression as well as T cell-mediated killing40. In addition, Wang 
et al., have shown that combining immunotherapy and kinase inhibitors (e.g., ATR) improves 
GBM survival rates due to increased CD8+ T cell infiltration41. More broadly, protein kinase 
inhibitors, demethylating drugs, and immunomodulatory drugs have all been reported to exhibit 
potential synergy in combination with adoptive cell therapy (CAR-T)42. Understanding how 
tumor-intrinsic kinase networks orchestrate immune evasion during direct T cell engagement 
can be leveraged with immunotherapy to make GBM more immunogenic. Thus, in this study, we 
systematically interrogated GBM-T cell interactions across the entire human kinome using 
genetic perturbations coupled with high-throughput single-cell sequencing to identify 
tumor-intrinsic immunomodulators that may inform rational combinatorial treatment designs. 

 

In this study, we established a scalable, immune-matched GBM-T cell co-culture platform using 
the NY-ESO-1 antigen system to systematically interrogate tumor-immune interactions. By 
integrating pooled genetic perturbations (CRISPRi and CRISPRa) with highly multiplexed 
single-cell profiling using sci-Plex-GxE43, we generated a quantitative, single-cell map of 
kinase-dependent immune modulation across graded cytotoxic stress. Leveraging deep 
learning-based analytical approaches, we identified a set of candidate immunomodulatory 
kinases, which we subsequently validated using small-molecule inhibitors in patient-derived 
GBM neurospheres within the same NY-ESO-1 antigen framework. Notably, inhibition of 
PDGFRA and EPHA2 enhanced T cell-mediated cytotoxicity, revealing actionable tumor-intrinsic 
resistance mechanisms. Together, these results nominate PDGFRA and EPHA2 as promising 
combinatorial targets to potentiate immunotherapy in glioblastoma. 
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Results 

Increasing T cell exposure reshapes tumor cell state toward immune resistance 
 
To map the crosstalk between glioblastoma (GBM) and cytotoxic T cells, we co-cultured 
NY-ESO-1-expressing GBM cells with allogeneic T cells at increasing effector-to-target (E:T) 
ratios (Figure 1a, Supplementary Figure 1). An effector-to-target ratio of 2:1 (T cell:GBM) 
induced robust tumor cell killing within 18 hours (Supplementary Figure 1d). Gene expression 
profiling of tumor-immune co-cultures revealed a ratio-dependent transcriptional response 
(Figure 1b, Supplementary Figure 2), hereafter referred to as the T cell-induced program (TCIP), 
which captures tumor-intrinsic transcriptional adaptation to increasing immune pressure. 
Analysis of the top 30 differentially expressed genes highlighted a coordinated induction of 
inflammatory signaling, stress adaptation, and tumor-immune interaction programs (Figure 
1c,d). These included activation of NF-κB and cytokine signaling (NFKB1, TNFAIP3, CSF3, 
CXCL2, EREG)44–47, interferon-associated immune response genes (STAT1, IRF1, GBP1, 
ICAM1, CD74)48–50, and metabolic and oxidative stress regulators (SOD2, NAMPT, KYNU, 
MT2A)51–54, consistent with tumor-intrinsic responses to increasing T cell pressure. 
 
Extending this analysis to a broader set of differentially expressed genes clarified the 
directionality of the underlying cell-state transition (Supplementary Table 1).  We found 
upregulation of pro-inflammatory cytokines and chemokines (CXCL8, CXCL2, CXCL3, CXCL9, 
CXCL11, CSF3 (G-CSF), IL1B, and IL32)55,56, IFN-γ-induced and 
antigen-presentation-associated genes (GBPs, IRF1, and BATF2)57,58, NF-κB pathways 
(NFKBIA, NFKBIZ, NFKB1)59, immune checkpoint (CD274 (PD-L1), PDCD1LG2 (PD-L2), 
IDO1)60–62, and stress response, apoptosis resistance & survival (SOD2, NAMPT, BIRC3, 
IER3)53,54,63,64. In contrast, genes associated with progenitor-like and developmental states 
(DLX2, DLX3, SOX4, SOX9)65,66, stemness (ID1, ID3)67, and migratory, adhesion, and 
mechanical sensing programs (EPHA3, MYLK, EPB41L1, RAP2B)68–71 were downregulated 
under immune pressure. Together, these changes indicate a cell-state transition from a plastic, 
migratory, stem-like tumor state toward an inflammatory, stress-adapted, and immune-resistant 
state with increasing T cell exposure. Both IFN-γ and NF-κB signaling pathways have been 
identified as core regulators for cancer-intrinsic cytotoxic T lymphocyte evasion72. NF-κB 
signaling, in particular, has been explored as a therapeutic target in cancer immunotherapy and 
has been shown to directly regulate the expression of immune checkpoint molecules73. 
 
To determine whether these phenotypes obtained in vitro are conserved in patient-derived 
models, we similarly overexpressed NY-ESO-1 antigen as well as HLA-A*02:01 to immune 
match to NY-ESO-1 TCR T cells in patient-derived neurosphere (PDN) lines (Figure 1a,e). 
PDNs are composed of glioma stem-like cells (GSCs) that self-renew, differentiate into multiple 
lineages, and recapitulate the heterogeneity of the original tumor, providing a more clinically 
relevant platform for studying tumor formation and therapeutic resistance. For PDN models, we 
observed induction of a similar set of T cell-induced program signatures and MHC class 
I-related complexes following T cell exposure (Figure 1f,g). 
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To further determine whether these changes are also observed as a function of tumor-immune 
interactions in vivo we analyzed spatial transcriptomics data from the GL261 mouse model from 
García-Vicente et al.,74 (Figure 1h). Spatial analysis revealed that TCR transcripts (Trac, Trbc1, 
and Trbc2), marking infiltrating T cells, correlated with elevated expression of T cell-induced 
program genes (Figure 1i). Tumor regions containing T cells further showed increased 
expression of these genes and enhanced MHC class I compared to regions lacking T cell 
infiltration (Figure 1j). 
 
Co-culturing NY-ESO-1-expressing GBM cells with autologous T cells revealed a 
ratio-dependent transcriptional response in GBM cells characterized by the induction of 
inflammatory, stress-adaptation, and cell-interaction programs, which was conserved in 
patient-derived neurosphere models and observed in vivo in a mouse model. 

 
Figure 1. Cytotoxic T cells induce dynamic changes in gene expression including 
increases in factors associated with immune evasion. (a) Experimental workflow. 
NY-ESO-1-expressing glioblastoma (GBM, U87) cells were transduced with a pooled CRISPRi/a 
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kinome library (~500 kinases) and co-cultured with immune-matched, antigen-specific CD8+ T 
cells across graded effector-to-target (E:T) ratios (effector: T cell, target: GBM). Following an 
18-hour exposure, tumor cells were processed with sci-Plex for multiplexed single-cell RNA-seq 
and sgRNA capture. Transcriptomes were analyzed using generalized linear modeling (GLM) 
for gene-level perturbation effects, MrVI for sample-level heterogeneity, and Decipher for 
trajectory analysis across E:T ratios, followed by small-molecule validation in patient-derived 
neurospheres. (b) U87 and T cell co-culture: UMAP visualizations show distinct separation of 
GBM cells with versus without T cell exposure at different E:T ratios. (c) A representative 
heatmap highlights perturbation-specific shifts in modules such as oxidative stress (SOD2) and 
cytokine signaling (CSF3). (d) Violin plots showing CSF3 and SOD2 expression across 
increasing effector:target (E:T) ratios. (e) UMAPs show distinct separation of GBM cells with 
versus without T cell exposure from patient derived neurospheres. (f) A representative heatmap 
highlights perturbation-specific shifts in modules such as oxidative stress (SOD2) and cytokine 
signaling (CSF3). (g) Violin plots showing MHC-I pathways and T cell induced program (TCIP) 
scores in co-cultured GBM cells. (h) Cd3g, and Trac gene expression of murine glioma tissue. (i) 
Scatter plot illustrates correlations between T cell infiltration represented by TCR gene marker 
score level and T cell-induced program genes. (j) Violin plots showing MHC-I pathways and T 
cell induced program genes on tissue spots with or without T cell infiltration. TCIP, T 
cell-induced program. Statistical test were performed two sided with Mann-Whitney U test 
(*p<0.05, and ****p<0.0001). 

Cancer-T Cell Interactions Drive T Cell Effector Remodeling and Bidirectional 
Cytotoxic-Immunosuppressive Signaling 
 
Cancer cells also induce pronounced transcriptomic changes in T cells (Supplementary Figure 
3a,b). Analysis of the T cell compartment of our co-cultures revealed four distinct T cell states 
(clusters). Cluster 0 was enriched for T cells that had not been exposed to cancer cells and was 
characterized by high expression of GZMA, GNLY, and IL7R (Supplementary Figure 3c,d). In 
contrast, Cluster 1, which was dominated by T cells exposed to cancer cells, exhibited 
upregulation of cytotoxic and activation markers, including GZMB and IL2RA. The top TCR 
clonotypes were also identified by enriching for TCR CDR3 sequences from 3’ 10X cDNA library 
with PCR (see Methods, Supplementary Figure 3e).  
 
We used nichenet75 to examine T cell-GBM crosstalk via ligand-receptor interaction analysis 
identifying crosstalk associated with cytotoxic signaling pathways and immunosuppressive 
mechanisms that shape the tumor microenvironment (Supplementary Figure 3f). Tumor 
necrosis factor (TNF) family ligands were upregulated by T cells engaging their corresponding 
receptors on GBM cells (TNFRSF1A, TNFRSF1B, TNFRSF21)76. TNF signaling promotes 
programmed cell death (apoptosis) in GBM, representing a cytotoxic mechanism employed by T 
cells upon cancer cell engagement76. Lymphotoxin-alpha (LTA) from T cells was found to also 
target TNF receptors to trigger cell death in GBM77.  
 
In contrast, GBM cells express multiple immunosuppressive ligands that counteract T cell 
anti-tumor responses. PVR (poliovirus receptor) expressed by GBM engages inhibitory CD96 
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receptors on T cells that reduce their cytotoxic response78,79. LAMA5 from GBM cells interacts 
with multiple integrin receptors (ITGA2, ITGA6, ITGB1) on T cells, which could be relevant to 
adhesion and activation. These results further highlight the complexity of tumor-immune 
interactions that occur within the context of our allogeneic models. 
 

Kinase perturbation alters antigen presentation and immune evasion programs 
Building on these observations, we next aimed to systematically characterize how kinase 
perturbations reshape glioblastoma responses to T cell exposure (Figure 2a). We genetically 
perturbed NY-ESO-1 overexpressing GBM cells to express  a system for CRISPR-mediated 
gene inactivation (CRISPRi: dCas9-KRAB) or overexpression (CRISPRa: dCas9-SunTag) by 
delivering CRISPR single-guide RNAs targeting all human protein kinases and co-cultured 
tumor and immune cells to increasing effector:target ratios (Supplementary Figure 4,5). 
Embedding of cells in a learned transcriptional manifold again revealed progressive 
transcriptional divergence at increasing E:T ratios, reflecting the ratio-dependent impact of T cell 
exposure (Figure 2b, Supplementary Table 3). Examining the consequence of kinase 
perturbation on known immune-associated pathways revealed kinase specific modulation of the 
antigen-processing and presentation (APM) and inflammatory pathways including kinase 
modulators of MHC class I, MHC class II, interferon-γ (IFN-γ), and NF-κB programs many of 
which showed differential transcriptional shifts as a function of gene knockdown and 
overexpression (Figure 2c). While some kinases broadly influenced the APM (e.g., EGFR, 
IRAK3, TLK1), others selectively affected interferon or NF-κB-driven responses (e.g., NEK6, 
AXL, PRKCG, MAST1), highlighting distinct regulatory entry points into shared immune 
programs. EGFR and ERBB2 (HER2) are canonical oncogenic drivers of MHC-I 
suppression80,81. Kinase perturbation analysis revealed that knockdown of GSK3A, leads to a 
marked decrease in NF-κB expression, in agreement with prior studies positing GSK3 as a 
positive regulator of NF-κB activity and GBM cell survival82. Additionally, IFN-γ signaling 
exhibited the greatest overlap in kinase regulators with the other pathways examined. This is 
consistent with the central role of IFN-γ in inducing both MHC-I and MHC-II expression83, while 
also engaging in crosstalk with NF-κB signaling84. Together, these results demonstrate that 
kinase perturbations exert modular yet convergent effects on tumor-immune interactions, with 
discrete nodes influencing MHC expression, interferon and NF-κB signalings (Supplementary 
Figure 4f). 
 
We next used negative binomial regression to examine the effect of kinase perturbation on the 
wider T cell-induced program (Figure 1c). Our analysis identified 195 kinases (133 from 
CRISPRi and 83 from CRISPRa, 21 shared) whose perturbation significantly altered the top 50 
genes of the program (see Methods, Supplementary Figure 4e,5f, Supplementary Table 4, 5). 
To more quantitatively assess the effects of kinase perturbation on modulating the global 
transcriptomic shifts induced at increasing E:T ratios, we used multi-resolution variational 
inference (MrVI)85 to define the ability of a genetic perturbation to dampen or exacerbate the 
changes induced by T cell exposure. 
MrVI analysis showed that perturbed cells without T cell exposure clustered tightly for both 
CRISPRi and CRISPRa conditions (Supplementary Figure 6a-b,7a-b). We next quantified how 
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closely each perturbed sample aligned with its native E:T condition versus other E:T groups as 
a measure of how a genetic perturbation alters dose-response relationships. Specifically, for 
each sample, we calculated the mean distance to every E:T ratio group (0, 0.25, 0.5, 1) and 
identified cases where the sample was significantly closer to a different E:T ratio group than its 
own (see Methods, Figure 2d). Notably, knockdown of PDGFRA, the second most amplified 
receptor tyrosine kinase in GBM84,86, shifted tumor cells toward transcriptomic states 
characteristic of lower E:T ratios, suggesting reduced tumor evasion to T cell-mediated pressure 
(Figure 2e, Supplementary Table 10,11). Similarly, JAK1 deficiency has been reported to confer 
resistance to T cell-mediated killing87, consistent with our CRISPRi findings showing that loss of 
JAK1 promotes immune evasion signature. Conversely, BRAF inhibition has been shown to 
enhance T cell-mediated cytotoxicity in melanoma88, supporting our observation that BRAF 
activation increases signatures associated with immune evasion. These analyses reveal that 
specific kinase perturbations can disrupt the expected transcriptomic trajectory of GBM cells 
under T cell pressure. 
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Figure 2. Kinase perturbations remodel antigen-presentation and immune response 
programs in GBM cells upon T cell exposure. (a) Experimental schematic of CRISPRi/a 
perturbations in NY-ESO-1/HLA-A*02:01-engineered GBM cells co-cultured with T cells. (b) 
UMAP embeddings of cancer cells under CRISPRi (left) or CRISPRa (right) showing 
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transcriptomic trajectories across E:T ratios. (c) Module-level changes in MHC-I, MHC-II, IFN-γ, 
and NF-κB pathway programs under CRISPRi versus CRISPRa. Colors indicate effect size, 
quantified as the β coefficient for the genotype term (perturbation) in a regression model 
evaluated under the no–T cell condition. (d) Schematic for MrVI analysis, and (e) Forest plots 
summarizing perturbation effects on T cell-induced program across E:T ratios from MrVI 
analysis. Color and circle size denote p values, while arrow length and thickness represent 
distance differences. The statistical tests were performed with a one-sided Mann-Whitney U test 
(Bonferroni-corrected, α < 0.05).  

Kinase Perturbations Reshape T Cell-Induced Trajectories 
 
To determine whether T cell-induced immune evasion reflects discrete transcriptional states or a 
continuous, ordered tumor cell response, we applied Decipher89 to model tumor-intrinsic 
trajectories under increasing immune pressure. Decipher is a deep generative model that learns 
and aligns trajectories in an interpretable 2D space, capturing both shared and unique 
transcriptional programs while preserving the global geometry of T cell-induced trajectories. This 
framework enables the characterization of cancer cell response trajectories and provides a 
platform by which to align CRISPRi and CRISPRa trajectories in the same latent space. 
 
Across unperturbed cells, Deciper revealed continuous progression of tumor cell states as T cell 
pressure increased (Figure 3a,b, Supplementary Figure 8a), recapitulating the ratio-dependent 
effects described above. Along the inferred trajectory of cancer cell responses to increasing T 
cell exposure, we observed a structured reorganization of tumor-intrinsic transcriptional 
programs (CSF3, SOD2, IDO1, CD274, AR, and ID1, Figure 3c, Supplementary Figure 8b). 
Additionally, genes significantly upregulated across the trajectory (Supplementary Table 12) 
included interferon-responsive innate immune signaling (STAT1, IRF1, GBP1, GBP2)50,90, 
antigen presentation machinery (HLA-B, HLA-DRA, CIITA, TAP1, TAP2)80,91, co-occurring with 
NF-κB signaling pathway (NFKB1, NFKBIZ,TNIP1)59,92 and chemokine signaling (CXCL2, 
CXCL3, CXCL8, IL1B, IL6)93,94.  Additionally, we also observed increased anti-apoptic, 
stress-resistance, and immune evasion associated genes like SOD2, NAMPT, IDO1, as well as 
ferroptosis regulators (FTL95, SLC39A1496). This aligns with the established role of IFN-γ-driven 
ferroptosis in T cell-mediated killing of GBM cells, suggesting that resistance to ferroptosis may 
represent an additional mechanism of GBM immune evasion97. Lastly, genes promoting 
stemness (ID1, ID3)67, proliferation (MYLK)70, and migration (ENAH)98 were downregulated 
along the trajectory (Figure 3c, Supplementary Table 12).  
 
Having established the ability of Decipher to recreate the biological changes induced by T cells, 
we next applied it to jointly align model trajectories from CRISPRi and CRISPRa perturbed cells 
alongside their respective NTC, revealing strong concordance across conditions (Figure 3d). In 
both CRISPRi and CRISPRa datasets, we observed ratio-dependent trajectories that closely 
resembled those of unperturbed NTC cells (Figure 3e). Representative gene signatures (SOD2, 
CSF3, CD274, IDO1 and IL6 Figure 3f, Supplementary Figure 9a) along these aligned 
trajectories further captured conserved tumor cell responses to increasing T cell pressure.  
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This framework enabled us to study how kinase perturbations influence cancer cell responses to 
increasing T cell exposure, by examining the distribution of cancer cells along Decipher time 
(Supplementary Table 13,14). Notably, knockdown of EPHA2 and EPHB6 shifted the distribution 
toward higher E:T ratios, mimicking increased T cell pressure, whereas their overexpression 
produced the opposite effect (Figure 3g, Supplementary Figure 9b). Ephrin–Eph receptor 
interactions caused by cell-cell contact regulate cell proliferation and migration during 
development and in tissue homeostasis. EPHA2 and EPHB6 interact through the ligand-binding 
domains, and EPHB6 was reported to suppress EPHA2-mediated promotion of anoikis 
resistance99. A similar pattern was observed for STK40. Both EPHA2 and STK40 are implicated 
in cancer progression and therapy resistance100,101. We also identified modulation of the T 
cell-induced trajectory by IRAK1, IRAK3, and IRAK4, implicating IL-1R/TLR inflammatory 
signaling102, as well as STK17B, and STK35, consistent with engagement AKT signaling 
pathways and tumor progression103,104 (Supplementary Figure 9b).  
 
Collectively, these results highlight that tumor-intrinsic kinases do not simply modulate static 
immune evasion phenotypes, but actively reshape the trajectory of cancer cell responses to T 
cell pressure. By shifting tumor cells toward states that either amplify or dampen immunogenic 
programs, these kinases represent potential levers for therapeutically sensitizing tumors to T 
cell-mediated killing or, conversely, for understanding mechanisms of immune resistance in 
GBM.  
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Figure 3. Decipher analysis of CRISPRi/a perturbations in GBM-T cell co-cultures reveals 
kinase dependent shifts in the T cell-induced program. (a) Decipher analysis of NTC cells 
from CRISPRa data reveals trajectories driven by increasing T cell concentration, shown in the 
learned 2D Decipher space with cells colored by E:T ratios (left) and corresponding Decipher 
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time (pseudotime; right). (b) Genes significantly contribute to the Decipher trajectory, with the 
positions of IDO1 and SOD2 highlighted. (c) Single-cell trajectories of representative genes 
inferred by Decipher reveal E:T ratio-dependent transcriptomic responses. (d) Decipher-aligned 
CRISPRi and CRISPRa cells (left) projected into a shared 2D Decipher space together with 
NTC cells (right). (e) Decipher trajectories learned as a function of E:T ratio (left) and 
pseudotime (right) for CRISPRi and CRISPRa conditions. (f) Comparison of CRISPRi and 
CRISPRa perturbations highlights conserved effects on immune checkpoint expression (CD274) 
and tumor-intrinsic T cell-responsive genes (CSF3). (g) Density plots illustrate distribution shifts 
of cancer cells along Decipher time following perturbation of selected kinases (EPHA2, STK40), 
indicating that kinase disruption alters the progression of cancer cell states under T cell 
pressure (p = 0.033639216, p = 0.008503096 with Kolmogorov-Smirnov test). 

Small molecules inhibition of select kinase modulates the T cell-induced program 
in patient derived neurospheres 
 
Based on our GLM, MrVI, and Decipher analyses, we prioritized kinases (IRAK4, NTRK3, 
CDK4, TTK, GSK3A, PDGFRA, EPHA2, NEK11, CDK2, STK16, BMP2K, Supplementary Table 
4,5,10,11,13,14) that appear to modulate the tumor-intrinsic response to cytotoxic T cell 
exposure  and identified 11 chemical inhibitors targeting these kinases (Table 1, Figure 4a). To 
determine whether chemical inhibition can modulate the T cell-induced program in 
patient-derived GBM neurospheres engineered to overexpress the NY-ESO-1 antigen and the 
HLA:02*01 allele to enable antigen-specific T cell recognition (Supplementary Figure 1b). 
Neurospheres were treated with small molecule inhibitors (0.01 μM-10 μM) for 48 hours, after 
which drugs were removed and cells were co-cultured with T cells for 18 hours followed by 
sci-Plex multiplexing and single-cell RNA-seq. Similarly, T cell exposure induced a dominant 
transcriptomic shift in PDN cells (Figure 4b). Cluster 2 was enriched for T cell-treated samples, 
indicating a shared T cell-driven transcriptional state. Notably, treatment with CP-673451 
(PDGFRA inhibitor), STK16-IN-1 (STK16 inhibitor), abemaciclib mesylate (CDK4 inhibitor), and 
ALW-II-41-27 (EphrinA2 inhibitor) resulted in a reduced proportion of cells in Cluster 2 compared 
to DMSO, whereas most other compounds increased the representation of this T 
cell-associated cluster (Figure 4c, Supplementary Figure 10a).   
 
Across our drug panel, we identified two drugs that with or without T cell treatment showed a 
major impact on PDN transcriptomics profiles at high concentration (1 μM and/or 10 μM). 
CP-673451 and ALW-II-41-27 exhibited strong attenuation of the T cell-induced programs, 
SOD2, CD274, and MHC-I and MHC-II programs (Figure 4d, Supplementary Figure 10b), an 
effect not observed with the other drugs tested (Supplementary Figure 11). Using MrVI to 
quantify pairwise transcriptomic distances across our treatments revealed that the highest 
concentration of these two drugs has the closest transcriptomic distance compared to No T cell 
controls (Figure 4e), consistent with our prior genetic results. Additionally, the MrVI latent (z) 
space was dominated by the effect of T cell exposure, with most drug-treated samples well 
mixed across conditions. In contrast, a subset of samples treated with CP-673451 and 
ALW-II-41-27 clustered together and grouped with the no T cell treatment condition, indicating 
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that these perturbations partially revert or attenuate the T cell-induced transcriptional state. 
(Supplementary Figure 12).  
 
We next tested whether this shift in transcriptional program led to changes in the ability of 
cytotoxic T cells to target tumor cells for destruction using a T cell cytotoxicity assay in 2D 
patient-derived GBM cultures. Cells were treated with both compounds at 0.01 or 0.1 μM. We 
observed that low-dose treatment (0.01 μM) for ALW-II-41-27 and or both doses for CP-673451 
significantly enhanced T cell-mediated killing, supporting our findings in 3D neurosphere 
cultures (Figure 4f, Supplementary Figure 13).  
 
Lastly, we explored whether there was an association with PDGFRA copy number and the 
levels of immune evasion genes induced by T cell exposure. Analysis of published GLASS bulk 
RNA-seq data⁷⁵ revealed that PDGFRA copy number loss was associated with reduced 
expression of IDO1, SOD2 and CD274 (Supplementary Figure 14). Given the low number of 
samples with low PDGFRA copy number we are not able to investigate a similar association for 
just the IDH-wild type glioblastoma subset. However, low grade gliomas are also considered 
immunogenically cold tumors and PDGFRA targeting may aid in blocking the expression of 
immune evasion genes widely across gliomas105. Consistent with our perturbation results, 
PDGFRA inhibition can potentially reduce tumor-intrinsic resistance mechanisms and enhanced 
susceptibility to T cell-mediated killing106,107. These results indicate that inhibition of PDGFRA 
and EphrinA2 signaling using CP-673451 and ALW-II-41-27, respectively, has the potential to 
enhance T cell-based immunotherapies in combination treatments. 
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Figure 4. Chemical perturbation validation of immunomodulatory kinase targets in GBM-T 
cell co-cultures. (a) Schematic of chemical inhibitor screen design using GBM:T cell 
co-cultures. (b) UMAP embedding colored by T cell treatment (E:T ratio = 0.5) vs No T cells (No 
T) (left) and PCA clusters (right). (c) PCA clustering of drug-treated samples, shown by E:T ratio 
distribution across clusters (left) and cluster assignment across different drugs (right). (d) 
Representative concentration-response curves for the PDGFRA and EPHA2 inhibitors 
CP-673451 and ALW-II-41-27, respectively, showing effects on T cell response score, SOD2 
expression, and MHC-I score in the presence or absence of T cells. (e) Sample-to-sample 
distance heatmap of drug perturbations, generated by MrVI, highlights distinct clustering of 
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treatments. (f) Tumor cell confluency following treatment with CP-673451 or ALW-II-41-27 (0.01 
µM) in the absence or presence of T cells. Paired measurements from the same experimental 
replicates are connected by gray lines; colored dots represent individual replicates, and 
horizontal bars indicate mean values. Cell confluency is expressed as a fraction of the well area 
covered by cells (e.g., 0.20 = 20% of the well is occupied by GBM cells). Statistical significance 
was assessed using paired t-tests (p values = 0.005, 0.0006 respectively). 
 
Discussion 
This study establishes a scalable single-cell perturbation framework for dissecting 
tumor-immune crosstalk under graded cytotoxic T cell pressure. By integrating pooled 
CRISPRi/a perturbations with sci-Plex-based single-cell profiling and deep generative modeling, 
we provide a resource for systematically mapping how genetic perturbations modulate 
tumor-intrinsic immune responses, enabling the discovery of regulators that reprogram the 
dynamic trajectory of immune evasion rather than static endpoints of resistance.  
 
We show that immune evasion unfolds as a continuous transcriptional process where the 
progression and direction can be quantitatively modulated by defined genetic perturbations, 
consistent with prior work demonstrating that GBM malignant cells occupy plastic, 
interconverting transcriptional states rather than fixed identities108. Additionally, immune cells 
have been shown to adopt continuous transcriptional trajectories across numerous cancer 
types, including GBM109,110. Trajectory analyses using Decipher and MrVI revealed that tumor 
cells progress along a continuum of immune adaptation to stress-resilient and immune-evasive 
phenotypes. Within this landscape, our kinome-scale perturbation identified signaling nodes that 
re-route state progression. Among these kinases, PDGFRA and EPHA2 emerged as key 
trajectory regulators that steer GBM cells away from immune-evasive paths. Perturbation of 
these kinases altered the pseudotemporal alignment of tumor cell responses to T cell pressure, 
consistent with tunable control points that can attenuate or exacerbate entry into 
immune-evasive programs depending on pathway context.  
 
GBM cells exposed to T cells in vitro are efficiently killed, with strong cytokine responses111. In 
vivo, T cell therapies can suppress tumor growth and extend survival, but their efficacy is often 
limited by immune evasion mechanisms112. Overcoming these barriers is key to improving T 
cell-based therapies for GBM. The first clinical trial of EGFR-targeting CAR T cells in 
glioblastoma demonstrated both the safety of this approach and robust T cell infiltration within 
tumor tissue, yet also revealed a compensatory upregulation of immune-suppressive molecules, 
including IDO1 and PD-L1, consistent with adaptive resistance to T cell-mediated killing32. 
Additionally, Zhao et al., showed that responders to anti-PD-1 therapy in glioblastoma exhibited 
a distinct immune composition, transcriptional state, and clonal dynamics26. IDO1 is known to 
increase in GBM tumors due to T cell infiltration62. Additionally, upregulation PD-L1 seems to be 
associated with more aggressive GBM and correlated with T cell activation pathways in clinical 
samples17, which aligns with our findings in upregulation of CD274 upon T cell exposure. Our 
kinome-scale perturbation screen addresses this gap by revealing specific kinases that govern 
how GBM cells sense and respond to T cell-derived immune pressure. These kinases (NLK, 
CDK2, CAMK1D, Supplementary table 4,5) act upstream of canonical immune-evasion 
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programs, including PD-L1 and IDO1, providing actionable entry points to reprogram tumor 
susceptibility to T cell attack. 
 
EPHA2 and PDGFRA are attractive translational targets in GBM because they are recurrently 
implicated in disease biology and are pharmacologically targetable. EPHA2, a receptor tyrosine 
kinase, is frequently overexpressed in various cancers and acts as a stress antigen recognized 
by certain T cell receptors, especially γδ T cells113. Studies have shown that Epha2 deletion in 
mice reversed T cell exclusion and sensitized tumors to immunotherapy, which is mediated 
through EPHA2/TGF-β/SMAD axis-dependent activation of prostaglandin endoperoxide 
synthase 2114. In GBM, the transmembrane receptor EPHA2 is frequently upregulated and has 
been associated with poor prognosis and reduced overall survival115,116,117. EPHA2 has been 
targeted in cancer via several strategies, including small molecule kinase inhibitors, monoclonal 
antibodies, antibody-drug conjugates, and immunotherapies such as CAR-T or CAR-NK cells 
engineered to recognize EPHA2 on tumor cells118–122. CAR-T and CAR-NK cell therapies 
leverage the immune system to selectively kill EPHA2-expressing tumor cells, showing 
promising results in preclinical models118. Small molecule inhibitors (including ALW-II-41-27) 
block EPHA2’s kinase activity and can overcome drug resistance or enhance the effects of other 
therapies123. Thus, combination therapies, such as pairing EPHA2 inhibitors with other targeted 
agents (e.g., KRAS or HDAC inhibitors), can further enhance anti-tumor efficacy and overcome 
resistance mechanisms124–126.  
 
PDGFRA has also been a prominent therapeutic target in glioblastoma. Multiple studies have 
explored both small molecule inhibitors and antibody-based strategies to inhibit PDGFRA 
signaling in GBM127,128. Avapritinib, a highly selective and brain-penetrant PDGFRA inhibitor, has 
shown clinical responses in patients with PDGFRA-altered high grade glioma, including partial 
and near-complete tumor regression in some cases, and has demonstrated good central 
nervous system penetration and tolerability106. Notably, Gai et al. discovered the co-upregulation 
of PDGFRA and EPHA2 led to worse patient prognosis and poorer therapeutic effects in GBM. 
Due to PDGFA-induced EPHA2 activation, EPHA2 driven resistance mechanisms can limit the 
effectiveness of PDGFRA-targeted monotherapy129, prompting research into combination 
strategies. This finding further supports the identification of both targets. Overall, while targeting 
PDGFRA and EPHA2 in GBM has shown promise, especially in genetically defined subgroups, 
overcoming resistance and improving patient outcomes remain active areas of investigation. 
 
Our study interrogates a well-controlled, simplified axis of tumor-immune interaction, 
antigen-specific cytotoxic T cell pressure on engineered GBM models under short-term 
co-culture. This provides a reductionist system intentionally designed to enable scalable, 
high-throughput perturbation mapping under graded immune pressure. Looking forward, a major 
opportunity is to incorporate more complex tumor microenvironment niches130–132 in vitro in a 
manner that remains compatible with pooled perturbation screens and massively multiplexed 
single-cell readouts. The integration of such platforms could further delineate more complex 
context-specific vulnerabilities towards nominating novel strategies that potentiate 
immunotherapy by preventing (or rerouting) the emergence of immune-evasive trajectories. 
Together, our results delineate a continuum model of tumor immune adaptation governed by 
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kinase signaling, demonstrating how tumor-intrinsic kinase perturbations reshape 
tumor–immune interactions and bridge oncogenic pathways with immune evasion dynamics. 
Beyond the specific findings in glioblastoma, the experimental and analytical framework 
presented here serves as a generalizable resource for decoding tumor-immune interactions 
across cancer types and for designing rational combination therapies that reprogram immune 
trajectories.  
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Supplementary figures: 

 
Supplementary Figure 1. Engineering and Functional Validation of NY-ESO-1–Positive, 
HLA-Matched GBM Cells for T cell Co-culture. (a) Flow cytometry of NY-ESO-1 protein levels 
in U87MG cells with and without NY-ESO-1 overexpression. (b) Overexpression verification of 
HLA-0201 and NY-ESO-1 in the patient-derived GBM cell line BT333. (c) Fluorescent images of 
T cell:GBM co-cultures after 72 hours (CFSE, green). (d) Images of GBM NY-ESO-1/NY-ESO-1 
TCR cytotoxic T cell co-cultures after 48 hours (left) and 18 hours of co-culture (right) at varying 
effector:target ratios.  
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Supplementary Figure 2. Differential expression analysis of unperturbed tumor cells 
reveals T cell induced programs. (a) UMAP visualization of SOD2, CSF3, CD274, and IDO1 
expression in non-targeting control cells. (b) Heatmap showing a graded T cell-induced 
transcriptional program across cancer cells. 
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Supplementary Figure 3. T cells responses upon exposure to GBM cells. (a, b) UMAP 
embeddings of T cells from different E:T ratios, colored by (a) cluster or (b) E:T ratios. (c) 
Stacked bar plot showing cluster proportion for each E:T ratio. (d) Violin plots showing 
representative cytotoxic T cell signature gene expression across clusters. (e) TCR clonotype 
composition from two PCR enrichment approaches (Nested PCR, and RHPCR) (f) T cell to 
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GBM and GBM to T cell ligand and receptor communication network (* means the clone existed 
in both TCR enrichment approaches).  
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Supplementary Figure 4. CRISPRa screen targeting kinases modulates tumor-intrinsic 
transcriptional responses in GBM cells. (a) Knee plot for CRISPRa data. (b) Median 
knockdown effect across sgRNAs targeting kinases of interest compared with random sgRNA 
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assignment. (c) UMAP projection of GBM cells colored by expression of representative T 
cell-induced program genes(SOD2, CSF3, CD274, and IDO1). (d) Volcano plots showing 
differential kinase regulation of MHC class I (left) and MHC class II (right) antigen presentation 
genes in response to T cell co-culture; highlighted genes pass significance thresholds (FDR < 
1% and |β| > 0.1) (Supplementary Table 6,7). (e) Heatmap summarizing kinase perturbations 
that modulate T cell-induced programs. Colors indicate direction and magnitude of 
transcriptional effects, with hierarchical clustering. (f) Venn diagram comparing significant genes 
from Figure 2c (kinases that regulate MHC-I, MHC-II, IFN-γ, and NF-κB pathways).  
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Supplementary Figure 5. CRISPRi screen targeting kinases modulates tumor-intrinsic 
transcriptional responses in GBM cells. (a) Knee plot for CRISPRi data. (b) Median 
knockdown effect across sgRNAs targeting kinases of interest compared with random sgRNA 
assignment. (c) Guide proportion relative to plasma library; highlighted guides have log(relative 
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proportion) > 2 . (d) UMAP projection of GBM cells colored by expression of representative T 
cell-induced program genes (SOD2, CSF3, CD274, and IDO1). (e) Volcano plots showing 
differential kinase regulation of MHC class I (left) and MHC class II (right) antigen presentation 
genes in response to T cell co-culture; highlighted genes pass significance thresholds (FDR < 
1% and |β| > 0.1) (Supplementary Table 8,9). (f) Heatmap summarizing kinase perturbations 
that modulate T cell-induced programs. Colors indicate direction and magnitude of 
transcriptional effects, with hierarchical clustering. 
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Supplementary Figure 6. MrVI analysis of the CRISPRi kinome screen. (a) UMAP 
visualization of GBM cells under CRISPRi kinome screen in (left) u-space and (right) z-space, 
colored by E:T ratios. (b) Heatmap showing grouping of samples (E:T ratio and perturbation) 
based on MrVI-derived global transcriptomics distances. 
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Supplementary Figure 7. MrVI analysis of the CRISPRa kinome screen. (a) UMAP 
visualization of GBM cells under CRISPRa kinome screen in (left) u-space and (right) z-space, 
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colored by E:T ratios. (b) Heatmap showing grouping of samples (E:T ratio and perturbation) 
based on MrVI-derived global transcriptomics distances.  
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Supplementary Figure 8. Decipher analysis of non-targeting controls reveals a T 
cell-induced cancer cell immune evasion program. (a) Density plot showing the distribution 
of E:T ratios along the Decipher trajectory. (b) Expression of ICAM1, PEG10, CXCL8, and 
CXCL3 along the Decipher trajectory. 
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Supplementary Figure 9. Decipher analysis of kinome perturbed  CRISPRi & CRISPRa 
cells defines how perturbation affects the T cell-induced program. (a) Expression of IDO1, 
SO2, and IL6 along the Decipher trajectory. (b) Density plots showing the distribution shift along 
the Decipher trajectory induced by perturbations of kinases (IRAK1, IRAK3, IRAK4, EPHB6, 
STK17B, STK35) (Supplementary 13,14).  
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Supplementary Figure 10. Drug- and dose-dependent effects in patient-derived 
neurosphere cells. (a) UMAP visualizations of patient-derived neurosphere (PDN) cells colored 
by drug treatment (top) and dose (bottom). Cells that are 0 dose correspond to DMSO controls. 
(b) Dose-response curves for EphA2 and PDGFR-a inhibitors showing effects on T cell CD274 
expression in the presence or absence of T cells. 
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Supplementary Figure 11. Dose-dependent effects of kinase inhibitors on T cell–induced 
programs in PDN cells. Representative dose–response curves for inhibitors showing effects on 
T cell response score, SOD2 expression, and MHC-I score in the presence or absence of T 
cells.  
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Supplementary Figure 12. MrVI analysis of PDN single-cell chemical genomics screen for 
compounds that modulate the T cell-induced program. UMAP visualization of 
effector-to-target (E:T) ratios in both u space (a) and z space (b), colored by E:T ratios (top), 
drug treatment (middle), and T cell treatment along with both drug conditions and drug 
concentration (bottom). 
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Supplementary Figure 13. T cell cytotoxic assay analysis. (a) Image segmentation pipeline 
and overlay applied to brightfield microscopy images taken after 18 hour GBM:T cell co-culture 
periods for cell confluency analysis. Lower doses of PDGFR-a and EphA2 inhibitors improve T 
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cell-mediated killing: b) CP-673451 0.01uM condition shows significant T cell-mediated killing 
measured by reduced GBM cell confluency. c) Outlier analysis was performed to remove one 
outlier in the AL 0.01 uM condition. d) Line plots of DMSO controls and CP-673451 0.1uM 
conditions display significantly reduced mean GBM confluency compared to DMSO control 
group across all experiments. * indicates statistical significance evidenced by p value < 0.05 for 
paired t-test results. “ns” indicates results which are not significant. Cell confluency is expressed 
as a fraction of the well area covered by cells (e.g. 0.20 = 20% of the well is occupied by GBM 
cells).  
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Supplementary Figure 14. Correlation between PDGFRA copy number and expression of 
immune evasion genes across bulk RNA samples from the GLASS consortium. 
Expression of CD274, IDO1, SOD2 in bulk RNA-seq data stratified by PDGFRA copy number 
status across all glioma patients. 
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Methods 
Table 1. Kinase inhibitors. 

Reagent or Resource Kinases Source Identifier 

Laduviglusib GSK3A Selleckchem Catalog No.S2924  

CP-673451 PDGFRA Selleckchem Catalog No.S1536  

ALW II-41-27 EPHA2 Selleckchem Catalog No.S6515  

STK16-IN-1 STK16 Selleckchem Catalog No.E2396 

SGC-AAK1-1 BMP2K Millipore Sigma SML2219 

PF 06260933 
dihydrochloride MINK1 R&D Systems 

Catalog #: 5752 

Zabedosertib IRAK4 Selleckchem Catalog No.E2837 

Taletrectinib NTRK3 Selleckchem Catalog No.S8901  

Abemaciclib mesylate CDK4 Selleckchem Catalog No.S7158 

BAY 1217389 TTK Selleckchem Catalog No.S8215 

 

Experimental approaches 
Cell Culture 

The glioblastoma cell lines U87MG were obtained from ATCC and cultured in DMEM 
(ThermoScientific) supplemented with 10% fetal bovine serum (FBS) and 1% 
penicillin-streptomycin (P/S), following ATCC-recommended protocols.  U87 were maintained in 
culture and passaged at ~80-90% confluency using TrypLE (Gibco) according to standard 
protocols. 

Glioma neurosphere cell lines BT112, BT228, and BT333 were provided by the Dana-Farber 
Cancer Institute (DFCI) Center for Patient Derived Models (CPDM) under a material transfer 
agreement and maintained as previously described (Touat et al., Nature, 2020). These cells 
were cultured in NeuroCult™ NS-A Proliferation Medium (StemCell Technologies), 
supplemented with 0.0002% heparin, 20 ng/mL EGF, and 10 ng/mL FGF (Miltenyi Biotec), 
under standard conditions of 37°C in a humidified 5% CO₂ incubator. Cells were grown on 
low-attachment plates coated with Poly(2-hydroxyethyl methacrylate) and passaged using 
Accutase™ (StemCell Technologies). Poly(2-hydroxyethyl methacrylate) was dissolved at 20 
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mg/mL in 95% ethanol and incubated at 58°C with shaking at 200 rpm for 2 hours. The solution 
was then used to coat the plate, which was allowed to air-dry in a biosafety hood under UV light 
for 2 hours with the fan on. The coated plate can be stored and used for up to one month. 

Neurosphere Dissociation 

Patient-derived GBM neurospheres (cell lines BT112, BT228, and BT333) were dissociated for 
passaging using Accutase™ (StemCell Technologies, Cat #07920). Cells in culture were 
gathered and centrifuged at 200 x g for 5 minutes. They were then aspirated and resuspended 
in 1 mL Accutase . They were then placed in a 5% CO2 incubator for 7-9 minutes to dissociate 
neurospheres. After incubation, 5 mL NSA media was added to neutralize the Accutase. The 
solution was centrifuged at 500 x g for 5 minutes, and the pellet was resuspended in an 
appropriate volume of fresh NSA media. ~1 million cells were plated in a 10 cm dish in 10 mL 
NSA media, or ~200,000 cells/well of a 6-well plate in 3 mL of NSA media/well. 

Expression of CRISPRi/a systems 

The CRISPRi/a system was obtained from McFaline-FIgueroa et al.[Citation error]. To generate 
CRISPRi-mediated knockdown cells, lentiviral particles encoding dCas9-BFP-KRAB were 
produced by transfecting HEK293T cells with the plasmid pHR-SFFV-dCas9-BFP-KRAB 
(Addgene, Plasmid #46911) along with the ViraPower Lentiviral Packaging Mix 
(ThermoScientific). Transfections were performed using Lipofectamine 2000 (ThermoScientific) 
in Opti-MEM (ThermoScientific), following the manufacturer's forward transfection protocol. 

72 hours post-transfection, the media containing lentiviral particles was collected and filtered 
through a 0.22 μm Steriflip filtration unit. U87MG glioblastoma cell lines were transduced with 
the filtered lentiviral supernatant for 48 hours using varying volumes of viral input. Cells were 
expanded and sorted by fluorescence-activated cell sorting (FACS) to select populations with 
the highest BFP fluorescence. Transductions were initiated at a multiplicity of infection (MOI) of 
~0.3. To obtain pure populations with consistent dCas9-KRAB expression, cells were expanded 
and sorted a total of four times. 

For the generation of CRISPRa-mediated overexpression cells, the two-component 
dCas9-SunTag system was used. Lentiviral supernatants encoding dCas9-GCN4-BFP 
(pHRdSV40-dCas9-10xGCN4_v4-P2A-BFP, Addgene, Plasmid #60903) and 
scFv-GCN4-GFP-VP64 (pHRdSV40-scFv-GCN4-sfGFP-VP64-GB1-NLS, Addgene, Plasmid 
#60904) were generated as described above. Glioblastoma cells were co-transduced with 
dCas9-GCN4-BFP at an MOI of ~0.3 and with scFv-GCN4-GFP-VP64 at an MOI of ~1. Cells 
were expanded and sorted by FACS a total of four times based on both BFP and GFP 
fluorescence to ensure uniform and robust expression across the population. 

Generation of CROP-seq-OPTI gRNA Libraries 

CROP-seq-OPTI gRNA libraries were generated by McFaline-FIgueroa et al.[Citation error]. 
Protospacer sequences targeting all genes perturbed in this study were sourced from the 
genome-wide human CRISPRi and CRISPRa v2 libraries developed by Horlbeck et al. 
(CROP-seq-OPTI, Addgene, Plasmid #106280, engineered to include a CRISPRi-optimized 
gRNA backbone) were synthesized by Integrated DNA Technologies (IDT). For the 
kinome-scale screen, oligos were synthesized as a pooled array (CustomArray Inc., Bothell, 
WA), targeting 522 kinases with a total of 3,165 sgRNAs. Each transcription start site was 
targeted by five sgRNAs, including both non-targeting and random control sgRNAs. 

Homology arms for Gibson assembly: 
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●​ 5' homology: 5’-ATCTTGTGGAAAGGACGAAACACC-3’ 

●​ 3' homology: 5’-GTTTAAGAGCTATGCTGGAAACAGCATAGCAAGT-3’​
 

Pooled oligonucleotides were amplified via PCR using NEBNext 2X Hi-Fi PCR Master Mix 
(NEB) and the following primers: 

●​ Forward: 5’-ATCTTGTGGAAAGGACGAAACACCG-3’ 

●​ Reverse: 5’-GCTATGCTGTTTCCAGCATAGCTCTTAAAC-3’ 

Amplification was monitored in real-time using a MiniOpticon system (Bio-Rad) with SYBR 
Green (Invitrogen), and reactions were terminated before saturation. Amplified products were 
purified using the NucleoSpin PCR Clean-Up and Gel Extraction Kit (Takara Bio). 

The CROP-Seq backbone was transformed with NEB Stable Competent E. coli cells, then one 
E.coli colony was picked and cultured in 100 mL LB broth in the presence of Ampicillin. The 
CROP-seq-OPTI vector was linearized by sequential digestion with BsmBI and alkaline 
phosphatase (NEB), with PCR clean-up steps between and after digestion.  

Assembly of the vector and sgRNA inserts was carried out using the NEBuilder HiFi DNA 
Assembly Kit (NEB), with inserts provided at a 20-fold molar excess (55°C for 60 mins). The 
assembled product was transformed into NEB Stable Competent E. coli cells (NEB) via multiple 
rounds of transformation to ensure sufficient coverage of each sgRNA. Colonies were pooled 
and cultured in 50 mL Luria broth containing ampicillin at 30°C for 24 hours. Plasmid libraries 
were extracted using a Qiagen Midiprep Kit. Plasmids were send to both Genewiz and 
Plasmidsaurus for quality control. 

Lentiviral packaging of the gRNA libraries was performed in HEK293T cells transfected with the 
plasmid library using Lipofectamine 3000 (ThermoScientific) in OptiMEM (ThermoScientific), 
following the manufacturer's protocol scaled to 15 cm dishes. Both 48 and 72 hours 
post-transfection, viral supernatant was collected and filtered through a 0.22 μm Steriflip filter. 

To determine viral titers, U87MG glioblastoma cell lines were transduced in 6-well plates with 
serial dilutions of the filtered supernatant for 72 hours. Cells were then split 1:4 into media with 
or without 1 μg/mL puromycin.  After 96 hours of culture, the multiplicity of infection (MOI) was 
estimated by comparing cell counts in the presence and absence of puromycin selection. 

For large-scale screens, 1.2 million cells were seeded in a 6-well plate and transduced at an 
MOI of ~0.3 with spin infection (800g for 60 mins in RT). 72 hours post-transduction, cells were 
pooled and transferred to two 15 cm dishes with 1 μg/mL puromycin and maintained under 
selection. Cells were seeded for T cell treatment experiments between 10 to 14 days 
post-transduction. 

Generation of NY-ESO-1+ GBM Cells  

U87MG glioblastoma/PDN cells were engineered to stably express the tumor antigen NY-ESO-1 
(CTAG1B). A plasmid encoding NY-ESO-1 was obtained from OriGene Technologies 
(RC213318). The NY-ESO-1 insert was PCR-amplified and cloned into a lentiviral backbone 
containing a blasticidin resistance cassette (Addgene plasmid #52962) using Gibson assembly. 
Primers were designed to append vector-homology overhangs to the NY-ESO-1 amplicon, and 
assembly was performed using a 2-fold molar excess of insert at 55 °C for 60 min. Lentiviral 
particles were produced by transfecting HEK293T cells with the resulting plasmid using the 
Lipofectamine 3000 transfection kit (Thermo Fisher Scientific). Cells were transduced with the 
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viral supernatant and selected with 10 μg/mL blasticidin for 3 days. Cells were subsequently 
maintained in culture with 1 μg/mL blasticidin to ensure stable integration and continued 
NY-ESO-1 expression. Overexpression efficiency is validation via flow cytometry with NY-ESO-1 
antibody (Santa Cruz Cat #E978). 

Primers (PCR amplification and vector overhangs) 

●​ NYESO1_Forward: GCGATCGCCATGCAGGCCGAAG 
●​ NYESO1_Reverse: GCCCTGAGGGAGGCTGAGCCAAAAAC 
●​ Lenti_backbone_Forward: GGATCCGGCGCAACAAACTTCTCTCTGC 
●​ Lenti_backbone_Reverse: GGTGGCAGCGCTCTAGAACCGG 
●​ NYESO1_Forward with overhang: 

CCGGTTCTAGAGCGCTGCCACCGCGATCGCCATGCAGGCCGAAG 
●​ NYESO1_Reverse with overhang: 

GCAGAGAGAAGTTTGTTGCGCCGGATCCGCCCTGAGGGAGGCTGAGCCAAAAAC 

Generation of HLA-A*02:01+ GBM cells 

PDN cells were engineered to stably express HLA-A*02:01 to immune matched with the T cells. 
A plasmid encoding HLA-A*02:01 was obtained from (Addgene, Plasmid #108213). The HLA 
sequence was PCR-amplified using the primers listed below. The resulting amplicon was cloned 
into a lentiviral backbone containing a puromycin resistance cassette (Addgene plasmid 
#108100) using Gibson assembly. Primers were designed to append vector-homology 
overhangs to the HLA fragment, and assembly was performed using a 2-fold molar excess of 
insert at 55 °C for 60 min. Lentiviral particles were produced by transfecting HEK293T cells with 
the resulting plasmid using the Lipofectamine 3000 transfection kit (Thermo Fisher Scientific). 
PDN cells were transduced with the viral supernatant and selected with 1 μg/mL puromycin for 4 
days. Overexpression efficiency is validation via flow cytometry with HLA-A2 antibody 
(Biolegend, 343304). 

●​ HLAA0201_Forward: ATGGCGCCCCGAACCCTCGTC 
●​ HLAA0201_Reverse: CACTTTACAAGCTGTGAGAGACACATCAGAGCCC 
●​ Lenti_backbone_Forward: GGCAGCGGCGCCACCAACT 
●​ Lenti_backbone_Reverse: GGTGGCGGATCCCGCGTCAC 
●​ HLAA0201_Forward with overhang: 

GTGACGCGGGATCCGCCACCATGGCGCCCCGAACCCTCGTC 
●​ HLAA0201_Reverse with overhang: 

AGTTGGTGGCGCCGCTGCCCACTTTACAAGCTGTGAGAGACACATCAGAGCCC 

Verification of Protein Overexpression 

Flow cytometry was used to confirm the expression of HLA-A0201 and NY-ESO-1in the 
engineered GBM cell lines. Cells were stained with fluorescent antibodies specific to 
HLA-A0201 and NY-ESO-1, along with appropriate controls. Data was analyzed using FlowJo 
software to compare protein expression between engineered and non-engineered cells. 

Antibody staining of NY-ESO-1 antigen 

Cells were first dissociated or trypsinized using the procedure mentioned above. In single-cell 
form, cells are washed twice with FACS buffer (2%FBS in PBS) and centrifuged at 500 x g for 5 
minutes at 4°C in between each wash. Cells were then suspended in 100 µL of 4% PFA for 
fixing and incubated at 4°C for 15 minutes. After two washes, cells were resuspended in 100 µL 
of 0.1% TritonX for permeabilization and incubated for 15 minutes at room temperature. After 
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two more washed, cells were stained with NY-ESO-1 antibody (Santa Cruz, Cat #E978) in a 
ratio of 1:25 for 30 minutes at 4°C.  

Antibody staining of HLA-0201 surface protein  

Cells are first to be dissociated using the procedure mentioned above, and then washed twice. 
Cells are then stained live with with the HLA-A2 antibody (BioLegend, Cat #343303) in a ratio of 
1:25 for 30 minutes at 4°C.  

T cell-mediated killing assay 

For the cytotoxic T cell killing assay, terminally differentiated human CD8⁺ T cells specific to 
NY-ESO-1 were obtained from Charles River Laboratories (ASTC-1093). Upon receipt, T cells 
were thawed following the supplier’s protocol and used immediately. 

300k cells of U87MG NY-ESO-1+ cells were seeded in RPMI media with 10% FBS in each well 
of a 6 well plate with 1 ng/ml IFN-γ overnight. U87MG-T cell co-culture at various ratios was 
performed in complete T cell media composed of RPMI 1640, supplemented with 10 mM 
HEPES, 10 mM L-glutamine, 10% FBS, 0.34% β-mercaptoethanol, and 1% 
penicillin-streptomycin133,134. After 18 hours of co-culture, media with T cells were removed, and 
U87MG NY-ESO-1+ cells were detached using TrypLE (Gibco). T cells and GBM cells were 
next subjected to 10X single cell genomics and Sci-Plex protocol135, respectively.  

Patient-derived GBM neurospheres (PDN) were dissociated as described above, and 50,000 
cells were seeded into ultra-low attachment 96-well plates. After a 24-hour recovery period, 
small molecule kinase inhibitors were added at final concentrations of 10, 1, 0.1, or 0.01 µM, 
prepared from 10 mM DMSO stock solutions and diluted in complete NS-A medium. DMSO was 
used as a vehicle control at a final concentration of 0.1% (v/v). Cells were incubated with 
inhibitors for 24 hours at 37°C and 5% CO₂, followed by the addition of IFN-γ to a final 
concentration of 1 ng/mL for an additional 24 hours. T cells were added at a ratio of 0.5 T cells 
per PDN for 18 hours of co-culture. Cells were then harvested for the Sci-Plex protocol135. 

Nuclei Hashing and Fixation 

Nuclei hashing and fixation procedures were adapted from protocols by Srivatsan et al135 and 
Sziraki et al136. Adherent cells were trypsinized with TrypLE (Gibco) while GBM neurospheres 
were dissociated. After washing with ice-cold 1x PBS, cells were lysed using EZ Lysis Buffer 
(Sigma) supplemented with 1% diethyl pyrocarbonate (Sigma), 0.1% Superase•In RNase 
Inhibitor (Thermo Fisher), and 500 fmol of hashing oligo. Following lysis, nuclei were fixed by 
adding 1.25% formaldehyde in 1.25x PBS, resulting in final concentrations of 1% formaldehyde 
and 1x PBS, and incubated on ice for 10 minutes. Nuclei were then pooled into a plastic 
reservoir and transferred to 50 mL conical tubes for centrifugation at 650 x g for 5 minutes at 
4°C. The supernatant was removed, and nuclei were washed once with nuclei suspension buffer 
(NSB), composed of 10 mM Tris-HCl (pH 7.4), 10 mM NaCl, 3 mM MgCl₂, 1% Superase•In, and 
1% Ultrapure BSA (0.2 mg/mL, New England Biolabs). Nuclei were then resuspended in NSB, 
slow-frozen in 10% DMSO, and stored at −80°C until further processing by sci-RNA-seq. 

Library Preparation and Sequencing 

Frozen, hashed nuclei were thawed and processed using a three-level combinatorial indexing 
protocol adapted from Cao et al.137, Martin et al.138, and Sziraki et al136. Nuclei were spun down, 
resuspended in NSB, and briefly sonicated for 12 seconds at low power using a Bioruptor. After 
counting, 21 μL of nuclei were dispensed into each well of 96-well low-adhesion PCR plates. 
Each well received 2 μL of 10 mM dNTPs, 2 μL of 100 μM indexed oligo-dT primers, 2 μL of 100 
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μM indexed random hexamer primers, and 14 μL of a reverse transcription master mix 
containing 100 mM DTT, RNaseOUT, 5× SuperScript IV buffer, and SuperScript IV reverse 
transcriptase. Reverse transcription was performed using a gradual temperature ramp. After 
reverse transcription, all nuclei were pooled and redistributed into new 96-well plates (10 μL per 
well) for ligation. Each well was supplemented with 8 μL of indexed ligation primers, 4.8 μL of a 
3:2 mix of T4 ligase buffer and T4 ligase (NEB), and 9.4 μL of nuclei buffer with BSA (NBB), 
which had the same composition as NSB but with BSA. 

Ligation reactions were incubated at 25°C for 1 hour. Nuclei were then pooled, washed with 
NBB, and redistributed at a concentration of 1,500 nuclei in 5 μL of NBB per well. Cells can be 
stored for future use. For second strand synthesis, 5 μL of synthesis mix—comprising 60% 
Qiagen Elution Buffer, 27% NEB Second Strand Synthesis Buffer, and 13% NEB Second Strand 
Enzyme Mix—was added to each well, and the reaction was carried out at 16°C for 3 hours. 
Tagmentation was then performed by adding 1/50 μL of N7-adaptor-loaded Tn5, followed by 
incubation at 55°C for 5 minutes and quenching with DNA binding buffer (Zymo) at room 
temperature for 5 minutes. Double-stranded DNA was purified with a 1X SPRI bead cleanup 
step carried out directly within the 96-well plates. The resulting DNA was subjected to USER 
enzyme digestion using a solution of 80% nuclease-free water, 10% 10X rCutsmart buffer, and 
10% USER enzyme (NEB). DNA was eluted into a clean 96-well plate using Buffer EB. 

To each well, 16 μL of eluted product was mixed with 2 μL each of P5 and P7 PCR primers in a 
well-specific indexed combination, along with 20 μL of 2X NEBNext PCR Master Mix (NEB). 
PCR was used to amplify libraries and incorporate sequencing adapters. Final PCR products 
were pooled, and SPRI bead purification was performed with a 0.7X cleanup for cDNA libraries 
and a 1X cleanup for hash libraries.  

10x Genomics Library Preparation 

T cells were processed for single-cell RNA sequencing using the 10X Genomics platform 
according to the manufacturer’s protocols. 4000 cells were loaded on a Chromium X using the 
Chromium Next GEM Single Cell 3’ Kit v3.1 (10x Genomics, PN-1000123). After reverse 
transcription and cleanup, cDNA libraries were generated as per the 10x user guide. 
Construction of final gene expression (GEX) libraries was performed using the Library 
Construction Kit (10x Genomics, PN-1000190) and Dual Index Kit TT set A (10x Genomics, 
PN-1000215) according to the user guide. The fragment size distribution of cDNA and final 
sequencing-ready GEX libraries was assessed using a TapeStation 2200 system (Agilent) with 
TapeStation D5000 reagents.  

scRNA library sequencing 

Library concentrations were measured using a Qubit fluorometer (Invitrogen), and quality was 
assessed via TapeStation DNA D1000 assays. Sequencing was performed on an Illumina 
NextSeq 550 platform and Element Biosciences AVITI system, following the manufacturer’s 
protocols. A 2% PhiX spike-in was included to monitor sequencing quality. 

TCR CDR3 sequences enrichment from 10x Genomics 3’ library 

Nested PCR enrichment approach: To capture spatial TCR clonotype information, we adapted 
an established protocol139. The process involves three qPCR steps: (1) the first step begins with 
43 pooled TCRB primers and the truncated read 1 primer (2 µl cDNA, 1 µl of each forward and 
reverse primers and 12.5 µl NEBNext Master Mix, 0.5 µl SYBR and 8 µl water). (2) The second 
step uses 43 TCRB primers with R2 sequences and the truncated read 1 primer with 1 µl of the 
PCR product from step 1. (3) The third step involves indexed TruSeq P5 primers and indexed 
Nextera P7 primers, with 1 µl of the PCR product from step 2. All PCR steps were stopped 
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before the plateau phase, and the PCR products were cleaned with 0.8x AMPure beads and 
eluted in 50 µl.  

The PCR cycling conditions are as follows: initial denaturation, 98 °C for 3 min; denaturation, 
98 °C for 15 s; annealing, 62 °C (72 °C for qPCR step 3) for 20 s; extension, 72 °C for 1 min; 
repeat of the denaturation step to the extension step before the plateaus phase; final extension, 
72 °C for 1 min. We further provide the full spatial TCR primer sequences in Supplementary 
Table 15.  

RhPCR enrichment approach: Multiplex rhTCR amplification was adapted from Liu et al. 
(2022)140 and Li et al. (2019)141. The protocol consists of two qPCR steps. In the first step, TRA 
and TRB loci were amplified using 69 rhPCR-modified primers together with modified P5 and P7 
primers and RNase H2. Reactions (24 µL) contained 2 µL cDNA, TRXV primer pool (0.05 µM 
per primer), RNase H2 (0.5 mU/µL), modified P5 and P7 primers (2 µM each), 2x SYBR® Green 
BioRad Master Mix(1708880) and water. qPCR was stopped prior to the plateau phase, 
followed by a final extension, and products were purified using 0.8x SPRI beads and eluted in 
20 µL. 

In the second step, full-length adapters were completed using unmodified P5 and P7 primers 
and NEBNext High-Fidelity 2x PCR Master Mix with 5 µL of PCR product from step 1 in a 50 µL 
reaction. qPCR cycling conditions matched those in step 1 and reactions were terminated 
before plateau. Libraries were purified with 0.8x SPRI beads, assessed by Bioanalyzer, and 
prepared for sequencing. We further provide the full spatial TCR primer sequences in 
Supplementary Table 16.  

Cyctotoxic killing assay  

For a full 96-well plate at a final concentration of 2.5 µg/mL, 160 µL of thawed Recombinant 
Human Laminin-521 (Thermofisher, Cat #A29248) stock solution was added to 6.24 mL of 
DPBS containing calcium and magnesium ions (Thermofisher, Cat #14040133). The solution 
was thoroughly pipette-mixed and 64 µL was added to each well. The plate containing solution 
was incubated at 37°C for 2 hours, then removed and parafilmed for storage at 4°C until use 
within 2-3 days. The laminin solution was aspirated immediately before seeding of dissociated 
GBM PDN cells.  

24 hours after seeding 25,000 patient-derived GBM cells (BT333) per well on laminin-coated 
plates, media was replaced with a serial dilution of drugs CP-673451 and ALW-II-41-27 at 
concentrations 0.1uM, and 0.01uM vertically. This was repeated for the bottom half of the plate 
that will contain T cells. Drugs were dissolved at final 0.1% DMSO. 24 hours after drugging 
GBM cells, IFN-γ was added to each well in a final concentration of 1 ng/mL. After 24-hour 
IFN-γ pretreatment, 100 µL of 25,000 Anti NY-ESO-1 CD8+ T cells (Charles River, ASTC-1093) 
suspended in complete RPMI media were added to the bottom half of the 96-well plate.  

After 18 hours of GBM-T cell co-culture, Brightfield images were captured using a Zeiss Axio 
Observer microscope equipped with an AxioCam 205 color camera to control image acquisition 
in ZEN Pro software. Illumination was provided by an X-Cite fluorescence illumination system 
(Excelitas Technologies). Images were captured at 5X magnification. For each well, an identical 
4x4 tiled grid was applied in ZEN Pro to capture the majority of the well area. Z-axis focal 
positions were individually optimized for each well to capture the viable GBM cell populations.  

Computational analysis 

Processing of raw sequencing results and generation of count data matrix 
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Sequences were demultiplexed using bcl2fastq (Illumina) filtering for reads with RT and ligation 
barcodes within an edit distance of 2 bp. PolyA tails were trimmed using trim-galore 
(https://github.com/FelixKrueger/TrimGalore) and reads were mapped to the human hg-38 
transcriptome using STAR142. After alignment, reads were filtered by alignment quality and 
duplicates were removed if they mapped to the same gene, the same barcode and the same 
unique molecular identifier (UMI) or if they met the first 2 criteria and the UMI was within an edit 
distance of 1 bp. Reads were assigned to genes using bedtools143. 3’ UTRs were extended by 
100 bp in the gene model to account for short 3’ UTR annotations to minimize genic reads 
labeled as intergenic. A knee plot was used to set a threshold above which a combinatorial cell 
barcode confidently corresponded to a cell. UMI counts for cell barcodes that pass this 
threshold were aggregated into a sparse matrix format, followed by the creation of a cell dataset 
object using Monocle3144–146. 

Hash and sgRNA assignment 

Sci-Plex hashes and sgRNA transcripts derived from CROP-seq were isolated from 
demultiplexed reads. Hashes were assigned as previously described135. Briefly, reads were 
considered hashes if (1) the first 10 bp of read 2 matched a hash in a hash whitelist within a 
Hamming distance of 2 and (2) contained a poly-A stretch spanning the 12–16 bp region of read 
2. For sgRNA assignment, reads were considered CROP-seq derived if the bases spanning 
position 24–42 matched a sgRNA in a sgRNA whitelist within a hamming distance of 2 and (2) a 
TGTGG sequence at position 3–7 of read 2. Duplicated reads were collapsed by their UMIs 
arriving at hash and sgRNA UMI counts for each nucleus in our experiment. Finally, we tested 
whether a particular nucleus was enriched for one or more hash or sgRNA as described in135 for 
sci-Plex hashes. 

Data preprocessing and dimensionality reduction 

To filter out cells with low quality, knee plots of UMI counts per cell were drawn to determine a 
reasonable threshold. Cells with fewer than 500 UMIs were removed. Hash and sgRNA were 
assigned to cells based on their corresponding cell barcodes, disregarding P7 sequences. 
Doublets were detected using Scrublet147.  

Then, the data were processed with an initial round of dimensionality reduction and Leiden148 
clustering to remove T cell contamination. Specifically, top 5000 highly dispersed genes were 
selected with estimateDispersionsForCellDataSet in Monocle3144–146 package and used for 
principal component analysis (PCA)(15 PCs). To generate a 2D visualization of the data with 
UMAP, we specified the parameters in reduce_dimension function as follows: 
umap.n_neighbors=20L, umap.min_dist=0.1, max_components=2, umap.fast_sgd=FALSE. With 
a resolution of 2e-4, cells were partitioned into clusters, and cells with obvious expression of 
canonical T cell lineage markers (CD8A and CD3D) were filtered out. 

Differential gene expression analysis 

All differential gene expression analyses were performed using fit_models function in the  
Monocle3144–146 package, which fits generalized linear models (GLM). By default, it uses 
quasi-poisson distribution to model the gene expression value, represented by raw read counts 
normalized by size factor.  

To investigate the effect of T cell treatment on gene expression profiles of GBM cells, we 
defined a signature of T cell dose response genes on non-targeting control (NTC) cells from 
CRISPRa and CRISPRi dataset respectively. For every gene that was expressed in at least 5% 
of cells in the NTC dataset, we fit a GLM on two coefficients, T cell treatment conditions and 
biological replicates, with default settings of fit_models function. P values generated from the 
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models were corrected collectively for multiple hypothesis testing using the Benjamini-Hochberg 
method. As a result, a list of T cell dose response genes were selected with adjusted p value < 
0.05 and abs(normalized effect size) >0.25. 

Additional differential expression analyses were performed using similar frameworks but with 
different cell subsets and model formulations. These analyses identified (1) 
genotype-associated genes in untreated cells, (2) genotype-dependent T cell dose–response 
genes within each treatment condition, and (3) treatment dose–associated genes within each 
genotype. 

Calculation of aggregated gene scores for proliferation, resistance and APM gene 
programs 

Antigen-presentation machinery scores were calculated as in Srivatsan et al135. Specifically, for 
each cell, raw expression counts for genes within the program were extracted from the count 
matrix and normalized using size factors. The normalized counts were then aggregated by gene 
program and log-transformed with a pseudocount of 1. The scores were then used for 
differential expression test as described previously to determine which kinases significantly 
modulate antigen-presentation machinery. 

MrVI model training 

To systematically evaluate and compare the effects of perturbation across different T cell 
treatment conditions on transcriptomic profiles, we employed MrVI85, a deep generative 
framework designed for integrating and comparing multi-sample and multi-batch single-cell 
transcriptomic data. Briefly, MrVI learns two latent spaces from a given dataset, where U-space 
is a sample-unaware space designed to capture high-level cell state heterogeneity, while 
Z-space further incorporates sample-of-origin information. This hierarchical architecture enables 
us to perform robust sample stratification at a single-cell resolution. 

Here, we trained a MrVI model on CRISPRa and CRISPRi dataset separately with default 
settings. Prior to training, we applied stringent subsetting to ensure high-confidence model 
performance and interpretability. First, a list of high-impact kinases was defined based on the 
number of T cell dose response genes they modulate in untreated cells. Kinases of interest 
were selected based on knee plot threshold. The dataset was then subset in three steps: 1) 
Cells were required to have a total sgRNA UMIs per cell > 3 and a ratio of the most abundant 
sgRNA UMIs to total CROP-seq UMIs >0.3. 2) The dominant sgRNA should be targeting a 
kinase in the curated list with more than 25 cells, and non-targeting control (NTC) cells were 
down-sampled to match the abundance of the second most frequent sgRNA. 3) Cells were 
required to have a total hash UMIs per cell > 2 and the ratio of the most abundant hash UMI to 
the next abundant hash UMI > 2. In addition, genes were restricted to T cell induced cancer cell 
responses genes only (Supplementary Tables 1, 2). 

During model training, the unique E:T ratio -genotype combination was specified as the sample 
key, while the batch key corresponded to biological replicates. The model was trained at a 
maximum of 400 epochs, which was sufficient given the validation evidence lower bound 
(ELBO). We visualized the U-space and Z-space by UMAP embeddings as implemented in 
Scanpy149 (scanpy.pp.neighbors and scanpy.tl.umap) with default parameters. To evaluate the 
similarity of perturbation effects, MrVI defines a distance metric which measures Euclidean 
distances between counterfactual cell states in Z-space for a given cell in U-space. In this 
context, for any cell in its original dosage-genotype condition, a counterfactual cell state 
represents the predicted transcriptomic profiles that the same cell would exhibit under an 
alternative condition. Formally, the latent representation is defined as 
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distance matrix between all dosage-genotype combinations for any given cell. Aggregating 
across all untreated cells yields a unified distance matrix that summarizes perturbation effect at 
a single-cell resolution. 

To quantify how kinase perturbations altered the expected E:T ratio ordering in MrVI latent 
space, we first computed pairwise local sample distances from the MrVI model and converted 
them to a distance matrix between all kinase–E:T ratio samples. For each sample, we 
calculated the mean distance to every E:T ratio group (0, 0.25, 0.5, 1) and identified cases 
where the sample was closer, on average, to a different E:T ratio group than its own. For these 
"misaligned" samples, we compared the distribution of distances to the own dosage group 
versus the closest other group using a one-sided Mann–Whitney U test. P-values were 
Bonferroni-corrected across all tested samples, and only samples with corrected p < 0.05 were 
retained. The figure plots significant samples as points at their own dosage along the x-axis and 
kinase on the y-axis, with point size and color encoding Bonferroni-corrected significance and 
arrows indicating the direction and relative magnitude of the shift toward the closest dosage 
group. 

Decipher trajectory analysis 

To characterize cell states and their distribution across perturbations and conditions, we applied 
Decipher[Citation error] to the GBM cells. The Decipher algorithm was used to learn a 
low-dimensional embedding that captures the differentiation of T cells while preserving 
biological heterogeneity across different E:T ratios. We filtered NTC cells hashing quality metrics 
(total_hash_umis_per_cell_ID > 3 & top_to_second_best_ratio > 2), then restricted to genes 
identified as T cell induced cancer response genes like MrVI from an GLM differential 
expression analysis (q-value < 0.05, |normalized_effect| > 0.25). We configured Decipher with 
(decipher_config = dc.tl.DecipherConfig()) and applied it to the raw count data. Training was 
performed using dc.tl.decipher_train() with plot_every_k_epochs=5 to visualize the embedding 
during training. Both the Decipher embedding was rotated and trajectories were constructed 
from low (0) to high (1) effector-to-target (E:T) ratios.The resulting two-dimensional embedding 
provided a biologically interpretable representation of the NTC GBM cell states.  

Gene module analysis was performed with SCORPIUS150. Gene importance scores along the 
pseudotime were computed with permutation-based testing (gene_importances, 10 
permutations, 6 threads), and p-values were adjusted by Benjamini–Hochberg; genes with 
q-value < 0.05 were retained.  

To align the trajectories for both CRISPRi and CRISPRa, both dataset were concatenated and 
restricted to shared genes, and filtered on hashing quality (total_hash_umis_per_cell_ID > 3, 
top_to_second_best_ratio > 2). Decipher latent space was rotated to align the primary axis with 
E:T ratio and a secondary axis with perturbation type. We defined Decipher trajectories 
separately for CRISPRi and CRISPRa for Untreated (E:T=0) to 1:1 (E:T=1), which were then 
used by dc.tl.trajectories to compute modality-specific ratio-response paths in the Decipher 
latent space. Finally, for each perturbation (CRISPRi or CRIPSRa), the distribution of 
decipher_time for each guide was statistically compared to NTC using Kolmogorov–Smirnov 
and Mann–Whitney U tests and significant guides exported and visualized via density plots 
overlaid with Decipher trajectory.  

Validation of T cell induced cancer cell response signatures in the GLASS cohort 
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To validate T cell induced cancer cell response genes in brain tumors, we analyzed 
transcriptomic and clinical data from the GLASS (Glioma Longitudinal AnalySiS) consortium151. 
T cell induced cancer cell response genes with a false discovery rate–adjusted q value < 0.05 
were ranked by normalized effect size; the 100 most strongly up‑regulated and 100 most 
strongly down‑regulated genes defined the “up‑regulated” and “down‑regulated” T cell 
dose–response signatures. Since very limited glioblastoma samples in GLASS are annotated 
with PDGFRA loss/deletion, we included all glioma samples of various disease subtypes. 
Patients with multiple samples but have different copy number calls for PDGFRA were filtered 
out, resulting in a final cohort of 476 samples. Bulk RNA‑seq TPM values were extracted from 
the gene‑level expression matrix, -transformed and merged with associated 𝑙𝑜𝑔

2
(𝑇𝑃𝑀 + 1)

clinical annotations using matched case barcodes and sample types. These scores were 
compared across all GLASS tumors to assess the robustness and clinical relevance of the 
experimental T cell induced cancer cell responses signatures in an independent, longitudinal 
glioma cohort. 

Microscope Image Quantification via Python Analysis 

Cell confluency was quantified using a custom Python analysis pipeline implemented with 
OpenCV (cv2) and NumPy. For each microscope image, grayscale images were loaded using 
cv2.imread() with the IMREAD_GRAYSCALE parameter. To exclude the dark well edge from 
analysis, a circular mask was created centered at the image midpoint with a specified pixel 
radius. The total well area in pixels was calculated as the sum of all pixels within the circular 
mask. To account for uneven illumination, adaptive Gaussian thresholding (block size 51, C=8) 
was applied with binary inversion to segment dark cell bodies from the bright background. The 
resulting mask was refined using morphological opening (3x3 kernel) to remove noise. Cell 
confluency was calculated as the proportion of well area covered by cells: confluency = cell area 
pixels / well area pixels. 

To compare the cell confluency results between experimental conditions, pairwise comparisons 
were systematically performed for each drug at each concentration, comparing conditions with T 
cells versus without T cells across all independent experiments. Statistical comparisons were 
performed using paired t-tests implemented with scipy.stats.ttest_rel() with alternative='greater' 
to test the directional hypothesis that confluency differed between T cell versus no T cell 
treatment.  

Cell-Cell Communication Analysis 

Cell-cell communication between GBM and T cells was analyzed using NicheNet75 v2.0 in R. 
Single-cell RNA-seq data were converted from Monocle3 objects to SingleCellExperiment 
format, and gene symbols were updated to HUGO nomenclature using 
`convert_alias_to_symbols()` and `make.names()`. Datasets were harmonized by identifying 
common genes and combining with `cbind()`. Cells were filtered to two conditions (E:T = 0: 
GBM alone; E:T = 1: 1:1 T cell:GBM co-culture) and balanced to a 2:1 GBM:T cell ratio via 
stratified sampling. Genes expressed in < 3% of cells were filtered, and expression data were 
log-normalized using `logNormCounts()`. 

Human NicheNet v2 ligand-receptor networks and ligand-target matrices were downloaded from 
Zenodo (DOI: 10.5281/zenodo.7074291, 10.5281/zenodo.10229222). Expressed genes were 
defined as those detected in ≥10% of cells per cell type. Differentially expressed genes in 
receiver cells were identified using Wilcoxon rank-sum tests with Benjamini-Hochberg correction 
(adjusted p < 0.05, log2FC > 0.25); if <20 genes met criteria, the top 100 upregulated genes 
were used. Bidirectional analyses (GBM→T cells and T cells→GBM) identified potential ligands 
expressed in sender cells with cognate receptors in receiver cells. Ligand activities were 
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calculated using `predict_ligand_activities()`, ranking ligands by area under the precision-recall 
curve (AUPR). The top 20 ligands were selected, and ligand-target links were inferred using 
`get_weighted_ligand_target_links()` (n=200 targets per ligand). 

Network visualizations were generated using ggraph and igraph with three layouts: circular, 
stress-minimization, and Fruchterman-Reingold force-directed. Edge thickness and 
transparency were scaled to ligand activity scores. 

TCR enrichment computational methods 

Sequencing data were demultiplexed and quality controlled using bases2fastq (Element 
Biosciences). TCR reads were first processed with MiXCR v3.0.13 for alignment, assembly, 
contig construction, and clone identification. Reads (R1/R2) assigned to TCR clones were 
extracted and concatenated to generate filtered FASTQ files, which were subsequently 
analyzed with TRUST4 to re-align reads, identify CDR3 sequences and V(D)J usage, and 
associate clonotypes with cell barcodes. TRUST4-generated AIRR files were used for 
downstream analyses. Combined use of MiXCR and TRUST4 improved specificity and reduced 
background noise prior to clonotype calling. 

To mitigate barcode contamination arising from ambient or diffused mRNA, barcodes were 
filtered using TRUST4’s contamination-reduction script and by requiring a minimum consensus 
(UMI) count of ≥3 per CDR3. Barcodes were retained only if they passed both filters and 
matched T cell barcodes. Clonotype construction and analysis were performed using Scirpy152. 

Single-Cell RNA-Seq Analysis of T Cells 

Single-cell RNA-seq data from T cells cultured alone at four effector:target (E:T) ratios were 
processed using Scanpy149. Quality-control metrics (genes per cell, total UMI counts, 
mitochondrial and ribosomal percentages) were computed; cells with low gene (>200) or high 
mitochondrial content were removed (<10), genes captured by less than 3 cells were removed 
and doublets were identified and excluded using Scrublet147. Counts were normalized per cell, 
log‑transformed, and 5,000 highly variable genes were selected and used for downstream 
analysis. A k‑nearest‑neighbor graph was constructed on the highly variable genes, followed by 
UMAP embedding and Leiden community detection. A non–T‑cell cluster was removed based 
on marker expression and QC metrics, and the graph and UMAP were recomputed on the 
filtered T‑cell population.  

Spatial Transcriptomic Analysis of Public Mouse GBM Datasets 

Spatial transcriptomic data from a publicly available 10x Visium mouse glioma sample 
(GSM7839621) were analyzed using Scanpy. Spots annotated as tumor were subset, and T cell 
induced programs were imported from a prior R-based differential expression analysis of 
non‑targeting control CRISPRa T cell cocultures; genes with a q-value <0.05, and top 30 
normalized effect were selected, mapped to mouse symbols, and intersected with the Visium 
gene set. Per-spot  T cell induced cancer cell response signature scores and MHC class I 
antigen-processing/presentation scores were then computed with sc.tl.score_genes using the 
filtered  T cell induced cancer cell response signature and a curated MHC class I gene list, 
respectively. To stratify spatial regions by T cell infiltration, tumor spots were classified as "T cell 
infiltrated" or "No T cells" based on detectable expression of TCR chain genes (Trac, Trbc1, 
Trbc2), and spatial feature plots of Cd3g and Trac were generated. T cell dose–response and 
MHC class I scores were compared between infiltrated and non‑infiltrated tumor regions using 
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violin plots and two‑sided Mann–Whitney U tests. For T cell–infiltrated spots, we further 
quantified the relationship between T cell dose–response and TCR marker scores (sum of an 
extended T cell marker gene set) by Pearson correlation, reporting the coefficient of 
determination (R²) and p-value. 

Analysis of Patient-Derived Neurospheres Cocultured with T Cells 

Single-cell RNA sequencing data from BT333 T cells were processed using the Monocle3144–146 
framework. Cells were filtered based on UMI counts (≥500 UMIs) and cell hashing quality 
metrics (>5 hash UMIs per cell, top-to-second-best ratio >2). Size factors were estimated using 
estimate_size_factors(), and cell cycle scoring was performed with estimate_cell_cycle() using 
canonical S-phase and G2M-phase markers. For feature selection, differential gene expression 
analysis identified T cell induced cancer cell response genes using generalized linear models, 
with high-value genes selected based on q-value < 0.05 and absolute normalized effect > 0.25. 
Alternatively, dispersion modeling via estimateDispersionsForCellDataSet() (minimum 100 cells 
detected) identified the top 5,000 genes by excess dispersion ([dispersion_empirical - 
dispersion_fit] / dispersion_fit). Dimensionality reduction was performed using preprocess_cds() 
(num_dim = 20) followed by reduce_dimension() (UMAP with n_neighbors = 20, min_dist = 0.1, 
max_components = 2, fast_sgd = FALSE). Louvain clustering was applied to PCA space using 
cluster_cells() (resolution = 7e-5). Aggregate expression scoreswere calculated as 
log(Σ[normalized_expression] + 1). Statistical comparisons between T cell treatment conditions 
used two-sample t-tests via ggpubr::stat_compare_means(). Dose-response curves displayed 
mean ± SE using stat_summary(), with DMSO controls as reference lines.  

Multi-resolution Variational Inference (MrVI)85 from scvi-tools was applied using the T cell 
induced cancer cell response genes (q-value < 0.05, |normalized_effect| > 0.25, same list for 
previous decipher and MrVI analysis). MrVI was configured with sample_key = 
'drug_dose_treatment' and batch_key = 'Replicate', trained for 400 epochs with seed = 0 for 
reproducibility, and used to compute local sample distances (batch_size = 32). Hierarchical 
clustering of sample distances was performed using Ward linkage with optimal leaf ordering. 

Lead contact 

Further information and requests for resources should be directed to José L. McFaline-Figueroa 
(jm5200@columbia.edu). 

Materials availability 

Materials will be made available upon request.  

Data and code availability 

All data generated in this study are included in this published article and its supplementary 
information. The data discussed in this manuscript will be deposited in the National Center for 
Biotechnology Information’s Gene Expression Omnibus (GEO) upon publication. Code relating 
to data processing and figure generation is available in our GitHub repository 
(https://github.com/mcfaline-figueroa-lab/sci-Comm-Plex). Any additional information required to 
reanalyze the data reported in this paper is available from the lead contact upon request. 
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