
7454 IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY, VOL. 20, 2025

Building and Testing a Hidden-Password Online
Password Manager

Mohammed Jubur , Christopher Robert Price , Maliheh Shirvanian, Nitesh Saxena , Senior Member, IEEE,
Stanislaw Jarecki , and Hugo Krawczyk

Abstract—The most commonly adopted password management
technique is to store web account passwords on a password
manager and lock them using a master password. However,
current online password managers do not hide the account
passwords or the master password from the password manager
itself, which highlights their real-world vulnerability and lack of
user confidence in the face of malicious insiders and outsiders
that compromise the password management service especially
given its online nature. We attempt to address this crucial
vulnerability in the design of online password managers by
proposing a cloud-based password manager that does not learn
or store master passwords and account passwords. We introduce
the protocol design and report on a full implementation of the
system. Our implementation provides several security features,
including enforcement of a unique and secure password per
each service, robustness to online password guessing attacks
against the password manager and the web service, robustness to
password dictionary attacks upon compromise of the password
manager and the web service, and security against phishing
attacks. Furthermore, to assess users’ perceptions of the security
and usability of our password manager, we conducted a lab-based
study. The findings from the study suggest that our system is close
to being practical for everyday use and is viewed by users as both
usable and more secure/trustworthy.

Index Terms—Password management, store-less password
manager, hidden-password online password manager (HIPPO),
security, privacy, usability study, user perception, online authen-
tication, phishing-resistant design, device-enhanced password
authenticated key exchange (DE-PAKE)/oblivious pseudo ran-
dom function (OPRF) protocol, human-centred cybersecurity.

I. INTRODUCTION

DECADES after the introduction of passwords, password-
protected systems still experience various attacks, includ-

ing shoulder surfing [1], online guessing (brute force) attacks

Received 17 June 2024; revised 5 January 2025, 8 March 2025, and 5 May
2025; accepted 18 June 2025. Date of publication 26 June 2025; date of
current version 23 July 2025. This work was supported in part by NSF
under Grant OAC-2139358 and Grant CNS-2201465. The associate editor
coordinating the review of this article and approving it for publication was
Dr. Kaiping Xue. (Corresponding author: Mohammed Jubur.)

This work involved human subjects or animals in its research. Approval
of all ethical and experimental procedures and protocols was granted by the
Institutional Review Board (IRB).

Mohammed Jubur is with the College of Engineering and Com-
puter Science, Jazan University, Jazan 82817, Saudi Arabia (e-mail:
mjabour@jazanu.edu.sa).

Christopher Robert Price and Stanislaw Jarecki are with the Department of
Computer Science, University of California at Irvine, Irvine, CA 92697 USA
(e-mail: crprice@uci.edu; sjarecki@uci.edu).

Maliheh Shirvanian is with Netflix Inc., Los Gatos, CA 95032 USA (e-mail:
maliheh21@gmail.com).

Nitesh Saxena is with the Department of Computer Science and Engi-
neering, Texas A&M University, College Station, TX 77843 USA (e-mail:
nsaxena@tamu.edu).

Hugo Krawczyk is with Amazon Web Services, New York, NY 10036 USA
(e-mail: hugokraw@gmail.com).

Digital Object Identifier 10.1109/TIFS.2025.3583459

[2], and offline dictionary attacks [3]. Several of these attacks
depend solely on the entropy of the passwords itself. Users
tend to pick memorable passwords; however, such easier
passwords generally imply easier attacks, while secure and
random passwords open up other avenues of attacks due to the
memorability issue (e.g., writing down, storing electronically,
and less frequent updates). Moreover, users often tend to reuse
the same password to access multiple web services, which
increases security risks since the compromise of any one
service also compromises the accounts with other services.
Many of the recent data leakage attacks on popular web
services either stem from the poor choice of passwords or
result from the attacks on other services due to the reuse of
passwords (e.g., [4], [5], [6], [7], [8]).

To address these issues, online password managers save the
users’ (encrypted) web service account passwords on a pass-
word file on a cloud service [9], [10], [11]. These password
managers help to decrease the possibility of password breaches
by suggesting complex and unique account passwords for each
web service. However, current online password managers do
not protect the “account passwords” or the “master password”
from the password manager itself, which exposes them to
malicious insider as well as outsider attacks that compromise
the password management service-especially given its online
nature. Reports show several instances of the exploitation of
this crucial vulnerability in password managers [12], [13],
[14], [15], [16].

To address this fundamental vulnerability, we introduce
a secure cloud-based password manager built on top of
the Device-Enhanced Password Authenticated Key Exchange
(DE-PAKE) primitive [17]. Our proposed system does not
store the account passwords on the password manager;
instead, it generates a secure, randomized account pass-
word for each website upon receiving the master password
from the user, thus implicitly enforcing high-entropy account
passwords.

Recent studies on password guessing underscore the crit-
icality of high-entropy passwords. [18] provides a rigorous
analysis of guessing curves for probabilistic password models,
while [19] demonstrates how machine-learning approaches,
such as random forests, can considerably speed up guessing
attacks. Researchers have also found that real-world passwords
often follow distributions approximated by Zipf’s law [20],
indicating that users frequently choose popular (thus vulner-
able) passwords. These findings strongly reinforce the need
for a password manager that generates robust, unpredictable
account passwords without storing them in a vulnerable
location. In summary, our approach addresses these vulner-

1556-6021 © 2025 IEEE. All rights reserved, including rights for text and data mining, and training of artificial intelligence and
similar technologies. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: Texas A M University. Downloaded on January 28,2026 at 19:42:17 UTC from IEEE Xplore. Restrictions apply.

https://orcid.org/0000-0001-9398-3875
https://orcid.org/0000-0003-0015-3325
https://orcid.org/0000-0001-6083-104X
https://orcid.org/0000-0002-5055-2407
https://orcid.org/0000-0003-3130-1888

JUBUR et al.: BUILDING AND TESTING A HIDDEN-PASSWORD ONLINE PASSWORD MANAGER 7455

abilities by offering a secure, non-storing, and user-friendly
password manager. Our main contributions are:

• 1. A Hidden-Password Online Password Manager
(HIPPO): We introduce our password manager, built
on top of the DE-PAKE cryptographic primitive. Our
solution does not store or learn the master password
and/or the web account passwords; rather, it computes
a unique secure account password for each service as
a keyed function of the master password. The high-
entropy account password is registered with each service
and reconstructed during authentication using an OPRF
password hardening approach that receives the master
password from the user and the key from the password
manager server.

• 2. Design and Implementation: We designed our pass-
word manager as a cloud service that responds to
password inquiries from users. Our implementation con-
sists of a server-side Node.js service and a client-side
Chrome browser extension, enabling secure password
generation. The account password is reconstructed on the
client and automatically entered in the password field,
offering resistance to phishing attacks (via domain bind-
ing), master password guessing attacks (via throttling),
privacy (by hiding account IDs from the manager), and
easy account password updates (changing key genera-
tion parameters without changing the master password).
Empirical tests confirm an overall execution plus com-
munication time below 400ms.

• 3. Usability Evaluation: To measure users’ perceptions
of the security and usability of our proposed password
manager, we conducted a lab-based study. Given prior
research indicating users’ discomfort with online pass-
word managers due to potential password leaks, these
studies were crucial. While we are confident our solution
technically addresses this concern, we aimed to under-
stand if it also alleviates users’ apprehensions.
In our study, we evaluated the authentication using our
password manager and compared it with LastPass. The
findings revealed that participants felt more secure using
our password manager than LastPass and had fewer
privacy concerns. This suggests that our solution not only
addresses several security concerns associated with pass-
word leaks in other online password managers but also
enhances the overall usability of password authentication.
We found that the usability of our approach closely mir-
rors that of other (potentially less secure) online password
managers, as users simply need to input a username and
master password to log into the web service.

Extension to Earlier Submission: We initially introduced
our password manager in a poster paper accepted at the 2021
ACM Symposium on Applied Computing Computer Security
Track (SEC@SAC21). That paper discussed the motivation,
introduced the concept, and presented a proof-of-concept
implementation. In this extended submission, we delve deeper
into the idea, refine the design and implementation, and present
two studies evaluating our system’s usability.

II. BACKGROUND

A. Device-Enhanced Password Authenticated Key Exchange
(DE-PAKE)

Our design is built on top of the Device-Enhanced Password
Authenticated Key Exchange (DE-PAKE) protocol introduced
in [17]. DE-PAKE is an extension of Password Authenticated
Key Exchange (PAKE) with four parties: user U, client C,
server S, and a device D. DE-PAKE securely transforms a
user-memorable password pwd into a high-entropy random
string rwd by leveraging the device, and then uses this random
string as a password input to any PAKE. The authors of [17]
studied the composition of their password-to-random (PTR)
protocol with any PAKE protocol, giving rise to DE-PAKE
that is resistant to online guessing attacks and offline dictio-
nary attacks (under server and device compromise), without
needing secure communication between the device and the
client.

B. Related Work on Password Managers

Password managers are usually available as cloud services
(or desktop versions with cloud synchronization) which allow
users to pick randomized high-entropy account passwords
without the need to memorize them. On several commercial
password managers such as LastPass and Dashlane, these
account passwords are stored on the password manager and
are locked under a master password [9], [10] and/or a secret
key that the user needs to protect (e.g., on 1Password [11]).
While password managers provide fast and easy login, all
the stored passwords are exposed if the password manager is
compromised or if the master password/secret key is leaked.
Although 1Password is not truly a cloud-based password
manager-because it relies on a locally stored secret managed
by the user-it cannot be compromised merely by breaching
the cloud service (similar to our approach). However, it also
degrades usability since the user must manage a local secret
(unlike our approach).

Hash-based password managers (e.g., [21], [22], [23]) com-
pute the account password as a hash of the master password
on the fly. While they do not store the account passwords,
they remain vulnerable to offline dictionary attacks if the web
service itself is compromised, because the stored password is
a deterministic hash-based derivation of the master password.

C. SPHINX Vs. Our Approach

SPHINX [24] is a device-based password manager that
leverages DE-PAKE primitives similarly to our system. It
transforms a human-memorable password into a random
password using a trusted smartphone to perform the core
cryptographic operations. While SPHINX addresses many
server-related threats, it critically depends on a single device
(the smartphone) for secure operation. If the phone is unavail-
able due to connectivity issues or a drained battery, usability
suffers significantly.

In contrast, our solution is cloud-based and does not rely
on a single, trusted client device. This design choice removes
constraints such as smartphone availability and battery charge,

Authorized licensed use limited to: Texas A M University. Downloaded on January 28,2026 at 19:42:17 UTC from IEEE Xplore. Restrictions apply.

7456 IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY, VOL. 20, 2025

allowing users to seamlessly reconstruct their passwords from
multiple devices. No single device is essential to the secure
operations of our manager, mitigating the risk that a lost
or compromised device locks the user out of all services.
Additionally, our system accommodates multi-device usage by
securely synchronizing client-maintained parameters (ctr and
UT) across the user’s authorized devices (discussed later in
Section III and IV), improving overall accessibility and user
experience.

D. Passkeys

Built on the WebAuthn standard, passkeys offer a password-
less authentication method that enhances security and user
experience by using public-key cryptography. Unlike tradi-
tional password managers that store and autofill user-generated
passwords, passkeys eliminate the need for passwords alto-
gether. This approach mitigates risks tied to password reuse
and phishing attacks, as there are no passwords to be compro-
mised [25]. Nonetheless, since many services do not yet fully
support passkeys, a robust password manager remains very
important. We envision future compatibility or integration of
passkeys with our system for users desiring a hybrid approach.

E. LastPass as a Baseline

LastPass [10] is among the most popular password man-
agement services, supporting phones, tablets, and desktops on
major operating systems and browsers.It offers both personal
and business versions. Users can store credentials on the
LastPass cloud, which is encrypted using AES-256. The key
for encryption is derived from the user’s master password and
username [26]. LastPass enables password generation with
various customizations (length, uppercase letters, numbers,
symbols, etc.), making it convenient to create complex pass-
words like “T8@nW5Y2$r9”.

However, even a service as robust as LastPass remains
susceptible to breaches when its infrastructure is compromised.
A 2022 incident [27] reportedly exposed encrypted user data,
reflecting the reality that no service can guarantee perfect
security. Recent investigations also link a LastPass breach to
the theft of $4.4 million in cryptocurrency [28], underscoring
the real-world risks that motivate the need for solutions like
ours.

In our user study (Sections V–VI), we compare participants’
perceptions of our password manager to LastPass, exploring
how a non-storing, OPRF-based model might address real-
world threats more effectively.

III. OUR APPROACH

A. A Bird’s Eye View

Our approach is an online password manager that securely
responds to the password reconstruction requests without stor-
ing the user’s master passwords or the reconstructed account
passwords registered with the web services. The design of the
protocol embraces the DE-PAKE protocol, however, it answers
several challenges associated with the use of an online service
as the manager.

An essential component of our password manager is the
Oblivious Pseudo Random Function (OPRF) defined in [17]
that maps a human-memorable master password pwd to a
high-entropy account password rwd. The OPRF protocol runs
between the password manager service M and the client
terminal C from which the user U authenticates to a web
service S to reconstruct rwd = Fk(x), where k is provided
by M and x is provided by C.

Our protocol offers other essential security and privacy
features such as identifying the users by a user identifier
UD without learning the username and domain name of the
services, registering a verified user Recovery (Return) Email
Address REA, and detecting online guessing attacks against
M through limiting the attempt rates for a given (UD,REA).

B. Finer Details

1) Protocol Vocabulary:
• The protocol runs between the user U authenticating from

a client machine C, a password manager server M, and a
web service S to which the user has registered an account.

• The protocol assumes a group G of prime number p with
generator g and a security parameter τ = |p|.

• The protocol defines two hash functions H and H′, map-
ping a string into elements of {0, 1}τ and G, respectively.

• A master key mk is securely stored on the password
manager server M. This key serves as the root secret for
generating the OPRF keys (i.e., k) used to transform the
user’s master password pwd into a randomized account
password rwd. The master key itself is never exposed to
the client or any external party, ensuring the integrity of
the overall protocol.

• Each user account is identified using an account identifier
UD that is computed as UD = HMAC(key = UT, input =

(uid, domain)). UT is an optional token picked by the
user and should be carried to any client. This value is
considered to be 0 if it is not set.

• Each user account registers and verifies access to a
user’s Recovery (Return) Email address REA. During
the initial setup, the user is prompted to confirm REA
by responding to a verification code or link sent to that
address, ensuring that only the legitimate account holder
can receive notifications or fallback codes.

• Each user account keeps a counter ctr that can be incre-
mented to update rwd without changing pwd.

• The protocol assumes a key generation function
fmk(REA,UD) on the server to compute OPRF key k from
a master key mk and a account identifier UD (e.g., an
HMAC function with mk as the key and (REA,UD) as
the input).

• The protocol uses the OPRF function F mapping pwd to
rwd and defined as Fk(x) = H(x,H′(x)k) in which x is
the input from C and k is the OPRF key input from M
associated with each account. In our instantiation x is set
to (uid, domain, ctr,pwd).

• The protocol uses the OPRF function F mapping pwd
to rwd, defined as Fk(x) = H

�
x,H′(x)k

�
, where x is the

input from C and k is the OPRF key provided by M. In
our instantiation, x is set to (uid, domain, ctr,pwd).

Authorized licensed use limited to: Texas A M University. Downloaded on January 28,2026 at 19:42:17 UTC from IEEE Xplore. Restrictions apply.

JUBUR et al.: BUILDING AND TESTING A HIDDEN-PASSWORD ONLINE PASSWORD MANAGER 7457

Notation Clarification: In this expression, H′(x)k

denotes exponentiating the hash output H′(x) to the power
k in a prime-order cyclic group G. It does not mean
applying the hash function k times. Exponentiation in
such a group is a common practice in cryptographic
protocols built on group operations.

2) Master Password Vs. UT, and Temporary Device Usage:
Implementation Notes: Master Password vs. UT. Our pro-
tocol differentiates:
• Master Password (pwd): A user-memorable secret typed

for each new device or session.
• User Token (UT): An optional high-entropy secret that the

user can store or transfer once to a trusted device (e.g.,
in a secure file or hardware enclave).

If pwd alone is compromised (e.g., by phishing), an attacker
cannot derive the randomized account password (rwd) without
also obtaining UT. In our design, UT never needs to be typed
repeatedly, so it remains hidden from typical keylogging or
phishing vectors.

UT = 0 Scenario. By default, UT = 0 for simpler
onboarding. In this case, pwd plus user metadata (e.g.,
domain, REA) drives the OPRF. Although the protocol is
still protected against offline dictionary attacks, we strongly
recommend configuring a random, non-zero UT (similar in
spirit to 1Password’s “Secret Key”) in higher-risk environ-
ments. Without UT , 0, rwd relies chiefly on pwd, potentially
weakening security if pwd is guessed or leaked.

Temporary Usage on Untrusted Devices. Our protocol
accommodates short-term or partial usage in untrusted/public
environments:

1) Minimal Ephemeral State: The client can store only
non-persistent data (blinding factors, session tokens),
discarding them at logout.

2) User Re-Enters UT: Because UT is known only to the
user, they can simply re-enter it on the untrusted device
for that session, without permanently saving it.

3) Session Revocation + Rate-Limiting: Combined with
REA notifications, this allows rapid invalidation if sus-
picious behavior is detected.

Thus, a user may log in from a temporary device without
permanently exposing UT. The manager enforces tight rate-
limiting to prevent credential-guessing abuses in ephemeral
sessions.

3) Protocol Instantiation: Figure 1 shows the steps taken
by each party to reconstruct rwd and to authenticate the user.
Step 1: The client initiates the protocol as follows:
• 1a. U inputs pwd on C. pwd is picked by the user and

along with uid, domain, and ctr is considered as the C’s
input into the password hardening OPRF.

• 1b. C picks and temporary remembers a random number
ρ of size τ and blinds the C’s OPRF input by computing
α = H′(uid, domain, ctr, pwd)ρ. Blinding protects pwd
from attackers listening to the C-M channel and to those
compromising M.

• 1c. C queries M by transferring UD, REA and α to the
manager. UD privately identifies the user account (i.e.,
while hiding the username and the service domain name

Fig. 1. The protocol reconstructs an account password to authenticate user.

from M to protect the user’s privacy). REA is used to
send notification in case M detects a suspicious guessing
activity (through the rate limiting approach). Since REA
is used in rate limiting it is necessary in every OPRF
invocation.

Step 2: The manager continues the protocol upon receiving
the query following the steps discussed next.

• 2a. M verifies the validity of the connection based on the
rate limiting policy and aborts if any anomaly is detected.
If no record is found for UD (which happens in the very
first attempt) M creates a record for UD and asks the user
to verify access to REA (e.g., by sending an email for
the user to return a code or click a link).

• 2b. M takes its OPRF role by verifying that α is an
element of G and aborts if verification fails.

• 2c. M uses master key mk to generate the OPRF key k
and to compute β = αk.

• 2d. M responds to the client by transferring β to C.
Step 3: C brings the protocol to a conclusion upon receiving

the response from M, as follows:
• 3a. C verifies that β is an element of G; aborts if not.
• 3b. C deblinds its OPRF input by com-

puting β1/ρ. C discards ρ at this step and
sets rwd = Fk(uid, domain, ctr,pwd) =

H(uid, domain, ctr,pwd,H′(uid, domain, ctr,pwd)k).
• 3c. C now submits the high-entropy password rwd to the

target web service S. S verifies rwd against its stored
hash and, on success, issues the usual session credential
to complete user authentication.

The setup phase to register the account password rwd with a
service and the login phase follows the same steps and differs
only in the client’s interaction with the server as per the service
password update and login process.

C. Threat Model and Security Properties

The formal and practical security of our work derives from
the DE-PAKE formal framework and security proofs of [17].
Our password manager is an implementation of that proven
scheme where the password manager M plays the role of the
device in that model. Here we provide an informal account of
the main security properties as they follow from the results of
[17]. Please refer to [17] for details.

Because pwd is typed frequently, an attacker may obtain it
via phishing or keylogging. However, our design also relies
on a user token UT, which is never routinely typed, thus

Authorized licensed use limited to: Texas A M University. Downloaded on January 28,2026 at 19:42:17 UTC from IEEE Xplore. Restrictions apply.

7458 IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY, VOL. 20, 2025

remaining protected on trusted devices. Therefore, simply
having pwd alone does not suffice to derive rwd. When
UT = 0 (the default for convenience), the protocol still
prevents offline dictionary attacks unless both M and S are
compromised simultaneously (as shown below). Nevertheless,
we strongly recommend configuring a non-zero UT (similar
to 1Password’s Secret Key) for high-risk scenarios.

The security definition from [17] captures “best possible”
security in the sense that the only effective attacks are those
that are unavoidable, namely, exhaustive online dictionary
attacks against S and/or M, with offline dictionary attacks
only possible upon the compromise of both S and M. The
model does not consider defenses against client compromise
or the leakage of the user’s master password. Such defenses
for any password manager can be obtained via second factor
authentication (cf., [29]).

The DE-PAKE model considers an active attacker A that
controls all communication channels and may compromise the
server S and/or manager M. Security is quantified as a function
of the number of online interactions between A and M and
between A and S, where the number of such interactions is
denoted by qM and qS , respectively. The results of [17], when
applied to our setting, imply the following security properties
(below, Dict denotes a dictionary from which pwd is chosen).

1) Security against online and offline attacks: It is shown
that the probability of A to compromise the security
of user authentication and key exchange is at most
min(qM , qS)/|Dict|. In practical terms, this means that
the best possible attack is one where the attacker guesses
a value of pwd, runs the protocol with M on input pwd,
and uses the resultant value rwd in an authentication
session with S. Only if the latter authentication suc-
ceeds, does the attacker learn pwd. This means that to
be successful A needs to perform an online attack of
order |Dict| against both S and M, making offline attacks
ineffective unless both M and S are compromised.

2) Resistance to Attacks upon Compromise of M: In
case server M is compromised, [17] shows that A’s
probability to break the protocol security when M is
compromised is at most qS /|Dict|. This means that the
best possible (and inevitable) attack against the protocol
is for A to use the compromised M’s key (an OPRF
key) to compute rwd for each value of pwd in Dict
and test each obtained rwd in online interaction with
S. Thus, even with a compromised M, the attacker still
needs online interactions with S in the order of |Dict|.
Also here, offline attacks are ineffective.
These properties are to be contrasted with password
managers that store a list of passwords encrypted under
pwd and where the compromise of the password man-
ager typically leads to an offline-only attack on pwd
and all encrypted passwords. In our case, even if M is
fully controlled by the attacker, nothing (in the strongest
information theoretic sense) is learned about pwd or on
the individual rwd.

3) Resistance to Attacks upon Compromise of S: When
a server S is compromised, [17] shows an upper bound
of qM/|Dict| on the attacker’s probability of success. It

implies that the best attack against the protocol in this
case, is an exhaustive online attack against M using
guessed values pwd to obtain rwd that can then be
validated against the compromised state of S. Note that
an exhaustive attack on rwd could also be possible in
this case; however since rwd is a high-entropy secret
such attack is infeasible. Moreover, learning rwd directly
from a server S (e.g., breaking the server’s TLS commu-
nication), does not compromise either pwd or any other
password rwd as rwd’s are random and computationally
independent from each other as long as the OPRF key
is not disclosed.

4) Resistance to Attacks upon Compromise of M and
S: When both M and S are compromised, an inevitable
offline attack of order |Dict| is possible. In it, one lists
all possible pwd values and uses the internal (OPRF)
key at M to calculate rwd for each pwd. Then rwd is
tested against the compromised state at S.

5) Resistance to Phishing Attacks: Another critical secu-
rity property is protection against phishing attacks,
achieved by binding the domain name to the derivation
of rwd. Any phished domain yields a different rwd,
thereby preventing credential theft.

6) Full cryptographic security with random UT: Our
design accommodates an optional value UT that can
be set by the user to 0 or to a high-entropy random
value. In the latter case (in which UT needs to be
carried to all the user’s client machines), and as long
as UT is not disclosed,no feasible attack, online or
offline, or upon the compromise of both M and S, exists
against the master password pwd and its derivatives rwd.
An attacker would need to guess both pwd and UT.
Conversely, if UT is ever disclosed, our protocol still
guarantees the above properties.

7) Master Password Leakage and Temporary Usage:
Although the threat model does not fully consider client
compromise, we note that temporary usage on untrusted
devices further reduces the risk of UT exposure. If pwd
is phished or guessed, the attacker still cannot compute
rwd unless they also capture UT. When using temporary
sessions, UT remains stored briefly (often encrypted)
and can be revoked after the session. Combined with
rate-limiting and REA-based notifications, this ensures
that local compromise of a temporary device does not
grant ongoing attacker access to the user’s credentials.
Hence, neither a single-factor breach (pwd alone) nor
temporary device compromise compromises the user’s
entire password ecosystem.

IV. SYSTEM IMPLEMENTATION

In this section, we discuss the implementation of HIPPO,
as well as the challenges related to online attacks, phishing,
user privacy, and service reliability. Our security analysis
in Section III-C shows the security of the system in case
of an attack. We assume both client and server follow
best practices to address common security threats, such as
securely storing secrets. For example, secret values such as
mk and UT are stored securely on the server and the client

Authorized licensed use limited to: Texas A M University. Downloaded on January 28,2026 at 19:42:17 UTC from IEEE Xplore. Restrictions apply.

JUBUR et al.: BUILDING AND TESTING A HIDDEN-PASSWORD ONLINE PASSWORD MANAGER 7459

Fig. 2. HIPPO workflow. Clients derive site-specific random passwords via
an OPRF with the cloud server; the derived rwd is sent to the target web
service.

applications. Similarly, the server deploys denial of service
attack prevention to avoid attacks on the server. Rate limiting,
discussed later in this section, is one of these mitigation
mechanisms.

A. Password Manager Client

Figure 2 shows the high-level specification. We consider
NIST P-256 as the group G over which the operations run.
The user registers a single recovery-email REA on the client
and verifies it via a one-time code/link sent by the server.
HIPPO’s cryptographic core is independent of user interfaces:
the current Chromium extension and a compact Android/iOS
wrapper both initiate the same OPRF-over-WebSocket flow
and utilize the returned rwd; only the local trigger/GUI differs,
meaning that no protocol changes are necessary.

The client runs when a website is accessed. It attempts to
dynamically locate a password web form. The client waits for
the special user input, either the “F2” or “@@” key sequences
(in-line with [21]), and then activates a callback when the
user finishes typing in the password field by relinquishing
focus on that element. Upon activation of the callback, a TLS
encrypted WebSocket connection with the server is attempted,
with which the client negotiates a message containing (1)
α = H′(uid, domain, ctr,pwd)ρ as an elliptic curve (x, y)
coordinate pair, (2) the user identification UD computed using
the web form username and current website domain name,
and (3) the recovery email address REA. The client waits for
the response from the server (i.e., β). If the received value
satisfies the ECC curve equation, β is raised to 1/ρ to unblind
H′(uid, domain, ctr,pwd)k. This value is then mapped to rwd
to provide the generated password. The generated password is
then populated in the form.

1) Reading and Replacing the Password from/to Forms:
This functionality is a fork of the chrome port of Stanford’s
PwdHash extension [21] 1. The password is received and
replaced from/to website forms similar to the Stanford’s
PwdHash Google Chrome port, with several modifications

1The prefix of @@ and F2 is the part of this porting.

to adopt recent website forms. The mapping of H(x,H′(x)k)
to rwd is also based on PwdHash HashedPassword function
from the same port. The extension applies password character
length and constraints and populates password field with the
permuted password.

To come up with the most practical mapping we reviewed 50
most visited websites [30] that require username and password.
We reviewed their password policies for those that explicitly
mention their policy in their website, and for those website
that do not have documented their policies, we attempted
signing up and creating an account and tried different password
combination to realize password length and character require-
ments. All the studied websites have some sort of password
policy in place, by defining a minimum password length, and
recommending use of lower case, uppercase, numbers, and
special characters. Here we summarize our analysis:

2) Strength Metric: Several of the websites have a form
of password strength metric implemented that rejects easy
to guess passwords (e.g., password123, 1qaz2wsx). A pass-
word mapping scheme can simply avoid generating passwords
available in previous leaked password databases or those that
contain the username.

3) Length: The minimum number of required characters are
between 4-12: 28/50 websites have a minimum length of 8,
and 13 websites had a minimum length of 6 characters. Only
1-2 websites have a minimum number of 10-12 characters.
Therefore, a mapping to 8-10 characters seems to satisfy most
of the websites’ password length requirements.

4) Alphanumeric: None the studied websites prohibits
users from selecting passwords that contain alphanumeric.
In fact 38/50 websites, recommend/require using lower case,
uppercase, and numbers. Two of the websites reject pass-
words containing two consecutive repeat characters. Since
alphanumeric seems to be a common practice, the password
mapping function must include alphanumeric passwords in the
generated randomized passwords.

5) Symbols: 25/50 websites recommend use of symbols and
no website rejects passwords containing special characters.
However,ı̃s not accepted by one website, < and > are not
accepted by another website, one of the websites only accepts
!@#$%ˆ&* and another website only accepts !@#$+*ˆ∼-.
Considering these few restrictions, a mapping that includes
!@#$%*ˆ as special characters in the generating rwd satisfies
most requirements.

Since the mapping is not the core of our password man-
ager, we did not intend to regenerate it, however, several
improvements were made to migrate PwdHash code to the
current website designs. In summary, our design can work
with the diverse password formatting requirements of the web
services, and other engineering options such as inputting the
master password on the extension are also possible in practice.
Similar to other password managers, password generation can
also have an option to let users select length and character
requirements.

6) WebSocket Client: Since most of the web-services to
which the user logs in (e.g., banks, social media, and email
services) establish a SSL channel and serve the users through
HTTPS, we incorporate “Secure” WebSocket protocol for the

Authorized licensed use limited to: Texas A M University. Downloaded on January 28,2026 at 19:42:17 UTC from IEEE Xplore. Restrictions apply.

7460 IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY, VOL. 20, 2025

client-manager communication. This choice is made to follow
the browsers’ content security policy that prevents mix content.
The Chrome browser extension provides the TLS encrypted
WebSocket communication with the manager to exchange
messages.

7) Elliptic Curve Cryptography (ECC) Operations: Upon
password field loss of focus, extension reads the password
field data and maps it to a point on NIST P-256 curve
using a hash into elliptic curve function. It then picks the
random 256-bit ρ and computes α encoded into (x, y) pair
coordinates. Upon receiving the computed β from the manager
it performs inverse exponentiation and maps the generated
point to a hex string using a SHA-256 hash function as
H(uid, domain, ctr,pwd, β1/ρ). This hexstring is encoded to
rwd by applying password constraints as mentioned earlier.

8) Password Updates: To update the passwords without
changing pwd, the user can set a ctr on the client and
increment it to change the associated rwd for a specific
account. Updating ctr changes the input to the OPRF protocol,
and thereby, changes the account password rwd. Therefore,
even if the user keeps the master password unchanged and
only modifies ctr, The password manager generates a new
high-entropy account password that can be registered with the
service. The use of ctr also increases the security of the system
against online guessing attacks on password manager server
since the attacker not only need to guess the master password
but also ctr to successfully authenticate to a service. In our
design, ctr is managed on the client extension, however, one
can assume a design that ctr is managed by the server or
a separate service or app designed for this purpose. In case
the user decides to change pwd, all rwd’s originated from
that pwd needs to be updated. While deploying automated
update feature is out of the scope of this work, similar to the
interesting feature offered by password managers such as [10],
it is possible to update passwords by running password update
scripts from the password manager browser extension.

9) Extension Options Page: The client browser extension
has an options page for configuring users’ preferences. For
development purposes, we designed the options page so that
the user can input the password manager server WebSocket
listening address and port. This setting can also be hard-
coded in the extension code. We also allow users to pick a
recovery email and set it in the extension. The extension also
has an option to show the user the randomized password rwd
registered with the web-service. This option can be used if
the user wishes to log in from clients that do not support our
password manager (e.g., email client applications). ctr and UT
are also set on this page.

10) Synchronization Mechanism: A key advantage of
our cloud-based approach is that users often access their
password manager from multiple devices (e.g., a personal
laptop, a work computer, or a mobile device). To ensure
consistent and secure state management of client-maintained
parameters—particularly ctr and UT—our system allows these
parameters to be stored, encrypted, and synchronized across
trusted devices. This mechanism prevents desynchronization
and provides a seamless transition: for instance, if a user
increments ctr on their personal laptop to update the password

for a certain domain, the updated ctr value can be securely
propagated to their work computer. Likewise, if UT is in use,
it is similarly shared among the user’s authorized devices,
preserving privacy and security guarantees.

B. Password Manager Server

The server is built using the NodeJS framework pro-
viding the TLS encrypted WebSocket handler for external
client connections. The ECC implementation is supported
by the Stanford SJCL/JSBN library. In addition to the core
framework, the following functionality is provided through
third party modules: the WebSocket protocol implementation,
the database for storing user notification/account recovery
preferences, the email protocol implementation for sending
notification emails/recovery instructions to users, and GeoIP
for identifying abnormalities in the user’s connection patterns.

1) Secure WebSocket Server: Although our protocol does
not require and rely on confidentiality of the client-manager
channel, Secure WebSocket communication was essential as
per the browser’s content security policy. We acquired a key
and certificate issued by InCommon RSA Server CA on our
manager and run Apache v2.4.6 with SSL enabled to accepts
Secure WebSocket connections.

2) Service Reliability: To offer a higher reliability, the
server runs in a master-slave configuration, where the master
performs connection handling and delegates ECC operations
to the slaves. The slaves act as individual computational nodes,
receiving a potential (x, y) coordinate pair, testing coordinate
pair on a chosen elliptical curve, generating an OPRF key,
exponentiating the curve configuration with that key, and
finally returning it to the master. The master receives multiple
slave responses and picks the response with the highest slave
commitment to avoid potentially damaged slaves. The master
continuously handles external client requests and delegates
ECC computation to alternating slave groups to avoid blocking
the service with ECC computational load. The master validates
the client requests before delegating to the slaves, and upon a
threshold of invalidity, applies the rate limiting.

3) Account Look-up: Password manager identifies the
users’ account to 1) generate the OPRF key, and 2) to pre-
vent guessing attacks by applying rate limiting policies. This
identification does not have any authentication characteristics
as our password manager does not need to authenticate the
user per se. To uniquely identify each user account, we define a
user identification parameter UD per each account. All records
related to an account are stored in a database and are tagged
with UD. UD is set on the client and is transferred to the
password manager server as part of the initial message (step
1c in Figure 1). UD can simply be the user id with a web-
service. However, since revealing the user id and the domain
name may raise privacy concerns (as the manager learns this
information), the password manager computes the key-ed hash
of the user id and domain name as UD, such that UD =

SHA256-HMAC(key = UT, input = (uid, domain)). The key
to the hash function (defined as UT) is optionally set by the
user (0 if not set). If UT is set the user should populate it on
other clients.

Authorized licensed use limited to: Texas A M University. Downloaded on January 28,2026 at 19:42:17 UTC from IEEE Xplore. Restrictions apply.

JUBUR et al.: BUILDING AND TESTING A HIDDEN-PASSWORD ONLINE PASSWORD MANAGER 7461

TABLE I
THE PROTOCOL COMPONENT EXECUTION TIME WITH SJCL LIBRARY

TABLE II
THE OVERALL PROTOCOL EXECUTION TIME

4) Key Generation: The OPRF key for each account is
generated as a function of a master-key mk, UD and REA.
UD and REA are transferred from the client to the man-
ager (as shown in step 1c of Figure 1) and the password
manager holds mk. We compute OPRF key k as SHA256-
HMAC(key = mk, input = (UD,REA)).

5) ECC Computation: As part of the the protocol, the
manager responds to the OPRF message received from
the client. The manager receives the computed α =

H′(uid, domain, ctr,pwd)ρ encoded into a (x, y) coordinate
representing a point on the NIST P-256 elliptic curve. Our
implementation of Hash-into-Elliptic-Curve is in line with that
suggested in [24], however, other alternatives robust to side
channels would be possible [31]. The manager then checks if
the received (x, y) pair is a valid point on the curve. Then it
computes the value of β = αk and transfers β encoded into a
(x, y) coordinate to the client.

6) Phishing Prevention: The client inputs the domain name
of the web-service in the OPRF function. This design prevents
phishing attacks by involving the domain name domain in
the generation of rwd. Therefore, a phished domain name
generates a different rwd.

7) Rate Limiting: Since our design is implemented as an
online service with no need for user authentication it may be
a target for an active attacker who guesses the client’s OPRF
input (i.e., (uid, domain, ctr,pwd)) to reconstruct rwd and to
attempt to log in to the web-service. To avoid such attacks,
we developed two standard rate limiting approaches. In the
first approach, the connection count per interval is monitored
and connections are closed for those that reach and exceed a
threshold. That is, the password manager server validates the
client connection by a configurable threshold of acceptable
login attempts for an UD. A default threshold of 10 logins
from an IP address in 5 seconds was defined on the server.
The IP address and the time-stamp of the connection attempts
for UD is recorded on the database. In the second approach, an
accepted connection has the GeoIP location of that connection
matched with previous GeoIP locations. If the location does
not match upon a threshold an invalid attempt is detected.
Once a suspicious activity is detected a notification email
is sent to the user’s recovery email address REA. REA is
transferred from the client to the password manager server (as
shown in step 1c of Figure 1) and can be cross-checked by

the server with the one stored in the database associated with
UD. Other notification services such as SMS or two factor
authentication are other possible choices.

8) Database Server: We use ArangoDB, a scalable NoSQL
solution, for storing the recent login attempts (latest timestamp
and IP address/GeoIP from which the user transfers the
request) and the recovery email associated with a UD.

9) Used Libraries: Node.js v8.1.2 on CentOS 7 (dual Intel
Xeon CPU E5-2687W v3 @ 3.10GHz, 3.87 GB RAM) forms
the backbone. Core Node.js libraries (crypto, http, https,
fs) plus 3rd-party npm modules (e.g., WebSocket v3.0.0,
ArangoDB v5.6.1, nodemailer v4.0.1, mmdb-reader v1.1.0)
provide connectivity, database services, email notifications,
and GeoIP throttling. Elliptic-curve computations rely on
Node.js crypto, plus Stanford’s JSBN and SJCL.

C. Protocol Performance Measurement

We first evaluate the performance of the password manager
server in the execution of the primary functions of the protocol.
The execution time is estimated for the server running on
a virtual machine with 2 x Intel Xeon CPU E5-2687W v3
@ 3.10GHz and 3.87 GB of memory. Table I shows the
execution time of different functions using SJCL library. We
also evaluated the same functions with ECURVE library,
however, we achieved the best performance on the most time
consuming functions with SJCL2 The most costly computation
is the elliptic curve multiplication, which is reasonably low:
less than 70 ms on the client and less than 25 ms on the
server. Next, we evaluated the execution time of hashing into
an elliptic curve on the client and group membership test and
elliptic curve point exponentiation on both the client and the
server. The timing is shown in Table II. We noticed that the
most costly computation on the server and the client is related
to point multiplication (computation of α = H′(x)ρ, β = αk

and β1/ρ). This computation contributes to about 160 ms of
389.4 ms overall protocol time. The execution time of other
functions such as RNG and SHA256 is negligible. Having
detailed the system architecture, cryptographic protocols, and
performance measurements, we next present a user study that
compares our cloud-based password manager against LastPass.
This study provides insights into how users perceive and
interact with our approach, focusing on essential tasks (e.g.,
installation, configuration, password updates).

V. USER STUDY COMPARING OUR PASSWORD MANAGER
WITH LASTPASS

This section presents our comparative user study of our
cloud-based password manager and LastPass. The primary

2Higher Performance libraries would improve the protocol’s overall per-
formance; however, at the time of evaluation, SJCL and ECURVE were the
few JavaScript libraries offering low-level operations required by our protocol
implementation.

Authorized licensed use limited to: Texas A M University. Downloaded on January 28,2026 at 19:42:17 UTC from IEEE Xplore. Restrictions apply.

7462 IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY, VOL. 20, 2025

aim is to evaluate how users perceive and interact with
each manager regarding essential tasks such as installa-
tion/configuration, password updates, and login procedures.
While our system supports advanced features like multi-device
usage and a fallback mechanism for untrusted or temporary
devices, this study focuses solely on everyday password man-
agement behaviors. Future work will expand the scope to
multiple devices and advanced scenarios.

In parallel, we conducted a broader survey of major pass-
word managers (LastPass, 1Password, Bitwarden) to confirm
that their fundamental usability workflows are largely identi-
cal: (1) installing an extension or app, (2) creating a master
password, and (3) storing credentials in a zero-knowledge
vault for autofill. For instance, Seiler-Hwang et al. [32] found
that 1Password’s mobile interface received a lower SUS
score (52.6, rated “not acceptable”) than LastPass (mid-60s,
“marginal”) in a lab study with 60 participants, yet both
products followed the same “create master password, store
credentials, autofill” routine. Meanwhile, Arias-Cabarcos et al.
[33] observed that 1Password and LastPass had compara-
ble setup overhead and master-password complexity in an
enterprise context. Bitwarden, though open-source and more
minimalistic, still follows the same pattern of installing an
extension, setting up a master password, and auto-filling site
logins [34], [35]. Hence, focusing on LastPass still captures
the key usability tasks relevant to other managers-particularly
regarding installation, password updates, and perceived secu-
rity/trust in a “vault-based” approach.

A. Objectives and Scope

Although our password manager supports multi-device
usage and incorporates a fallback/recovery mechanism (e.g., a
one-time secure code) to re-establish trust on new or untrusted
machines, these capabilities were not explicitly examined
in this user study. Instead, the comparative study primarily
focused on:

1) Core Usability: Assessing the ease of installa-
tion/configuration, password updates, and login pro-
cesses for both our password manager and LastPass.

2) Security Perceptions: Exploring participants’ confi-
dence in storing and protecting their credentials, as
well as their trust in each manager’s overall security
framework.

3) Adoption Willingness: Determining participants’ like-
lihood of using these password managers for various
personal and professional online accounts.

Future evaluations will include a thorough examination of
multi-device portability and fallback features, analyzing alter-
native device scenarios (e.g., temporary or untrusted devices)
in greater depth.

B. Study Design

The core idea of our study was to evaluate user percep-
tion, acceptance, and thoughts on LastPass and our password
manager. The study design follows similar password manager
studies [24], [36], [37]. We recruited 20 participants through
word-of-mouth from diverse backgrounds. Participants used

both password managers to log into predefined accounts on
Gmail, Twitter, and Dropbox, chosen for their popularity and
varied login procedures.

Gmail requires username first, then password; Twitter and
Dropbox require both in the same form. Password update
procedures also vary: Gmail involves second-factor authen-
tication, while Twitter and Dropbox require old and new
passwords, with Twitter requiring the new password twice.
After the study, participants answered questions about their
experience using both quantitative and qualitative methods.

Due to Covid-19, the study was conducted remotely. Each
participant spent approximately 90 minutes to complete the
study. The study was approved by our University’s Institu-
tional Review Board (IRB), and standard ethical procedures
were followed. Participation was voluntary, with participants
informed about the study and given the option to discontinue
at any time.

C. Remote Study Setup

We conducted our study using a Google site [38],3 with
four pages: a home page with a welcome message, intro-
duction, and instructions; a pre-test questionnaire; and two
pages with task instructions for the password managers.
After completing tasks, participants answered survey questions
about their perceptions. Quantitative and qualitative data were
collected using embedded Google Forms [39], allowing par-
ticipants to enter their answers on the same page as the task
instructions.

D. Preparation

As our study was conducted remotely, we communicated
with participants via emails and WhatsApp. We shared user-
names and passwords for pre-created accounts and provided
the study site link. Zoom [40], TeamViewer [41], and Skype
[42] were used for remote screen sharing and real-time
observation, ensuring accurate data collection and providing
assistance when needed.

E. Study Protocol

Our study consists of five stages, as shown in Figure 3.
The concrete steps followed in each stage are outlined
below.

Stage 1: Start: An examiner shared the study site link,
usernames & passwords, and Zoom meeting link. The exam-
iner ensured participants received all necessary links and could
share their screens.

Stage 2: Welcome: Participants received a brief introduc-
tion and instructions about the study.
• Introduction: We explained password managers’ general

concept, security, and usability purposes, including Last-
Pass and our proposed password manager, through a short
video (3 minutes).

• Instructions: We outlined the tasks: filling out the pre-
test survey, using LastPass with predefined accounts, and
using our proposed password manager. Participants were

3https://sites.google.com/view/pmstudy-2021/home

Authorized licensed use limited to: Texas A M University. Downloaded on January 28,2026 at 19:42:17 UTC from IEEE Xplore. Restrictions apply.

JUBUR et al.: BUILDING AND TESTING A HIDDEN-PASSWORD ONLINE PASSWORD MANAGER 7463

Fig. 3. Study Process.

instructed to assume they were logging into their own
accounts.

Stage 3: Pre-test: Participants filled out a survey about their
demographics and technical backgrounds.

Stage 4: LastPass Tasks: Participants used LastPass to
complete the following tasks:

1) Sign up: Install the LastPass extension and sync with
their accounts.

2) Password Update: Follow instructions to generate and
update passwords using LastPass, enabling the master
password reprompt feature.

3) Login Using LastPass: Log in using LastPass and
repeat the login process three times for each service.

4) Post-test Questionnaire: Watch a short video about
LastPass’s potential threats, then complete a question-
naire.

Stage 5: Our Password Manager Tasks: Participants used
our password manager to complete similar tasks:

1) Installation and Configuration: Install the exten-
sion, configure the manager, and set a recovery email,
inputting the offset key, server address, and port
number.

2) Password Update: Follow instructions to generate and
update passwords using our password manager, includ-
ing steps to activate and use the manager.

3) Login Using Our Password Manager: Log in using
our password manager, repeating the login process three
times for each service.

4) Post-test Questionnaire: Watch a short video about our
password manager’s potential threats, then complete a
questionnaire.

F. Post-Test

We utilized the following measures to understand
participants’ perceptions of LastPass and our password man-
ager and to answer the study questions.

Tasks Easiness and Satisfaction Scores: Participants rated
their agreement with statements related to the easiness of tasks
and their satisfaction with the authentication method on a
Likert-type scale (1 = “strongly disagree” to 5 = “strongly
agree”). The statements included:

leftmirgin=*

1) Installation and configuration: Ease and satisfaction
with installing and configuring LastPass/our password
manager.

2) Password update: Ease and satisfaction with updating
passwords using LastPass/our password manager.

3) Login: Ease and satisfaction with logging into accounts
using LastPass/our password manager.

System Usability Scale (SUS): Usability was measured using
the 10-item System Usability Scale (SUS) developed by
Brooke [43], with scores ranging from 0 to 100, where higher
scores indicate better usability.

System Specific Questions: Participants rated their agree-
ment with statements about satisfaction, trust, perceived
security, and willingness to use the system on a scale from
1 to 5. Questions were grouped into two categories: system
security & privacy and portability.

• Perception of security & privacy:

• Concern about LastPass/our password manager col-
lecting too much information.

• Belief that passwords are safe from LastPass/our
password manager itself.

• Concern about LastPass/our password manager leak-
ing passwords to another party.

• Feeling that passwords are more secure using Last-
Pass/our password manager.

• Portability: Confidence in logging in from multiple
computers being convenient with LastPass/our password
manager.

Qualitative Feedback: Participants reported any technical
problems and provided open-ended feedback on their opinions,
suggestions, and willingness to use LastPass/our password
manager in the future.

Statistical Analysis: We used the Wilcoxon Signed-Rank
Test (WSRT) with a 95% confidence level to measure dif-
ferences in means between groups (e.g., usability, security).
Bonferroni correction was applied for multiple comparisons.
The effect size of WSRT was calculated as r = Z/

√
N, where

Z is the z-statistic value and N is the number of observations.

Authorized licensed use limited to: Texas A M University. Downloaded on January 28,2026 at 19:42:17 UTC from IEEE Xplore. Restrictions apply.

7464 IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY, VOL. 20, 2025

VI. USER STUDY RESULTS AND ANALYSIS

This section presents the findings from our remote user
study, which compared user perceptions of usability, secu-
rity, and overall acceptance between our cloud-based pass-
word manager and LastPass. Although our system supports
advanced features such as multi-device usage and fallback
mechanisms for untrusted devices, these capabilities were
not directly evaluated in this study. Instead, we focused
on common everyday tasks-installation, configuration, pass-
word updates, and logins-to gather insights into the core
usability and perceived security of both password man-
agers. Participants were recruited via social networks through
word-of-mouth. We first present demographic and technical
background information from the pre-test results. We then
discuss user perceptions of ease of use, satisfaction, and secu-
rity from the post-test questionnaire, followed by statistical
analysis of the collected data.

Our broader survey suggests that mainstream password
managers–1Password, Bitwarden, and LastPass-share similar
workflows based on a “master password + autofill” approach.
Existing literature confirms that these products mainly differ
in interface design and certain advanced features, such as
1Password’s Secret Key or Bitwarden’s open-source ecosys-
tem, rather than in fundamental usage steps [33], [44].
Munyendo et al. [44] noted that 19 of 22 LastPass users
who switched to Bitwarden cited trust and simplicity concerns,
despite minimal differences in actual usage patterns. Thus, our
user testing, while limited specifically to LastPass versus our
password manager, likely yields insights that generalize well
to other mainstream password managers.

Another notable factor is that negative security incidents
can overshadow otherwise user-friendly designs. The 2022
LastPass breach significantly affected users’ security per-
ceptions and consequently their perceived ease of use, as
reported by Security.org [45]. Similarly, participants in our
study emphasized “trust in the product” as equally crit-
ical to usability, echoing findings from Munyendo et al.
[44], where users shifted from LastPass to Bitwarden pri-
marily for enhanced transparency and security. Hence, even
though everyday usability tasks remain comparable, security
controversies profoundly shape users’ perceptions and their
willingness to adopt or continue using a password manager.

A. Pre-Test Results

1) Demographics: The study involved 20 participants dis-
tributed across three age groups: 18—24 years (5%), 25—34
years (75%), and 35—44 years (20%). The participants were
equally divided between undergraduate and graduate students,
representing diverse educational backgrounds such as educa-
tion, engineering, healthcare, and science. 25% were female
and 75% male. Regarding education level, 30% were pursuing
or had completed a Bachelor’s degree, 55% a Master’s degree,
and 15% a Doctoral degree.

2) Technical Background and Password Management Expe-
rience: Participants rated their computer proficiency as Fair
(25%), Good (45%), or Excellent (30%). Similar ratings were

observed for general computer security skills: Fair (30%),
Good (45%), and Excellent (25%).

When choosing passwords, 15% preferred easy-to-
remember options, 45% chose passwords difficult for others
to guess, 10% selected strong randomized passwords, and
30% reused similar passwords across accounts. When
creating passwords for new accounts, 45% reused existing
passwords, 40% modified existing ones, 10% created entirely
new passwords, and only 5% utilized a password manager-
generated password. While 85% reported no known password
leaks or theft, 15% had experienced compromised passwords.

Among participants, 55% had experience with password
managers, with 45.5% using them daily, 45.5% occasion-
ally, and 9.1% rarely. Password manager types were evenly
used: browser-based (36.4%), device-based (36.4%), and
online/cloud-based (36.4%), with overlaps between these
categories.

Password managers were commonly used for email (90.9%),
social media (81.8%), work (63.6%), and banking services
(45.5%), often with multiple services simultaneously. Rea-
sons cited for using password managers included convenience
(54.5%), enhanced security (36.4%), and personal preference
(9.1%). Interestingly, 72.7% had not used built-in password
generators, while 27.3% used them, predominantly for social
media (100%), email (66.7%), and work (33.3%).

B. Post-Test Results

The post-test questionnaire results are summarized in
Table III and detailed below.

1) Usability: Easiness and Satisfaction: Participants rated
ease and satisfaction for installation/configuration, password
updates, and login tasks.

Installation and Configuration:
• Easiness: LastPass: 4.15 (0.65), our password manager:

3.95 (0.97)
• Satisfaction: LastPass: 4 (0.77), our password manager:

3.95 (0.97)
• Slightly higher ease and satisfaction scores for LastPass

reflect its streamlined installation process, though differ-
ences were not statistically significant.

Password Update:
• Easiness: LastPass: 3.85 (0.96), our password manager:

3.55 (0.97)
• Satisfaction: LastPass: 3.6 (0.97), our password manager:

3.85 (0.91)
• Differences were minor and statistically insignificant.
Password Login:
• Ease: LastPass: 4.25 (0.7), our password manager: 3.35

(0.91); significant difference (p = 0.003, r = 0.46).
• Satisfaction: LastPass: 3.6 (0.87), our password manager:

3.5 (0.81); no significant difference.
• LastPass was notably easier for logging in due to its

simpler workflow.
System Usability Scale (SUS): SUS scores were compa-
rable (LastPass: 61.25, our password manager: 58), both
indicating “OK” usability according to established benchmarks

Authorized licensed use limited to: Texas A M University. Downloaded on January 28,2026 at 19:42:17 UTC from IEEE Xplore. Restrictions apply.

JUBUR et al.: BUILDING AND TESTING A HIDDEN-PASSWORD ONLINE PASSWORD MANAGER 7465

TABLE III
OVERVIEW OF POST-STUDY QUESTIONNAIRE SCORES

TABLE IV

TECHNICAL PROBLEMS WITH THE PASSWORD MANAGERS

(Bangor et al. [46], Lewis et al. [47]). Differences were not
statistically significant (WSRT, p = 0432).

2) Security & Privacy: Privacy: Participants significantly
preferred our password manager regarding concerns about
information collection (LastPass: 3.65, our password manager:
1.75; p < 0.0001, r = 0.58) and password leakage (LastPass:
3.8, our password manager: 1.85; p < 0.0001, r = 0.58).

Security: Participants rated our password manager signif-
icantly higher for password safety from the manager itself
(our password manager: 4.2, LastPass: 2.15; p < 0.0001,
r = 0.60), general password security (our password manager:
4.25, LastPass: 2.85; p = 0.001, r = 0.55), and generating
strong randomized passwords (our password manager: 4.45,
LastPass: 4.05; p = 0.021, r = 0.37).

3) Portability: Participants felt slightly more confident in
their ability to conveniently log in from multiple computers
using our password manager (3.75) compared to LastPass
(3.45), though this difference was not statistically significant.

4) Quantitative Results: Technical problems: Participants
rated technical issues encountered during the tasks on a scale
from “No problems” (1) to “Many problems” (4). On average,
participants faced significantly fewer technical problems with
our password manager (1.5; SD = 0.59) compared to LastPass
(2.1; SD = 0.3), according to the Wilcoxon Signed-Rank Test
(p = 0.003, r = 0.47). Table IV summarizes the frequency of
reported technical problems.

Many participants specifically reported compatibility issues
between LastPass and Dropbox during password updates,
exemplified by comments such as:

• “While using a password with required master password
and I am changing the password, I find that LastPass
saves the different password than what I chose to be a
password which leads to reset the password again.”

• “Could not update the generated password for Dropbox
automatically. I needed to update manually.”

• “Password generate/fill didn’t work in Dropbox. Had to
manually copy and paste.”

Participants also experienced specific issues with our pass-
word manager, primarily related to longer response times and
unfamiliar interfaces:

• “Take a longer time to compute the password.”
• “The response from the server is taking too long, and I

think the program is amazing and just needs some UI
enhancements to eliminate any technical issues.”

• “Sometimes our password manager had trouble starting
up or connecting to the socket after pressing F2. After a
couple tries, the connection was successful.”

• “Unorganized page “console”.”

Some connection delays with our password manager were
traced to an external incident involving OVHcloud, affecting
numerous online services [48].

Disadvantages of the password managers: Participants
highlighted key disadvantages summarized in Table V. Last-
Pass was primarily criticized for security concerns due to past
breaches and vulnerabilities stemming from centralized cloud
storage. In contrast, our password manager was perceived as
less user-friendly due to additional complexity and cognitive
effort required during use.

Willingness to (not) use the password managers: When
asked about their willingness to adopt the password man-
agers, 55% indicated a preference for our password manager,
compared to 40% for LastPass. Participants who preferred
LastPass highlighted ease of use, primarily for social media.
In contrast, participants preferring our password manager cited
higher perceived security, expressing willingness to use it for
sensitive accounts such as banking and work-related services.
Approximately 25% expressed reluctance toward using pass-
word managers altogether, citing general distrust in password
manager technology.

Open-ended Question: At the study’s conclusion, partici-
pants provided additional comments:

• “It’s a nice experience, and useful tools will be in place.”
• “I believe that our password manager is more secure.”
• “I learned new things.”

Authorized licensed use limited to: Texas A M University. Downloaded on January 28,2026 at 19:42:17 UTC from IEEE Xplore. Restrictions apply.

7466 IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY, VOL. 20, 2025

TABLE V

DISADVANTAGES OF THE PASSWORD MANAGERS

• “our password manager looks promising and I would like
to try it.”

C. Defense Mechanisms Against Phishing and Online/Offline
Attacks

Beyond usability metrics, password managers must address
threats such as phishing, online/offline password guessing, and
accidental credential leaks. Table VI summarizes how our
password manager, 1Password, Bitwarden, and LastPass each
tackle: noitemsep,leftmirgin=*

1) Phishing prevention (domain checking vs. domain bind-
ing),

2) Online/offline attack resilience (rate-limiting, crypto-
graphic hardness),

3) Additional secrets or ephemeral usage for untrusted
devices.

a) Phishing Attacks: Our password manager explicitly
binds the derived password rwd to the legitimate domain,
ensuring a phishing site yields mismatched credentials. 1Pass-
word prompts users to confirm domain correctness before
autofilling [49], while Bitwarden enforces domain matching
but can allow user overrides [35]. LastPass also checks
domain matching and autofill prompts; historically it allowed
broader user overrides, but it has tightened these checks after
reported phishing and autofill concerns. Research suggests
forced domain binding is more robust at preventing credential
reuse on malicious sites [32], [33].

b) Online Vs. Offline Password Attacks: All four managers-
our password manager, 1Password, Bitwarden, and LastPass-
employ zero-knowledge encryption so that an offline dictionary
attack typically requires compromising both the manager’s
server (M) and the user’s data at S. In our password man-
ager, the DE-PAKE-based OPRF [17] (plus UT) helps resist
brute-force guessing. 1Password relies on a mandatory Secret
Key in addition to a master password, Bitwarden uses high
PBKDF2 (or Argon2) iteration counts [50], and LastPass
employs PBKDF2 with varying iteration levels (older accounts
may have lower defaults if not updated). For online attacks,
our password manager features rate-limiting and REA alerts,
1Password and Bitwarden use 2FA/lockouts, and LastPass also
supports 2FA plus lockouts after multiple failed attempts.

c) Separation of Secrets and Untrusted Devices: 1Pass-
word splits the master password from a Secret Key, while
Bitwarden usually relies on a single master password. Our
protocol likewise separates pwd from an UT. For ephemeral
usage (e.g., on a public PC), our password manager stores
only minimal data locally. When needed, the user re-enters

their UT–which they alone know-into the untrusted device
for that session, discarding it upon logout. Bitwarden offers
local caching for offline use but lacks a second secret by
default, and 1Password’s Secret Key must be re-entered on
each new device [45]. LastPass, for its part, has no built-
in second secret beyond the master password, though 2FA
is optional. Ephemeral sessions in LastPass rely on simply
logging in/out without permanently storing the vault, but no
additional fallback or UT-like token is enforced.

D. Key Insights and Discussion

In our user study, participants carried out typical tasks
related to password management (installation, configuration,
password creation/updates, and logins), using a single device
environment. Although our system supports multi-device
usage and a fallback mechanism for untrusted devices, these
features were not formally tested here. Consequently, the
following insights primarily concern everyday, single-device
workflows.
• Usability vs. Security Trade-off: Participants found

LastPass marginally easier overall, but perceived our
password manager as more secure (Tables III, VI). In
particular, domain binding and the optional UT gave our
password manager an edge in anti-phishing and offline-
attack mitigation. Yet some users found UT slightly
cumbersome, echoing the learning curve in 1Password’s
Secret Key model.

• Privacy and Trust: Many participants expressed greater
confidence in our password manager for data collection
and leak risks. By design, our password manager does
not store or learn master passwords, which contributed to
fewer privacy concerns. This correlates with findings that
last year’s breach impacted LastPass’s trust perception
[45].

• Technical Challenges: LastPass faced more site-specific
conflicts (e.g., Dropbox), whereas our password manager
required a certain level of technical familiarity (browser
developer tools, server connections). In the broader
ecosystem, 1Password and Bitwarden also encounter
occasional autofill failures, per references [32], [35]. No
one solution is universally frictionless.

• Willingness to Adopt: A notable segment indicated they
would adopt our password manager for critical accounts
(banking/work), citing its unique combination of OPRF,
domain binding, and optional two-secret design. They
found LastPass more convenient for simple tasks (social
media), aligning with user transitions from LastPass to

Authorized licensed use limited to: Texas A M University. Downloaded on January 28,2026 at 19:42:17 UTC from IEEE Xplore. Restrictions apply.

JUBUR et al.: BUILDING AND TESTING A HIDDEN-PASSWORD ONLINE PASSWORD MANAGER 7467

TABLE VI

COMPARISON OF DEFENSE MECHANISMS IN OUR PASSWORD MANAGER, 1PASSWORD, BITWARDEN, AND LASTPASS

other managers due to trust or advanced security prefer-
ences [44].

• Limitations (Sample Size and Single Device): Our
study involved 20 participants operating in a single-device
setup. While these findings highlight important usability
and security observations, the limited sample size and
device context may affect generalizability. Future work
will include larger, more diverse participant pools, formal
evaluations of multi-device usage, and fallback testing for
untrusted device scenarios.

Concise Capability Summary. Our comparative analysis
(Table VI) and user study identified three distinct advantages
of HIPPO (our password manager) over mainstream password
managers (LastPass, Bitwarden, 1Password):

1) Zero server-side storage: No server-side storage or
reconstruction capability for master or derived pass-
words, yielding breaches harmless in terms of credential
exposure.

2) Per-domain, high-entropy credentials: Each login cre-
dential (rwd) is dynamically generated from the user’s
master password and optionally UT, strictly bound to
the legitimate domain, effectively preventing phishing,
reuse, and credential autofill attacks.

3) Enhanced security without compromising usability:
The optional second secret (UT), combined with robust
rate-limiting, significantly increases defense against
both offline and online attacks compared to standard
PBKDF2/Argon2 mechanisms. Crucially, our password
manager’s SUS score (58) aligns closely with commer-
cial offerings (61), demonstrating minimal impact on
user convenience.

Cloud-Based Architecture and Fallback Mechanism. Although
we designed our password manager to support multi-device
usage and a fallback/recovery feature (e.g., a one-time secure
code for re-establishing trust on an untrusted device), these
capabilities were not actively tested in this study. Further
investigations are planned to determine how users respond to
advanced recovery workflows and whether multi-device syn-
chronization and temporary usage affect their overall security
perceptions.

Passkeys and WebAuthn. As passwordless methods gain
momentum-particularly passkeys aligned with WebAuthn-
some accounts may eventually forgo traditional passwords
entirely. However, not all services currently support such pro-
tocols. For the foreseeable future, many users will continue to

rely on passwords for at least a subset of their online accounts.
A robust password manager thus remains relevant and can
potentially integrate with passkey-based solutions, combining
the benefits of emerging passwordless authentication with our
password manager’s security guarantees.

Overall, these findings reveal how participants navigate
usability and security trade-offs when choosing a password
manager, and how trust, privacy, and technical compatibility
influence their decisions. By expanding future studies to
include larger sample sizes, multiple devices, fallback testing,
and integration with passkeys, we aim to further validate and
refine our system’s architecture under more varied real-world
conditions.

VII. CONCLUSION

We introduced a cloud-based password manager that
enforces the use of a unique and high-entropy password for
each web service constructed as a pseudo-random function of
a key stored on the password manager and a user-memorable
master password. Our password manager does not learn or
store the master password and/or the web account password,
but rather, it generates the high-entropy account password on
the fly once the master password is entered into the client
machine. In no case does the manager learn the master or
account passwords even while processing these values. We
built a robust implementation of the system and measured the
performance of this implementation, which shows the underly-
ing protocol incurs minimal overhead. To assess the usability
and security of our solution from the user’s perspective, we
conducted a remote user study. In this study, participants
used our cloud-based password manager to authenticate to
various web services and provided their feedback. The results
showed that participants had fewer privacy concerns about our
system and perceived it as more secure compared to LastPass.
These findings indicate that our password manager offers a
user-friendly and secure solution for managing passwords.
It addresses privacy concerns and provides a higher level
of security compared to traditional password management
methods. The positive user feedback and perceived trust in the
system validate the effectiveness of our approach in improving
password management and security.

REFERENCES

[1] F. Tari, A. A. Ozok, and S. H. Holden, “A comparison of perceived
and real shoulder-surfing risks between alphanumeric and graphical
passwords,” in Proc. 2nd Symp. Usable Privacy Secur., 2006, pp. 1–56.

Authorized licensed use limited to: Texas A M University. Downloaded on January 28,2026 at 19:42:17 UTC from IEEE Xplore. Restrictions apply.

7468 IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY, VOL. 20, 2025

[2] J. Bonneau, “The science of guessing: Analyzing an anonymized corpus
of 70 million passwords,” in Proc. IEEE Symp. Secur. Privacy, May
2012, pp. 538–552.

[3] A. Narayanan and V. Shmatikov, “Fast dictionary attacks on passwords
using time-space tradeoff,” in Proc. 12th ACM Conf. Comput. Commun.
Secur., Nov. 2005, pp. 364–372.

[4] Reuters.(2017). Yahoo Says All Three Billion Accounts Hacked in 2013
Data Theft. Accessed: Dec. 31, 2024. [Online]. Available: https://reut.rs/
2UqGoZ4

[5] (2014). The Ebay Breach Explained. Accessed: Dec. 31, 2024. [Online].
Available: https://bit.ly/3cQpkSJ

[6] The Equifax Data Breach. Accessed: Jun. 28, 2025. [Online]. Available:
https://www.epic.org/privacy/data-breach/equifax/

[7] L. Constantin. (2015). Researcher Says Adult Friend Finder Vulnerable
to File Inclusion Vulnerabilities. Accessed: Dec. 31, 2024. [Online].
Available: https://shorturl.at/yYDlK

[8] (2017). Hackers Are Using Uber’s 57 Million Account Data Breach
to Steal Passwords. Accessed: Dec. 31, 2024. [Online]. Available:
https://www.thedailybeast.com/hackers-are-using-ubers-57-million-
account-data-breach-to-steal-passwords

[9] Dashlane Password Manager. Accessed: Jun. 28, 2025. [Online]. Avail-
able: https://www.dashlane.com/

[10] LastPass Remembers All Your Passwords Across Every Device for Free!.
Accessed: Jun. 28, 2025. [Online]. Available: https://lastpass.com/

[11] 1Password: Simple, Convenient Security. Accessed: Jun. 28, 2025.
[Online]. Available: https://1password.com/

[12] (2021). 9 Popular Password Manager Apps Found Leaking Your Secrets.
Accessed: Dec. 31, 2024. [Online]. Available: https://bit.ly/3h46lXX

[13] Password Manager Onelogin Hacked, Exposing Sensitive Customer
Data. Accessed: Jun. 28, 2025. [Online]. Available: https://zd.net/
3dKKlPJ

[14] Z. Li, W. He, D. Akhawe, and D. Song, “The emperor’s new password
manager: Security analysis of web-based password managers,” in Proc.
23rd USENIX Secur. Symp. (USENIX Secur.), 2014, pp. 465–479.

[15] L. Whitney. (2011). Lastpass Ceo Reveals Details on Security Breach.
Accessed: Apr. 30, 2025. [Online]. Available: https://cnet.co/2ANDkz5

[16] What Happened When The DEA Demanded Passwords From
LastPass. Accessed: Feb. 18, 2020. [Online]. Available: https://
www.forbes.com/sites/thomasbrewster/2019/04/10/what-happened-
when-the-dea-demanded-passwords-from-lastpass/?sh=22c9f61f7ebe

[17] S. Jarecki, H. Krawczyk, M. Shirvanian, and N. Saxena, “Device-
enhanced password protocols with optimal online-offline protection,”
in Proc. 11th ACM Asia Conf. Comput. Commun. Secur., May 2016,
pp. 177–188.

[18] P. Liu, J. Blocki, and W. Bai, “Confident Monte Carlo: Rigorous analysis
of guessing curves for probabilistic password models,” in Proc. IEEE
Symp. Secur. Privacy (SP), May 2023, pp. 626–644. [Online]. Available:
https://ieeexplore.ieee.org/document/10179365

[19] D. Wang, Y. Zou, Z. Zhang, and K. Xiu, “Password guessing
using random forest,” in Proc. 32nd USENIX Secur. Symp., 2023,
pp. 965–982. [Online]. Available: https://www.usenix.org/conference/
usenixsecurity23/presentation/wang-ding-password-guessing

[20] D. Wang, H. Cheng, P. Wang, X. Huang, and G. Jian, “Zipf’s
law in passwords,” IEEE Trans. Inf. Forensics Security, vol. 12,
no. 11, pp. 2776–2791, Nov. 2017. [Online]. Available: https://
ieeexplore.ieee.org/document/7961978

[21] B. B. Ross, C. Jackson, N. Miyake, D. Boneh, and J. C. Mitchell,
“Stronger password authentication using browser extensions,” in Proc.
USENIX Secur. Symp., Jul. 2005, pp. 1–2.

[22] J. A. Halderman, B. Waters, and E. W. Felten, “A convenient method
for securely managing passwords,” in Proc. 14th Int. Conf. World Wide
Web, 2005, pp. 471–479.

[23] K.-P. Yee and K. Sitaker, “Passpet: Convenient password management
and phishing protection,” in Proc. 2nd Symp. Usable Privacy Secur.,
2006, p. 32.

[24] M. Shirvanian, S. Jareckiy, H. Krawczykz, and N. Saxena, “SPHINX:
A password store that perfectly hides passwords from itself,” in Proc.
IEEE 37th Int. Conf. Distrib. Comput. Syst. (ICDCS), Jun. 2017,
pp. 1094–1104.

[25] A. Hetler. (2024). Passkey Vs. Password: What is the
Difference?. Accessed: Dec. 31, 2024. [Online]. Available:
https://www.techtarget.com/whatis/feature/Passkey-vs-password-What-
is-the-difference

[26] I. LogMeIn. (2021). What Makes Lastpass Secure?. Accessed: Apr. 20,
2021. [Online]. Available: https://support.logmeininc.com/lastpass/help/
what-makes-lastpass-secure-lp070015

[27] K. Toubba. (2022). Notice of Recent Security Incident: The Last-
pass Blog. Accessed: Dec. 31, 2024. [Online]. Available: https://
blog.lastpass.com/2022/12/notice-of-recent-security-incident/

[28] L. Abrams. (2023). Lastpass Breach Linked to Theft of $4.4
Million in Crypto. Accessed: Dec. 31, 2024. [Online]. Avail-
able: https://www.bleepingcomputer.com/news/security/lastpass-breach-
linked-to-theft-of-44-million-in-crypto/

[29] S. Jarecki, H. Krawczyk, M. Shirvanian, and N. Saxena, “Two-
factor authentication with end-to-end password security,” in
Proc. Int. Conf. Pract. Theory Public Key Cryptogr., Jan. 2018,
pp. 431–461.

[30] (Jan. 2021). Top Websites in the us by Traffic. [Online]. Available: https://
www.semrush.com/blog/most-visited-websitesJ

[31] D. J. Bernstein, M. Hamburg, A. Krasnova, and T. Lange, “Elligator:
Elliptic-curve points indistinguishable from uniform random strings,” in
Proc. ACM SIGSAC Conf. Comput. Commun. Sec., 2013, pp. 967–980.

[32] S. Seiler-Hwang, P. Arias-Cabarcos, A. Marı́n, F. Almenares, D. Dı́az-
Sánchez, and C. Becker, “I don’t see why I would ever want
to use it,”: Analyzing the usability of popular smartphone pass-
word managers,” in Proc. ACM Conf. Comput. Commun. Secur.
(CCS), 2019, pp. 300–312. [Online]. Available: https://dl.acm.org/
doi/10.1145/3323642.3323677

[33] P. Arias-Cabarcos, A. Marı́n, D. Palacios, F. Almenárez, and D. Dı́az-
Sánchez, “Comparing password management software: Toward usable
and secure enterprise authentication,” IT Prof., vol. 18, no. 5, pp. 34–40,
Sep. 2016. [Online]. Available: https://ieeexplore.ieee.org/document/
7501652

[34] A. Hutchinson, J. Tang, A. J. Aviv, and P. Story, “Measuring the
prevalence of password manager issues using in-situ experiments,” in
Proc. USEC, 2024, pp. 1–27.

[35] S. Team. (2025). Securden 2025: Comparative Report on Password
Managers. Accessed: Feb. 24, 2025. [Online]. Available: https://
www.securden.com/blog/index.html

[36] A. Karole, N. Saxena, and N. Christin, “A comparative usability
evaluation of traditional password managers,” in Proc. Int. Conf. Inf.
Secur. Cryptol., Jan. 2011, pp. 233–251.

[37] S. Chiasson, P. C. van Oorschot, and R. Biddle, “A usability study and
critique of two password managers,” in Proc. USENIX Secur. Symp., Jul.
2006, pp. 1–16.

[38] G. Inc. (2021). How to Use Google Sites. Accessed: Apr.
10, 2021. [Online]. Available: https://support.google.com/sites/answer/
6372878?hl=en&ref topic=7184580

[39] Google Inc.(2021). Create Beautiful Forms: Free Online Surveys for
Personal and Professional Use. Accessed: Dec. 31, 2024. [Online].
Available: https://www.google.com/forms/about/

[40] Z. V. C. Inc. (2021). Zoom Video Communications. Accessed: Apr. 13,
2021. [Online]. Available: https://zoom.us/

[41] TeamViewer.(2021). Remote Access & Support. Accessed: Apr. 13, 2021.
[Online]. Available: https://www.teamviewer.com/en-us/

[42] Skype—P2P VoIP. Accessed: Apr. 13, 2021. [Online]. Available: http://
www.skype.com/

[43] J. Brooke, “SUS-A quick and dirty usability scale,” Usability Eval. Ind.,
vol. 189, no. 194, pp. 4–7, 1996.

[44] C. W. Munyendo, P. Mayer, and A. J. Aviv, “‘I just stopped using one
and started using the other’: Motivations, techniques, and challenges
when switching password managers,” in Proc. ACM SIGSAC Conf.
Comput. Commun. Secur. (CCS), 2023, pp. 3123–3137, doi: 10.1145/
3576915.3623150.

[45] B. Cruz. (2024). Security.org 2024 Password Manager Industry Report.
Accessed: Feb. 24, 2025. [Online]. Available: https://www.security.org/
digital-safety/password-manager-annual-report/

[46] A. Bangor, P. Kortum, and J. Miller, “Determining what individual SUS
scores mean: Adding an adjective rating scale,” J. Usability Stud., vol. 4,
no. 3, pp. 114–123, 2009.

[47] J. R. Lewis, “The system usability scale: Past, present, and
future,” Int. J. Hum.-Comput. Interact., vol. 34, no. 7, pp. 577–590,
Jul. 2018.

[48] M. Rosemain and R. Satter. (2021). Millions of Websites Offline After
Fire at French Cloud Services Firm. Accessed: Apr. 29, 2021. [Online].
Available: https://shorturl.at/dvyQ1

[49] K. Kim. (2024). 1Password Vs. Bitwarden: 2024
Review. Accessed: Feb. 24, 2025. [Online]. Available:
https://me.pcmag.com/en/password-managers/23767/1password-vs-
bitwarden-which-password-manager-should-you-choose

[50] L. Millares. (2025). Bitwarden Vs. 1Password: Key Comparisons.
Accessed: Feb. 24, 2025. [Online]. Available: https://
www.techrepublic.com/article/bitwarden-vs-1password/

Authorized licensed use limited to: Texas A M University. Downloaded on January 28,2026 at 19:42:17 UTC from IEEE Xplore. Restrictions apply.

http://dx.doi.org/10.1145/3576915.3623150
http://dx.doi.org/10.1145/3576915.3623150

