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Polyploidy, or whole-genome duplication (WGD), is a significant evolutionary
force. Following allopolyploidy, duplicate gene copies (homeologs) have
divergent evolutionary trajectories: some genes are preferentially retained in
duplicate, while others tend to revert to single-copy status. Examining the effect
of homeolog loss (i.e., changes in gene dosage) on associated phenotypes is
essential for unraveling the genetic mechanisms underlying polyploid genome
evolution. However, homeolog-specific editing has been demonstrated in only a
few crop species and remains unexplored beyond agricultural applications.
Tragopogon (Asteraceae) includes an evolutionary model system for studying
the immediate consequences of polyploidy in nature. In this study, we developed
a CRISPR-mediated homeolog-specific editing platform in allotetraploid T. mirus.
Using the MYB10 and DFR genes as examples, we successfully knocked out the
targeted homeolog in T. mirus (4x) without editing the other homeolog (i.e., no
off-target events). The editing efficiencies, defined as the percentage of plants
with at least one allele of the targeted homeolog modified, were 35.7% and 45.5%
for MYB10 and DFR, respectively. Biallelic modification of the targeted homeolog
occurred in the Ty generation. These results demonstrate the robustness of
homeolog-specific editing in polyploid Tragopogon, laying the foundation for
future studies of genome evolution following WGD in nature.

KEYWORDS
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1 Introduction

Polyploidy, also known as whole-genome duplication (WGD), is a major evolutionary
force in plants (Soltis et al., 2015; Van de Peer et al., 2021; Morris et al., 2024). WGDs
generate genetic, phenotypic, and metabolic diversity and are associated with increased
evolvability and diversification (Wendel, 2015; Soltis and Soltis, 2016; Landis et al., 2018;
Doyle and Coate, 2019; Fox et al., 2020; Van de Peer et al.,, 2021; Morris et al., 2024). All
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living angiosperms are of ancient polyploid ancestry (Jiao et al.,
2011), and 35% of extant vascular plant species may have originated
via polyploidy (Wood et al., 2009). In addition, most crops are
polyploids (Renny-Byfield and Wendel, 2014), and polyploidy plays
an important role in plant breeding (Udall and Wendel, 2006; Sattler
et al, 2016). Therefore, a better understanding of polyploid genome
function and evolution is essential for both comprehending plant
diversity and facilitating crop improvement.

In newly formed allopolyploids (those that arose through
hybridization of closely related species and associated genome
doubling), there are duplicate gene copies (homeologs) with
redundant or overlapping expression and function. Over time,
these duplicates experience various fates, ranging from retention
of both copies with original function to homeolog divergence to loss
of one copy via fractionation (Papp et al., 2003; Freeling et al., 2012;
Tang et al., 2012; De Smet et al., 2013; Wendel et al., 2018). Some
genes are consistently conserved as singletons, implying their single-
copy status is advantageous and favored by selection (Paterson et al.,
2006; De Smet et al.,, 2013; Li et al,, 2016). In addition, following
WGD, genes from one parent may be more highly retained than
those from the other (ie., subgenomic dominance) (Chaudhary
et al,, 2009; Evangelisti and Conant, 2010; Wendel et al., 2012).

For many other genes, duplicate copies are preserved following
WGD, a phenomenon that may be explained by the dosage balance
hypothesis, which argues that genes encoding subunits of protein
complexes tend to be retained following polyploidy; loss of one copy
of these genes may be selected against because of the disrupted
stoichiometry of members of multi-subunit protein complexes
(Birchler and Veitia, 2007; 2012; 2021). Additionally, genes
encoding transcription factors are usually dosage-sensitive and
are more likely to be retained in duplicate following WGD: loss
of one copy of transcription factor genes may have a pleiotropic
effect on many downstream genes involved in the same pathway;
this effect would not be observed when losing one copy of genes
acting at the termini of genetic networks (Blanc and Wolfe, 2004;
Freeling et al.,, 2012; Birchler and Veitia, 2021).

Despite these observed gene retention patterns, the mechanisms
underlying these patterns remain elusive, and the phenotypic
consequences of changes in gene dosage are still largely unknown.
This is primarily due to: 1) the lack of a homeolog-specific editing
system for manipulating gene dosage across polyploid plants, except in a
few crop species, including hexaploid wheat (Triticum aestivum)
(Zhang et al, 2016; Liang et al, 2017) and tetraploid cotton
(Gossypium  hirsutum) (Chen et al, 2025; Yu et al, 2025); and 2)
the absence of functional studies in organisms that best exemplify the
earliest phases of WGD, especially species from natural systems. A
deeper insight into gene fate following recent WGD is critical for
understanding the genetic basis of the success of polyploids.

The diploid-polyploid system in North American Tragopogon
(Asteraceae) represents an evolutionary model for studying the
immediate consequences of polyploidy (Ownbey, 1950; Soltis et al.,
2004; 2012). The naturally occurring allotetraploids Tragopogon
miscellus and T. mirus formed in the last 95-100 years. The diploid
parents of T. miscellus are T. dubius and T. pratensis, and those of T.
mirus are T. dubius and T. porrifolius. Previous studies have
demonstrated that novel arrays of karyotypes, gene content and
expression, and epigenetic regulation were generated in these newly
formed Tragopogon polyploids (Tate et al., 2009; Buggs et al., 2011;
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Chester et al., 2012; Spoelhof et al., 2017; Shan et al., 2020; 2024; Yoo
et al, 2024). In addition, an efficient CRISPR/Cas9-mediated gene
editing system has been recently developed in T. porrifolius (2x) and T.
mirus (4x), allowing simultaneous editing of both alleles in diploid
Tragopogon and all four alleles in allotetraploid Tragopogon (Shan et al,,
2018; Shan et al,, 2025).

In this study, we developed a homeolog-specific editing system
using MYBIO and DFR
(dihydroflavonol 4-reductase) genes as examples. Both genes are

in allotetraploid  Tragopogon

involved in the well-characterized anthocyanin biosynthesis
pathway (Elomaa et al, 2023). This represents the first such
system established in a non-model polyploid plant. Our work
provides the foundation for future investigations into gene
retention patterns following polyploidy, with broad implications
for both agricultural applications and evolutionary biology.

2 Materials and methods

2.1 Tragopogon material and seed
germination

The allotetraploid T. mirus individual used in this study was
grown from seed collected from a natural population in Pullman,
WA, United States (Soltis and Soltis collection ID: 3091-3). Seed
sterilization and germination followed the protocols described in
Shan et al. (2018).

2.2 ldentification of candidate genes in
Tragopogon

The DER genes in diploid Tragopogon species were identified in
Shan et al. (2025). The process of identifying MYB10, an R2R3 MYB
transcription factor gene, is described below. All T. dubius
R2R3 MYB genes were identified using the Gerbera hybrida
(Asteraceae) R2R3 domain (accession no. CADS87010; Elomaa
et al, 2023) as the query in a BLASTP search (e-value = le-10)
against the T. dubius annotated protein sequences (Spoelhof et al., in
prep.). Sequences from Tragopogon and 17 additional R2R3 MYB
gene sequences from model species,
lycopersicum, Mimulus lewisii, G. hybrida, and Vitis vinifera (Lin-
wang et al., 2010; Yuan et al.,, 2014; Naing and Kim, 2018), were
aligned using MAFFT (v.7.520; Katoh and Standley, 2013). A
maximum likelihood tree was constructed using IQ-TREE
(v.2.2.2.7; Minh et al, 2020), and the resulting phylogeny
included a clade containing the Gerbera MYBIO gene and its T.
dubius orthologs. Six R2R3 MYB genes were identified in T. dubius.
Using the same approach, four R2R3 MYB genes were found in T.

including  Solanum

porrifolius. Reciprocal best BLAST hits confirmed orthologous
relationships between the MYB candidates from T. dubius and T.
porrifolius. All scripts used in this step are available at: https://
github.com/GatorShan/EDGE_Project/tree/main/MYB10.
Expression profiles of T. dubius and T. porrifolius R2R3 MYB
genes were examined using leaf transcriptomes (BioProject
accession: PRINA210897; Yoo et al., 2024). The trimmed reads
from T. dubius and T. porrifolius were mapped to their respective
reference genomes using STAR (v.2.7.11b; Dobin et al,, 2013).
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Mapped reads were quantified using the featureCounts program
from the Subread package (v.2.0.6; Liao et al., 2014). Raw counts
were then converted to normalized expression values in FPKM
(fragments per kilobase of exon per million fragments mapped). In
both T. dubius and T. porrifolius, one R2R3 MYB gene exhibited
dominant expression in the leaf transcriptomes. This gene was
designated as MYBIO in both diploid species. Additionally, the
expression profiles of both MYBI10 homeologs were examined in
allotetraploid T. mirus using leaf transcriptome data from Yoo et al.
(2024): both homeologs were present and expressed in T. mirus. All
scripts used in this step are available at: https://github.com/
GatorShan/EDGE_Project/tree/main/Trag_leaf_transcriptome.

2.3 Plasmid construction

Construction of plasmids followed protocols described in Shan
et al. (2018). Oligonucleotide sequences used are listed in
Supplementary Table S1. For each candidate gene (e.g., MYBIO
and DFR), a plasmid was constructed to specifically target the T.
porrifolius homeolog.

For the plasmid targeting the T. porrifolius MYBI10 homeolog, the
cloning process started with two constructs: pPCAMBIA1300-Cas9-GFP
vector) and pENTR4-AtU6-26 (entry
Oligonucleotides  gTpoMYB10-F1 and gTpoMYB10-Rl1  were
annealed to generate the double-stranded oligo gTpoMYB10-1. A
single SNP between the two homeologs was present at this CRISPR
target site. The gTpoMYB10-1 oligo was then integrated into the entry
vector, resulting in construct pENTR4-AtU6-26-gTpoMYB10-1.

The sgRNA cassette from the entry vector was then mobilized into
the destination vector via a Gateway LR reaction (Thermo Fisher
Scientific, Waltham, MA, United States). The final plasmid was
pCAMBIA1300-Cas9-GFP-AtU6-26-gTpoMYB10-1;  its
sequence was confirmed through whole plasmid sequencing

(destination vector).

named

(performed by Plasmidsaurus using Oxford Nanopore Technology).
The final construct was introduced into Agrobacterium tumefaciens
strain EHA105 by electroporation.

For the plasmid targeting the T. porrifolius DFR homeolog, the
process of plasmid construction was the same except for the use of a
different entry vector (pENTR4-AtU6-1-AtU6-29). Oligonucleotides
gTpoDFRI1-F and gTpoDFR1-R were annealed to form gTpoDFRI;
similarly, gTpoDFR2-F and gTpoDFR2-R were annealed to generate
gTpoDFR2. The CRISPR target site for gTpoDFR1 contained five SNPs
that differed between the two homeologs, while the site for
gTpoDFR2 had one SNP. gTpoDFR1 and gTpoDFR2 were then
integrated into the entry vector following AtU6-1 and AtU6-29
promoters, respectively. The final entry vector was pENTR4-AtU6-
1-gTpoDFR1-AtU6-29-gTpoDFR2.  Following the Gateway LR
reaction, the final plasmid was named pCAMBIA1300-Cas9-GFP-
AtU6-1-gTpoDFR1-AtU6-29-gTpoDFR2.

2.4 Agrobacterium-mediated
transformation and plant regeneration
We followed the methods described in Shan et al. (2025) for

transformation and regeneration. Briefly, leaf explants from 4-8-
week-old T. mirus seedlings were placed on callus induction
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medium for 2 days. After co-cultivation with Agrobacterium
(ODgpp = 0.15-0.20), explants were transferred to co-cultivation
medium for 3 days, then moved to selective callus induction
medium. After 3 weeks, developing calli were transferred to
selective shooting medium to initiate shoot formation. After
2-3 weeks, calli with emerging shoots were moved to shoot
elongation medium. Two weeks later, elongated shoots were
gradually transferred to selective rooting medium.

All selection and regeneration steps were carried out in a tissue
culture incubator under controlled conditions (14 h light/10 h dark, 25 °C;
model CU36LA4CS, Percival Scientific, Perry, IA, United States). Rooted
shoots were then transferred to soil and grown in a growth chamber
under the same conditions (model AR-1110, Percival Scientific).

2.5 Genotyping regenerated T. mirus

To detect the presence of the transgene, a fragment of the transfer
DNA (T-DNA) was amplified using genomic DNA extracted from
regenerated T. mirus plants. For the experiment targeting the MYBI0
gene, primers gTpoMYB10-F1 and GmUDbi-R2 were used to amplify a
616-bp DNA fragment of the T-DNA (Supplementary Figure S1A).
Each PCR reaction (25 pL) contained 1 pL of genomic DNA
(25-125 ng), 1 x Green GoTaq Reaction Buffer (Promega, Madison,
WI, United States), 2.5 mM MgCl,, 200 uM dNTPs, 0.5 uM of each
primer, and 1.25 U Apex Taq DNA polymerase (Genesee Scientific, El
Cajon, CA, United States). PCR conditions were as follows: initial
denaturation at 95 °C for 3 min; 32 cycles at 95 °C for 30 s, 53 C
annealing for 30 s, and 72 °C extension for 1 min; final extension at 72
°C for 5 min; and hold at 4 °C. Plants were considered transgenic if a
band of the expected size (616 bp) was detected by gel electrophoresis.
For the experiment targeting the DFR gene, primers AtU6-F2 and
AtU6-R2 were used to amplify a 476-bp T-DNA fragment
(Supplementary Figure S1B). The PCR conditions were the same as
above, except the annealing temperature was set at 68.1 °C.

To evaluate editing results for the two candidate genes in
allopolyploid T. mirus, we genotyped each homeolog separately
(Supplementary Figures S2, S3). For the MYBIO gene, primers
TduMYBI10-F1 and TduMYB10-R1 were used to amplify the T.
dubius homeolog (amplicon size: 895 bp) (Supplementary Figure
S2A), and primers TpoMYB10-F1 and TpoMYB10-R1 were used to
amplify the T. porrifolius homeolog (amplicon size: 936 bp)
(Supplementary Figure S2B). Each 20-uL PCR reaction contained
1 pL of genomic DNA (20-100 ng), 1 x Phusion HF Buffer (New
England Biolabs, Ipswich, MA, United States), 200 uM dNTPs,
0.5 uM of each primer, and 0.4 U Phusion DNA polymerase (New
England Biolabs). PCR conditions for both primer sets were as
follows: initial denaturation at 98 °C for 30 s; 32 cycles at 98 °C for
10 s, 61 “C annealing for 30 s, and 72 °C extension for 45 s; final
extension at 72 °C for 10 min; and hold at 4 °C.

For genotyping the two homeologs of the DFR gene in T. mirus,
primers Tdu-sub_DFR_F1 and Tdu-sub_DFR_R1 were used to amplify
the T. dubius homeolog (amplicon size: 992 bp) (Supplementary Figure
S3A), and Tpo-sub_DFR_F1 and Tpo-sub_DFR_R3 were used for the
T. porrifolius homeolog (amplicon size: 1,053 bp) (Supplementary
Figure S3B). The PCR setting was identical to that used for MYBIO
genotyping, except the annealing temperature was adjusted to 61.5 °C
and the extension time was increased to 1 min.
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FIGURE 1

Homeolog-specific editing in allotetraploid Tragopogon mirus. (A) One CRISPR/Cas9 target site was located within exon 1 of MYB10, and the sgRNA
gTpoMYB10-1 was designed to specifically target the T. porrifolius homeolog in T. mirus (4x). A single SNP distinguishing the two homeologs at the target
site is highlighted in red. For DFR, two CRISPR/Cas9 target sites were selected—one in exon 2 and the other in exon 3. Two sgRNAs, gTpoDFR1 and
gTpoDFR2, were designed to specifically target the T. porrifolius homeolog. SNPs distinguishing the T. dubius and T. porrifolius homeologs at these
target sites are also highlighted in red. PAM sequences are underlined; sgRNAs are represented by blue bars, with the flat end indicating the 5’ end and the
arrowhead indicating the 3’ end. (B) Genotyping results confirmed homeolog-specific editing of the MYB10 and DFR genes in To transgenic T. mirus (4x)
plants. Both alleles from the T. dubius homeolog are shown as blue rectangles, and those from the T. porrifolius homeolog are shown in yellow. Red
crosses indicate sequence modifications. Off-target edits (i.e., modification of the untargeted T. dubius homeolog) were not detected in either
experiment; all editing events occurred in the T. porrifolius homeolog. For MYB10, 64.3% of transgenic plants showed no edits in either homeolog, while
35.7% had a monoallelic edit in the T. porrifolius homeolog. For DFR, 54.4% of plants were unedited, 36.4% had monoallelic in the T. porrifolius homeolog,
and 9.1% exhibited biallelic edits in the T. porrifolius homeolog. (C) Genotypes of representative T. mirus individuals with edits in the T. porrifolius MYB10
homeolog. The SNP distinguishing wildtype T. dubius and T. porrifolius homeologs is indicated by the red arrow. Nucleotide insertion is shown in red. (D)
Genotyping results of representative T. mirus individuals with edits in the T. porrifolius DFR homeolog. For individual DP-8, not all deleted nucleotides (nt)
in the "-21" allele are shown. "-x" denotes an x-nt deletion (e.g., 3-, 12-, or 21-nt), and “+y" indicates a y-nt insertion (e.g., 1-nt). WT: wildtype. (E)
Photographs of two T. mirus (4x) individuals (M01-4 and M01-10) with the T. porrifolius homeolog of MYB10 successfully edited.

PCR products were sent for Sanger sequencing at Eurofins
Genomics, Louisville, KY, United States. Genotypes were inferred
by manually inspecting the chromatograms, following the approach
described in Shan et al. (2018), with the assistance of the Synthego
ICE Analysis tool (v.3; https://ice.editco.bio/#/).

3 Results

3.1 Homeolog divergence for MYB10 and
DFR genes in allotetraploid
Tragopogon mirus

For MYBIO0, we identified one CRISPR target site in exon 1
(Figure 1A). There is one SNP at this site between the two
homeologs in T. mirus: A in the T. dubius homeolog and G in
the T. porrifolius homeolog. This SNP is three nucleotides (nt)
upstream of the protospacer adjacent motif (PAM) sequence
(i.e, TGG), which is present in both homeologs. Utilizing this
SNP, we designed single-guide RNA (sgRNA) gTpoMYB10-1 to
specifically target the T. porrifolius homeolog. Although the
CRISPR/Cas9 complex can bind both homeologs (as each
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contains a PAM site), the targeted T. porrifolius

homeolog-where the genomic sequence perfectly matches the

only

spacer sequence of the sgRNA-is expected to be edited.

In terms of the DFR gene, two CRISPR target sites from the T.
porrifolius homeolog were chosen: one is in exon 2, and the other in
exon 3 (Figure 1A). We designed a sgRNA, named gTpoDFRI, to
specifically target the T. porrifolius homeolog in exon 2. At this site, the
PAM sequence (TGG) was present on both homeologs. There were five
SNPs in the 21-nt protospacer region upstream of the PAM between the
two homeologs (Figure 1A). For the second target site in exon 3, CGG
PAM was only present in the targeted T. porrifolius homeolog. Another
sgRNA, named gTpoDFR2, was designed to match the sequence
upstream of PAM in the T. porrifolius homeolog. One SNP was
found between the T. porrifolius homeolog and the corresponding
region in the T. dubius homeolog (Figure 1A).

3.2 Homeolog-specific editing of MYB10 in
allotetraploid T. mirus
Of the 14 regenerated plants (with both shoot and root) of T.

mirus on selective media, all were transgenic (Supplementary Figure
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S1A). Among the 14 plants, five (35.7%) showed edits in the targeted
T. porrifolius homeolog, while none had edits in the T. dubius
homeolog (the untargeted copy) (Figures 1B,C). All five genome-
edited plants carried a monoallelic mutation, with one of the two
alleles from the T. porrifolius homeolog modified. The most
common mutation was a 12-nt deletion (i.e., —12), observed in
three T. mirus individuals: M01-4, M01-6, and MO1-12 (Figures
1C,E); all three shared the exact same 12-nt deletion. In addition,
one mutant T. mirus individual (M01-2) had 1-nt insertion (i.e., +1)
located three nucleotides upstream of PAM; individual M01-10 had
a 3-nt deletion (Figures 1C,E).

3.3 Homeolog-specific editing of DFR in
allotetraploid T. mirus

Of the 12 plants of T. mirus that we genotyped, 11 were
transgenic (Supplementary Figure S1B). Among the 11 plants,
five (45.4%) had edits in the targeted T. porrifolius homeolog,
while none showed modifications in the untargeted T. dubius
homeolog (Figure 1B). One T. mirus individual (DP-3) contained
biallelic mutation of the T. porrifolius homeolog: 3-nt deletions were
found in both alleles at the site targeted by sgRNA gTpoDFRI
(Figure 1D). In addition, four plants had monoallelic mutations at
the site targeted by gTpoDFR2: three individuals (DP-4, DP-5, and
DP-7) shared the same 1-nt insertion, and one plant (DP-8) had a
21-nt deletion (Figure 1D).

4 Discussion

Although CRISPR/Cas-mediated gene editing has been applied
in many allopolyploid plants (e.g., Braatz et al., 2017; Sdnchez-
Goémez et al., 2023; Xu et al., 2024; Zhang et al., 2025), these studies
knocked out all copies of the target gene without differentiating
between individual homeologs. Homeolog-specific editing has
only been reported in a few polyploid crop species, including
hexaploid wheat (T. aestivum) and allotetraploid cotton (G.
hirsutum), to study function of genes associated with agronomic
traits (Liang et al., 2017; Chen et al., 2025; Yu et al.,, 2025). GW2
controls grain weight in wheat. Liang et al. (2017) designed a
sgRNA that perfectly matched the GW2-BI and GW2-DI
homeologs but had a single nucleotide mismatch at the target
site in the GW2-A1 homeolog. Following biolistic delivery of the
CRISPR/Cas9 ribonucleoprotein complexes, 0%, 2.2%, and 4.4% of
the T, wheat plants showed editing events at the A, B, and D
homeologs, respectively (Liang et al., 2017). By leveraging SNPs
between the two GhMML3 homeologs, sgRNAs were designed to
specifically knock out either the A-subgenome copy (GhMML3_
A12) or the D-subgenome copy (GhMML3_D12) in G. hirsutum
(4x) (Chen et al., 2025). This study demonstrated that GAMML3_
A12 and GhMML3_D12 regulate fiber development in a dosage-
dependent manner. Yu et al. (2025) used CRISPR to edit either the
GhHDIA or the GhHDID homeolog in G. hirsutum and found
functional divergence between the two homeologs in regulating
trichome and fiber initiation.

Beyond plant systems, CRISPR-mediated allele-specific
editing in diploid species (Yoshimi et al., 2014; Smith et al,,
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2015; Hashizume et al., 2025) and homeolog-specific editing in
polyploid species (Gan et al., 2021; 2023) have been reported in
several animal models. In an allele-specific editing experiment in
the diploid laboratory rat (Rattus norvegicus), sgRNAs were
designed to target either the Tyr“ or Tyr® allele by exploiting
one SNP at the CRISPR/Cas9 target site. Editing was found only
in the targeted allele, with editing efficiencies of 30.4% and 28.6%
for the Tyr® and Tyr® alleles, respectively (Yoshimi et al., 2014).
Smith et al. (2015) showed that CRISPR/Cas9 can distinguish
between two alleles in human cells based on a single nucleotide
difference. In polyploid carp (Carassius gibelio), sgRNAs were
designed to target either the CgRunx2b-A or CgRunx2b-B
homeolog to study their respective roles in intermuscular bone
development (Gan et al., 2023).

Currently, homeolog-specific editing studies in polyploid species
employ several approaches to differentiate between homeologs.
First, the non-PAM approach takes advantage of presence/
absence variation in the PAM sequence-only the homeolog
containing the PAM site will be edited. In the current study, we
used this approach to differentiate the two DFR homeologs at the
target site in exon 3 (Figure 1A). This method has also been applied
in the study of cotton by Chen et al. (2025). The second approach
within the
immediately upstream of PAM (also known as the seed
sequence) in the sgRNA, as targeting specificity is largely
determined by this region. Studies in tetraploid cotton (Chen
et al, 2025) and hexaploid wheat (Zhang et al., 2016) have
employed this strategy. In T. mirus, a single SNP within the seed

aims to maximize mismatches 10 nucleotides

sequence successfully differentiated the T. dubius and T. porrifolius
MYBI10 homeologs (Figures 1A,B). Finally, the use of premixed
CRISPR ribonucleoprotein (RNP) has been shown to improve
homeolog editing specificity compared to expression of the
CRISPR DNA construct. In wheat, Liang et al. (2017) reported
that expression of the CRISPR/Cas9 DNA construct led to a 3.8%
editing rate in the untargeted homeolog, whereas the RNP approach
showed no off-target edits.

Despite the novelty of applying homeolog-specific gene
editing in allotetraploid cotton (G. hirsutum), neither Chen
et al. (2025) nor Yu et al. (2025) reported homeolog editing
efficiency or whether any off-target events (i.e., modification of
the untargeted homeolog) were detected. In both cases,
homozygous mutant lines were often obtained in subsequent
generations, implying monoallelic mutation (i.e., editing one of
two alleles of the target homeolog) may have been present in the
T, generation (Chen et al., 2025; Yu et al., 2025). In model crop
species such as cotton, substantial resource investment has
enabled the development of streamlined and highly efficient
gene editing platforms, where reporting metrics such as
editing efficiency and off-target rate may be considered less
critical. However, for researchers working on non-model
polyploid plants, including those of evolutionary significance,
such information is essential for guiding future genome
editing efforts.

In the present study, we demonstrated the feasibility of
performing homeolog-specific editing in a non-model plant
polyploid system. In allotetraploid Tragopogon mirus, the
homeolog-specific editing efficiencies were 35.7% and 45.5% for
MYBI10 and DFR genes, respectively (Figure 1). Biallelic mutation of

frontiersin.org


https://www.frontiersin.org/journals/genome-editing
https://www.frontiersin.org
https://doi.org/10.3389/fgeed.2025.1645542

Shan et al.

the target homeolog was detected in the T, generation, and
editing of the
untargeted homeolog. This detailed report of homeolog-specific

importantly, no transgenic plant showed
editing in T. mirus (4x) provides a valuable reference for
researchers interested in applying similar technologies to their
own species of interest.

One limitation of the current work is the relatively low
percentage of biallelic mutants in the T, generation: 0% and
9.1% for MYBIO0 and DFR, respectively (Figure 1B). In diploid T.
porrifolius (2x), the efficiency of creating DFR null mutants-where
both alleles are edited—was 100% (Shan et al., 2025). Moreover, when
using sgRNAs targeting conserved sequences shared by the T. dubius
and T. porrifolius homeologs, 71.4% of the transgenic T. mirus
showed edits in all four alleles (from both homeologs) (Shan et al.,
2025). Therefore, the relatively low efficiency of homeolog-specific
editing was unexpected.

Homeolog-specific editing efficiency in polyploid Tragopogon
can be improved through several strategies. First, incorporating
additional sgRNAs may enhance editing efficiency. Our study
showed that, compared to using one sgRNA (targeting MYBI0),
using two sgRNAs (targeting DFR) increased the editing efficiency
from 35.7% to 45.5% (Figure 1B). Future constructs could include
three or four sgRNAs to further increase the frequency of biallelic
mutants. Second, while only CRISPR/Cas9 was used here,
combining CRISPR/Cas9 and CRISPR/Casl2a systems could
broaden targeting options: Casl2a recognizes a TTTN PAM
sequence, in contrast to the NGG PAM required by Cas9 (Zhang
et al,, 2023). Additionally, Cas12a crRNA arrays are more compact
than Cas9 sgRNA arrays, allowing the incorporation of more guide
RNAs in the construct (Port et al., 2020). Third, monoallelic mutants
could serve as explants for a second round of transformation,
increasing the likelihood of obtaining biallelic mutants. Finally,
additional biallelic mutants are expected in the T, generation, as
25% of progeny from a self-fertilized monoallelic T plant should
carry biallelic mutations.

The availability of homeolog-specific editing in the evolutionary
model T. mirus (4x) now enables us to address key questions in
polyploid genome evolution and fractionation. Although the current
work does not include a systematic phenotypic analysis of T. mirus
mutants with modified DFR or MYBI0 homeologs, such analyses
will be performed in our future work. Several important questions
will be addressed, including those listed here. For genes in which
retention of both homeologs is predicted to be favored by selection
(such as genes encoding subunits of protein complexes or those that
are dosage-sensitive), what are the effects of losing one versus the
other homeolog on co-expression network and phenotype? Does the
parental copy matter in terms of resulting network and phenotypic
response? Additionally, for genes for which reversion to singleton
status is predicted to be favored by selection, both homeologs may
still be present and expressed in the early stages of polyploidy,
including 95-100-year-old T. mirus. How do the phenotypes and
transcriptomes differ between plants retaining both homeologs and
genome-edited individuals with only one homeolog? Finally, in cases
where one parental homeolog is preferentially retained or expressed
in polyploids, what are the consequences of retaining the non-
preferred copy? In summary, homeolog-specific editing opens new
avenues for investigating polyploid genome evolution, with
significant implications for both basic and applied plant science.
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