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Abstract Arctic permafrost soils store vast amounts of carbon (C)‐rich organic matter that has accumulated
due to low temperatures that suppress microbial decomposition. As Arctic warming intensifies, soil microbes
become increasingly active, even while plant growth remains dormant. Seasonal decoupling between plant and
microbial decomposer growth can accelerate carbon dioxide (CO2) release from soils, however, most Earth
system models underestimate cold‐season C emissions and do not accurately represent the freeze–thaw
transitions that govern microbial access to substrates during these critical periods. These model–data
mismatches often stem from empirical formulations, such as using a fixed Q10 functions to represent microbial
respiration, an oversimplification of a complex interplay of temperature, moisture, and substrate diffusion. To
address this, we incorporated explicit, temperature‐dependent diffusional constraints on microbial activity, (the
Dual Arrhenius Michaelis–Menten (DAMM) model), into the Stoichiometrically Coupled Acclimating
Microbe–Plant–Soil (SCAMPS) model which uses the Q10 function to represent microbial respiration. We used
this enhanced model (SCAMPS_DAMM) to simulate Arctic ecosystem responses to a 50‐year winter warming
scenario and compared outcomes to the original SCAMPS framework. While both models predicted overall soil
C losses under warming, SCAMPS_DAMM produced more constrained increases in microbial respiration and
plant productivity. These differences led to similar total ecosystem C declines but divergent patterns of C and N
allocation between plant and soil pools. Thus, incorporating mechanistic constraints on microbial access to
substrates through explicit representation of temperature and moisture controls altered model projections of
Arctic biogeochemical responses to climate change.

Plain Language Summary Arctic permafrost soils contain large stores of carbon‐rich organic
matter. These carbon reserves remain largely unavailable to soil microbes when they are frozen. However, as the
Arctic warms, this carbon becomes susceptible to microbially mediated decomposition, which can increase
greenhouse gas emissions and further exacerbate climate warming. Ecosystems are dynamically coupled with
plant, soil, and microbial decomposer interactions jointly regulating carbon and nitrogen cycling. Models that
integrate arctic plant‐soil‐microbial dynamics improve projections of how thawing permafrost soils will affect
the relative balance between carbon storage and release to the atmosphere. We used a biologically coupled
plant‐soil‐microbe model to assess how environmental drivers, such as temperature and moisture, influence
predictions of future carbon and nitrogen cycling in Arctic permafrost regions. We found that incorporating a
dynamic representation of these environmental factors led to more conservative predictions of carbon loss and
shifts in plant productivity under a winter warming climate change scenario. These findings highlight the
importance of recognizing how abiotic conditions (e.g., soil moisture availability as frozen soils thaw) are
incorporated into mechanistic models and affect projections of how permafrost‐dominated ecosystems will
respond to ongoing climate warming.

1. Introduction
The Arctic tundra is experiencing more rapid and extreme climate warming than any other biome globally
(IPCC, 2019; Rantanen et al., 2022). Arctic permafrost soils contain large stores of carbon (C)‐rich organic matter
(∼1,300 Pg C; Hugelius et al., 2014; Tarnocai et al., 2009), which have accumulated over time due to low
temperatures (<0°C) that suppress decomposition (Mikan et al., 2002; Natali et al., 2019; Schuur et al., 2009).
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Climate warming stimulates organic matter decomposition, making historically stable C and nitrogen (N) pools
biologically available to microbes and plants (Klarenberg et al., 2022), increasing nutrient mineralization and the
release of C and N to the atmosphere (Webb et al., 2016).

Arctic climate warming is most extreme during the cold season (Bruhwiler et al., 2021; Watts et al., 2024), when
microbial activity is decoupled from plant growth (Huang et al., 2017; Koenigk et al., 2013; Natali et al., 2019).
Cold‐season C emissions are a major component of the annual tundra C budget (Z. Liu et al., 2024; Natali
et al., 2019; Sommerfeld et al., 1993), with decomposition and net ecosystem C exchange highly sensitive to
temperature during this period (Arndt et al., 2023; Natali et al., 2014, 2019; Pedron et al., 2022; Sistla et al., 2014).
However, most Earth system models have yet to incorporate detailed representations of cold‐season C emissions
and transitions between frozen and thawed soil states, as highlighted by recent model–data comparisons and
model development efforts (He et al., 2014; Hugelius et al., 2024; Tao et al., 2021). These gaps reflect un-
certainties in: (a) the controls on cold‐season soil C emissions (Grogan, 2012; Wang et al., 2011), especially
during the zero‐curtain period (when latent heat maintains soil temperatures near 0°C) (Arndt et al., 2019; Outcalt
et al., 1990), and (b) how microbial activity during these periods affects plant productivity in the growing season
(Natali et al., 2012; Sinsabaugh et al., 2002).

Above‐ and belowground responses to warming vary across seasonal, annual, and decadal timescales, adding
complexity to projections of biogeochemical feedbacks to rapid climate warming (Sistla et al., 2014). Plant–
microbe–soil interactions drive competition for available nutrients. Warming can alter microbial community
composition and increase plant nutrient uptake, promoting primary production and vegetation shifts toward
woody shrubs, while also stimulating soil respiration and microbial nitrogen demand (Y. Liu et al., 2022; Myers‐
Smith et al., 2020; Poppeliers et al., 2022). A warming‐driven shift toward a greener, shrubbier tundra system can
in turn affect the quality and quantity of soil organic matter (SOM) inputs, further accelerating (or constraining)
microbial decomposer activity (Bracho et al., 2016; Sistla et al., 2013).

Incorporating biologically dynamic, coupled plant–soil–microbe interactions into models can improve ecosystem
response projections under warming (Sistla et al., 2014; Trivedi et al., 2022). However, ecosystem models often
rely on empirical, rather than mechanistic, representations of biogeochemical processes. For example, microbial
decomposition is typically modeled using a Q10 function (Davidson et al., 2006; Kirschbaum, 1995), which does
not capture the full suite of physical and biophysical constraints, particularly under varying moisture conditions
(Bond‐Lamberty & Thomson, 2010; Tilston et al., 2010).

This simplification is especially limiting in Arctic soils, which experience prolonged freezing and frequent
freeze–thaw cycles. At sub‐zero temperatures, Q10 values can range from 60 to 200 (Bracho et al., 2016; Mikan
et al., 2002), reflecting physical constraints (e.g., reduced liquid water and oxygen diffusion), rather than direct
temperature effects (Tilston et al., 2010). As soils freeze, liquid water becomes confined to microsites and air‐
filled pore space declines, further limiting diffusion (Talamucci, 2003). The static Q10 framework fails to cap-
ture these nonlinear dynamics (Kurylyk & Watanabe, 2013; Romanovsky & Osterkamp, 2000; Schaefer &
Jafarov, 2016) and is the most common representation of biological temperature sensitivity in biogeochemical
models.

The Dual Arrhenius Michaelis–Menten (DAMM) model incorporates Arrhenius‐based temperature sensitivity
and Michaelis–Menten kinetics to explicitly simulate substrate and oxygen limitations (Davidson et al., 2012).
Models that explicitly represent substrate and oxygen diffusion limitations offer a more mechanistic alternative to
project decomposer response to rapid temperature change during zero‐curtain periods. This formulation presents a
framework for microbial respiration to respond directly to changes in temperature and liquid water content that
can be incorporated into biogeochemical models of warming permafrost systems.

To explore the role of explicit substrate and oxygen diffusion limitations on projected arctic C dynamics with
ongoing warming, we integrated DAMM into the Stoichiometrically Coupled Acclimating Microbe–Plant–Soil
(SCAMPS) model. SCAMPS couples biologically dynamic, stoichiometrically flexible feedbacks between above
and belowground biomass and soil in a permafrost ecosystem (Pold et al., 2022; Sistla et al., 2014). The sea-
sonality of warming and the ability of the microbial community to acclimate (represented by shifts in community‐
level carbon nitrogen ratio C/N) strongly regulate ecosystem C dynamics in SCAMPS; however, temperature
sensitivity in SCAMPS is represented by static Q10 submodel for frozen and unfrozen system states. Replacing the
Q10 approach in SCAMPS with an explicit representation of abiotic drivers (Table 1) that includes a freeze‐thaw
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sub‐model (DAMM) should improve representation of permafrost C cycling under warming climate conditions
(Zhou et al., 2024).

We aimed to determine how explicit versus implicit representations of abiotic (soil temperature and liquid water
content) constraints on microbial substrate availability influence C and N cycling in an arctic tundra ecosystem
with winter warming. We compared the SCAMPS model (with a Q10 submodel) to SCAMPS_DAMM, which
incorporates explicit abiotic constraints and freeze‐thaw dynamics (DAMM submodel) (Table 1). Rather than
producing predictive outcomes, this study compares the responses of these two model frameworks under
consistent climate forcing to assess how mechanistic constraints alter biogeochemical dynamics. Based on this
comparative approach, we hypothesized that:

1. Explicit representation of temperature‐dependent diffusion limitations will reduce predicted soil C losses and
dampen shifts in C and N allocation under winter warming.

2. These effects will be greatest during the fall zero‐curtain period, when soils are thawed and microbial activity
is high, but plants are senesced and unable to access released nutrients.

2. Methods
2.1. Model Descriptions

2.1.1. Stoichiometrically Couple Acclimating Microbe‐Plant‐Soil (SCAMPS) Model

The SCAMPSmodel couples biologically dynamic feedbacks between above and belowground active soil layer C
and N cycling in a permafrost ecosystem (Figure 1, Table 2); a full description of the model can be found in Sistla
et al. (2014). SCAMPS is a daily time‐step, soil temperature‐driven mechanistic model of arctic tundra systems
that represents the potential plasticity of the soil microbial and plant communities to stressors such as warming
and natural variation such as seasonal temperature shifts (Pold et al., 2022; Sistla et al., 2014). This biological
plasticity is represented through shifts in the optimal microbial and plant community C/N that reflects changes in
the stoichiometry of available substrates, with resource allocation tightly coupled to organismal and ecosystem
stoichiometry using a resource allocation optimization model (Rastetter et al., 1997, 2013). For microbes, changes
in C/N are inferred representations of functional adaptation rather than explicit simulations of microbial func-
tional group composition or diversity (Buckeridge et al., 2013).

Plant productivity is mechanistically coupled with soil N availability through stoichiometric constraints, where
plant growth is limited by the uptake of inorganic N from the soil, and this N availability is dynamically regulated
by microbial decomposition, mineralization, and competition for nutrients based on microbial C:N demands,
decomposer biomass, soil temperature and substrate availability (quantity and quality (Pold et al., 2022; Sistla
et al., 2014)).

A major advancement of the SCAMPS model is the dynamic representation of microbially synthesized extra-
cellular enzymes, which catalyze the breakdown of polymeric detritus that is then assimilated by decomposers
(Sinsabaugh et al., 2008). Extracellular enzymes link plant inputs and soil conditions to the decomposer com-
munity and soil C and N cycling. SCAMPS represents microbial extracellular enzyme activities as an integrated
response to highly dynamic soil temperature changes and longer‐term interactions between plant‐derived soil
inputs, the decomposer community, and edaphic factors. SCAMPS represents dynamic feedbacks among plants,
microbes, and soil biogeochemical processes: microbial biomass can shift toward a more fungal (higher C/N) or
bacterial (lower C/N) community in response to changes in the soil environment while the plant community can

Table 1
Model Definitions, Drivers, and Differences Between Model Forms

Dynamically coupled feedback models

Model framework name DAMM SCAMPS SCAMPS_DAMM

Abiotic drivers T, T T,

Biotic states MC, DOC MC MC, DOC

Abiotic control on substrate availability Implicit Explicit

Note. T—temperature, —liquid water fraction, MC—microbial carbon, DOC—dissolved organic carbon.
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shift between a more graminoid and woody‐dominated system depending on soil temperature and nutrient
availability. Therefore, warming‐driven changes in the biological components of the model dynamically shift its
nutrient balance and fluxes.

SOM in SCAMPS is separated into three pools of varying chemical recalcitrance and C/N that is representative of
tussock tundra active layer soils. Microbial biomass (MB) synthesizes distinct enzymes for each SOM pool
(Figure 1a) that varies based on the microbial C/N and substrate availability, which break down SOM pools
releasing C and N into the system. Available C and N, in the form of dissolved organic carbon (DOC) and
dissolved organic nitrogen (DON) are a balanced sum from each of these SOM pools. Nitrogen is conserved
within the system; however, C can be lost via leaching of DOC, and C, in the form of CO2, is lost from microbial
carbon (MC) through respiration, represented as total heterotrophic (microbial) respiration (Rt) and is the sum of
maintenance respiration (Rm), growth respiration (Rg) and waste respiration (Rw) (Figure 1a). Autotrophic
respiration is not represented in the SCAMPS model. The SCAMPS model simulates the dynamic feedback
between above and belowground communities using temperature as its seasonal driver, with substrate quantity
and quality further regulating decomposition potential. Rm and Rw are temperature sensitive, with a different Q10

Figure 1. Conceptual diagram of the (a) SCAMPS. Boxes are carbon pools (g C m−2), solid arrows represent flow between
pools, and dashed arrows represent processes. Total heterotrophic (microbial) respiration (Rt) is the sum of maintenance
(Rm), growth (Rg) and waste (Rw) respiration. See Table 2 for parameter details. MC—microbial carbon, MN—microbial
nitrogen, qmicB is the optimal C/N. (b) DAMM model. Bold are fitted parameters based on field observations. —soil
temperature, and is liquid water fraction and is integrated to control substrate Sx and O2 diffusion. is frozen water
fraction. See Sistla et al. (2014) for full SCAMPS model description including pools and fluxes; and Davidson et al. (2012)
for full DAMM model descriptions. See Supporting Information S1 SCAMPS model code.zip for a complete description of
SCAMPS and the fitted DAMM model parameters.
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function dependent on whether soil temperature is above (Q10 = 6) or below freezing (Q10 = 60). The differing
Q10 function for microbial processes implicitly incorporates substrate limitation via diffusion as the soil tem-
perature transitions across the freezing threshold. The high Q10 value below freezing is representative of the
microbial respiration response to a combined temperature and ice‐liquid moisture dynamics and derived from
arctic tundra soil incubation studies.

2.1.2. Dual Arrhenius Michaelis‐Menten Model (DAMM)

DAMM is a parsimonious process‐based model that represents soil heterotrophic (Rt) respiration is regulated by
changing temperature, substrate supply Sx,‐dissolved organic carbon (DOC); and O2, and moisture (Figure 1b).
DAMM simulates soil enzymatic process using Michael‐Menten, Arrhenius, and diffusion equations using
temperature and Sx to regulate heterotrophic respiration. Temperature‐dependent diffusion equations simulate the
supply of substrates to reactions sites, controlled by air filled pore space (porosity, a). Sx diffusion is limited by
the presence of liquid water ( ) and ice via changes in air‐filled pore space.

2.1.3. Freeze‐Thaw Model

Microbial respiration has historically been assumed to be zero within frozen soils; however, recent in situ
measurements and incubations have shown that microbial respiration occurs below freezing temperatures, to as
low as −20°C (Bracho et al., 2016; Mikan et al., 2002). This activity is supported by a thin film of liquid water
surrounding soil particles even when the soil drops below freezing, allowing microbes to access substrate at the
microsite level (Panikov & Sizova, 2007; Schaefer & Jafarov, 2016; Sihi et al., 2020). A freeze‐thaw model to
estimate liquid (Equation 1a) and frozen water (Equation 1b) below 0°C based on temperature and soil texture
(sand, silt, clay and organic content) is incorporated within the DAMM model (Figure 1b).

θ = (Tref − T
T∗ )b

(1a)

θice = θcrit − θ (1b)

Table 2
Definition of Drivers and Parameters in the SCAMPS, Q10, and DAMM Models, Shown in Figure 1

Microbial respiration Rm Maintenance respiration (g C m−2)

Rw Waste respiration (g C m−2)

Rg Growth respiration (g C m−2)

Rt Total respiration (Rm + Rw + Rg) (g C m−2)

Abiotic drivers T Soil temperature (°K)

Liquid water fraction

ice Frozen water fraction

C pool MC Microbial carbon (g C m−2)

DOC Dissolved organic carbon (g C m−2)

DAMM Substrate Sx Substrate available (g C m−2)

O2 Oxygen concentration (modeled)

Constants a Air filled porosity (%)

BD Bulk density (g cm−3)

PD Particle density (g cm−3)

R Universal gas constant (kJK−1 mol−1)

DAMM fitted parameters α Preexponential constant (g C m−2)

Eax Activation energy (kJmol−1)

Km Half saturation constant (g C m−2)

Note. For a full accounting of SCAMPS_DAMM model parameter in Figure 1 see parameter file in the attached SCAMPS
model code.zip file.
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where: Equation 1a —soil liquid water fraction (unitless), Tref‐reference temperature (°C), b‐an empirical
constant defined by soil texture, T*‐temperature offset (°C), T‐observed soil temperature, and Equation 1b ice—
fraction ice, crit—maximum liquid water fraction at 0°C (Schaefer & Jafarov, 2016—see Table 1 in Schaefer &
Jafarov, 2016) and —liquid water fraction.

2.1.4. SCAMPS_DAMM

Maintenance respiration, Rm, is represented by a Q10 function in SCAMPS, with differing Q10 values above and
below 0°C (Figure 1b). In SCAMPS_DAMM, this representation of Rm was replaced with the DAMM function,
including a freeze‐thaw component to explicitly represent biological and physical drivers (Figure 1b) at above and
below freezing. SCAMPS_DAMM thus adds temperature‐dependent diffusion limitation on substrate supply
(DOC and O2) not explicitly represented within SCAMPS (Figure 1b, Table 2).

Microbial waste respiration (Rw) in SCAMPS occurs only when the microbial C/N ratio exceeds the optimal C/N
ratio. When this occurs the microbial modifier (MC/MN * optimal C/N) is multiplied by the Q10 function to
estimate loss of carbon via microbial waste. In SCAMPS_DAMM, the Q10 function is replaced by the DAMM
equation (Figure 1b), leaving the C/N ratio modifier. Growth respiration (Rg) is not directly temperature‐
dependent in SCAMPS but occurs when microbial uptake exceeds C loss from Rm.

2.2. Site Description

DAMM model parameters were derived from observations of C flux, temperature, moisture, and soil properties
from Eight Mile Lake, Alaska (ELM; 63° 59′N, 149° 15′W) Alaska (EML; Mauritz et al., 2016; Minions
et al., 2020; Schuur et al., 2007) (Table 2, Figure 1b). SCAMPS was originally parameterized based on envi-
ronmental conditions at Toolik Field Station, Alaska (68° 38′N, 149° 36′W). Both Toolik and Eight Mile Lake are
moist acidic tussock tundra with similar vegetation composition and belowground carbon. However, Toolik is a
colder, higher latitude system (Table S1 in Supporting Information S1). For this modeling framework compar-
ison, we used soil respiration (Rs) data collected at EML to parameterize DAMM prior to incorporation into
SCAMPS. For model framework comparison and the winter warming scenario, we used the original SCAMPS
environmental parameters available in Sistla et al. (2014) and in the supplementary modeling code.

2.3. Observed Soil Respiration Data

Observed soil respiration (Rs= belowground autotrophic, Ra,+microbial, Rt, respiration) was measured at Eight
Mile Lake from 2018 to 2021 using forced diffusion sensors (FD; Minions et al., 2020). These data, along with
soil temperature (HOBO S‐TMB‐M006 Temperature Smart Sensor) and moisture (HOBO S‐SMD‐M005 10HS
Soil Moisture Smart Sensor), were used to constrain the parameterization of the DAMM and Q10 submodel.

Outliers in Rs, primarily occurring during freeze‐thaw transitions, were removed from the analysis (Figure S1 in
Supporting Information S1). Values near 0°Cmay reflect rapid degassing of accumulated CO2 during thaw, rather
than the microbial response under ambient conditions (Stackhouse et al., 2015). In some cases, measured or
modeled SR rates just below 0°C exceeded peak summer fluxes, indicating abiotic contributions. To account for
this, the mean SR flux between−1 and 1°C was used as an estimate of maximum below‐freezing respiration rate.
Across the 2018–2021 period, 682 daily Rs measurements were collected; after outlier removal, 491 measure-
ments (72%) remained for analysis.

2.3.1. Rs Adjustments to Account for Belowground Autotrophic (Ra) and Heterotrophic‐Microbial (Rt)
Respiration

Observed total soil respiration (Rs) at Eight Mile Lake includes both autotrophic (Ra) and heterotrophic (Rt)
components, whereas the Q10, DAMM, SCAMPS, and SCAMPS_DAMMmodels simulate only Rt. To compare
observations with model output, Rs was adjusted for the seasonal contribution of Ra (Hicks Pries et al., 2016):
winter 0%, shoulder seasons 15%–25%, and summer up to 45%, yielding an estimate of heterotrophic respiration,
Rt_obs.

In SCAMPS, Rt comprises maintenance (Rm), waste (Rw), and growth (Rg) respiration:
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Rm = respmic ·MC · Q
T
10
10 (2a)

Rw = respwaste · (MC − qmicB ·MN) · Q
T
10
10 (2b)

Rg = respgrowth ·Grmic
1 + growthresprate

(2c)

Because Rm and Rw vary with temperature, while Rg is not directly
temperature‐sensitive, we excluded Rg from Rt_obs during Q10 and DAMM
submodel calibration (Section 2.4). The exclusion was based on the propor-
tion of daily Rg to Rt estimated from a previous SCAMPS simulation under
ambient temperature conditions (Sistla et al., 2014), minimizing potential
overestimation of temperature effects.

2.3.2. Freeze‐Thaw Model

Freeze‐up occurs from both the permafrost below and the soil surface above,
allowing liquid water to persist at depth even when surface soils are frozen.
Microbial activity was assumed to peak where soil temperatures were highest,
near the surface in summer and deeper in winter (Figure S2 in Supporting

Information S1). Liquid water content was estimated using organic soil characteristics above 25 cm depth, and
denser organic estimates below (Figure 2). The freeze‐thaw model dynamically incorporates changes in air filled
pore space; however, the model does not depict ice lenses, which can fully restrict diffusion into and out of the soil
profile.

2.3.3. SCAMPS Model Modifications

Eight Mile Lake Rtobs fluxes, soil temperature, liquid water content between 2018 and 2021 (Figures S3a and S3b
in Supporting Information S1), and daily DOC (Figure S3c in Supporting Information S1, from Sistla et al., 2014)
were used to derive DAMM parameters α, Ea and Km (Table 1, Figure 1b). When soil was below 0°C, its relative
liquid water and ice contents were determined from Equations 1a and 1b (Figure 2). When soil was above 0°C,
soil moisture was based on observations from Eight Mile Lake (Figure S3b in Supporting Information S1).
Porosity varies by depth relative to liquid water and ice fraction, and bulk density (BD). At <25 cm deep, BD was
set to 0.10 and 0.40 g cm−3 at greater than 25 cm depth (Bracho et al., 2016); these differences in BD are reflected
in the change in prediction of liquid water and ice, with deeper depths having denser organic layer compared to
shallower organic layer depths.

SCAMPS was originally parameterized for a higher latitude tussock tundra ecosystem (i.e., Toolik Lake, AK)
than Eight Mile Lake (Sistla et al., 2014); its original Q10 function parameters overpredicted Rt compared to
observations (Rtobs) when using warmer soil temperatures characteristic of Eight Mile Lake. To account for this
difference, the Q10 function in SCAMPS was reduced from 6 to 5 at temperatures >0°C but remained at 60 when
the soil temperature was below 0°C. To ensure modeled C pools in SCAMPS_DAMM were comparable to the
original versions (Sistla et al., 2014), small modifications were made to additional parameters (Table S2 in
Supporting Information S1). The DAMM model parameters were fit using least squares regression. The
Arrhenius activation energy (Ea) in DAMM can be representative of an array of substrate reactions, however in
this model comparison we do not include varying activation energies.

2.4. Q10 and DAMM Sub Model Parameterization and Validation

To assess Q10 and DAMM model fit we used a linear regression between predicted versus observed Rm (R2 and
RMSE). The parameters from these model fits (Q10 for SCAMPS; Eax, α, and Km for SCAMPS_DAMM) were
incorporated into each model framework.

The DAMM model improved overall fit (R2 = 0.51, RMSE = 0.29) compared to the Q10 model (R
2 = 0.49,

RMSE = 0.30) with DAMM better at capturing Rtobs at freeze‐thaw temperatures near 0°C, while the Q10
function predicted higher rates of respiration at warmer temperatures (Figure 3). Figure S3a in Supporting

Figure 2. Estimated liquid water (moisture) fraction for EML at below
freezing temperatures. From Schaefer and Jafarov (2016). Soil profiles are
organic soils with greater bulk density at depth. Organic top 0–15 cm,
organic bottom 15–25 cm. øcrit for soils shown as dashed lines for each soil
horizon.
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Information S1 shows the observed and predicted respiration versus time for
the Q10 and DAMM models for the 2018–2021 period at Eight Mile Lake.

2.5. Climate Warming Simulation

The SCAMPS and SCAMPS_DAMM models were spun up to equilibrium
(500 years) to compare how each model configuration would allocate C and N
pools under implicit (SCAMPS) versus explicit (SCAMPS_DAMM) repre-
sentations of moisture and substrate availability. We compared ecosystem
responses to ambient soil temperature with a 50‐year soil winter warming
scenario (described in Pold et al., 2022) to test the impact of including a
temperature‐dependent diffusion limitation with the SCAMPS_DAMM
model (Figure 1b). Thewinter periodwas defined as day of year (DOY) 1–115,
summer as DOY 116–248 and fall as DOY 249 to 365. The warmed scenario
increased soil temperatures by 0.048°C yr−1, during the winter and fall season
(DOY 248 to 116) consistent with the 50‐year increase in mean annual air
temperatures predicted by CMIP5 downscaled to Anaktuvuk Pass, AK, USA
under a moderate (RCP 6.5) emissions scenario (Van Vuuren et al., 2011;
Walsh et al., 2018). During the shoulder season, soil temperature increased by
4.9°C over ambient conditions in 0.98°C increments from September (day of
year 249–273) and returned to the baseline conditions in lateApril, (day of year
91–115, Figure 4a). This scenario reflects that winter and shoulder season
(winter to spring and summer to fall transition) temperatures are predicted to
warm disproportionately in tundra systems with the fall seeing the largest
increase in temperature (Arndt et al., 2019; Sturm et al., 2005).

After 50 years of simulated warming, the model was run at the final elevated
soil temperature for an additional 50 years (YR51‐ YR100) to explore the
ecosystem response to a new steady state soil temperature and moisture
relative to continued ambient conditions (Figure S4 in Supporting
Information S1).

2.6. SCAMPS and SCAMPS_DAMM Model Implementation

The R package (“R Core Team,” 2021) desolver (Soetaert et al., 2010) was used for resolving the differential
equations in SCAMPS and SCAMPS_DAMM, using the variable step method of the fourth and fifth orders
Runge‐Kutta. The overall objective of this work is to assess the impact of including a temperature dependent
diffusion constraint (SCAMPS_DAMM) on predictions of carbon and nitrogen allocation under a winter
warming scenario. We evaluate this by (a) comparison between SCAMPS and SCAMPS_DAMM model out-
comes (b) a parameter sensitivity analysis.

2.7. Parameter Sensitivity Analysis

We conducted a Monte Carlo–based global sensitivity analysis for SCAMPS and SCAMPS_DAMM using
randomly generated parameter combinations. The analysis tested temperature sensitivity parameters (Q10 for
SCAMPS; Eax, α and KmSx, for SCAMPS_DAMM) and nutrient uptake parameters (plant uptake of DON and
NH4

+; microbial uptake of DOC, DON, and NH4
+). Parameter values were varied uniformly within ±10% of

their baseline estimates, and 50 model iterations were run for each configuration. To compare the model output
between SCAMPS and SCAMPS_DAMMwe used the same initial carbon and nitrogen pools to remove variation
due to differing initial states. This Monte Carlo approach, implemented using the R FME package (Soetaert &
Petzoldt, 2010), quantifies the influence of parameter uncertainty on model outputs. Model code to perform the
sensitivity analysis and parameter files are provided in Supporting Information S1.

3. Results and Discussion
Plant and microbes are biologically coupled while operating on distinct spatial and temporal scales, dynamically
allocating nutrients to above and belowground pools within a shared soil environment. We compared the effects

Figure 3. Modeled and observed soil fluxes from EML. (a) Predicted Rt and
observed Rtobs using Q10 and DAMM model fits, plotted against soil
temperature. Dashed circle shows the effects of the freeze‐thaw model.
(b) Model fits to observed values. (a) Circle denotes capture of freeze‐thaw
transition. (b) Dashed line is 1:1.
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of explicit versus implicit modeling of abiotic (temperature, moisture) drivers on substrate diffusion to decom-
poser microsites and subsequent projections of permafrost ecosystem dynamics under a 50‐year gradual winter
warming, followed by 50 years at elevated temperatures relative to ambient active layer temperatures.
SCAMPS_DAMM had more constrained annual changes in tundra C and N pool sizes and fluxes under ambient
soil temperature conditions and dampened increases in microbial respiration and shifts in ecosystem C and N
pools relative to SCAMPS under winter warming. These differences highlight the importance of the explicit
representation of liquid water and ice content as a constraint on both microbial activity and, indirectly, plant
productivity in permafrost ecosystems.

3.1. Ecosystem Carbon and Nitrogen Resource Allocation Under Ambient Climate Conditions

At steady state under ambient conditions, SCAMPS and SCAMPS_DAMM produced distinct C and N pool
distributions and fluxes despite having identical soil temperature. SCAMPS simulated smaller microbial and plant
C and N pools, larger soil C stocks and lower annual (Rt) respiration (Table 3a). These differences arise from
SCAMPS_DAMM's explicit representation of temperature‐dependent diffusion, which links soil moisture and ice
dynamics to substrate and O2 availability. Microbial activity in SCAMPS_DAMM is more strongly constrained
by diffusional processes than by substrate abundance. This mechanistic coupling moderates Rt and nutrient
(C and N) turnover under baseline conditions. The modeled behavior aligns with field observations of microsite‐
scale heterogeneity and moisture control of respiration in frozen soils (Mikan et al., 2002; Schaefer &
Jafarov, 2016; Tilston et al., 2010); however, temperature‐dependent diffusional constraints are poorly captured
in mechanistic models limiting our predictive ability of permafrost ecosystem biogeochemical responses to
climate warming. The distinct steady states of SCAMPS and SCAMPS_DAMM under ambient conditions set
different initial C and N distributions, which frames their responses to the winter warming scenario.

Figure 4. Daily (DOY) abiotic drivers: (a) soil temperature, (b) available liquid water fraction. Solid lines = ambient;
dashed = winter warming at YR50. Vertical dashed lines in (a) show the fall zero‐curtain period, from original (blue) to
extended above‐freezing period under warming (black).
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3.2. Changes in the Fall Zero‐Curtain Period Drive Year‐Round Shifts in Nutrient Resource Allocation

The relatively stronger microbial activity stimulated by fall shoulder season warming (Figure S5a in Supporting
Information S1) also led to greater microbial N demand (Figure S5b in Supporting Information S1) in
SCAMPS_DAMM, which intensified plant–microbe competition during the subsequent growing season. This
amplified microbial nutrient draw‐down constrained early‐season plant N uptake and shifted it to later in the
season, limiting aboveground growth. Together, these dynamics explain why SCAMPS_DAMM produced more
constrained summer plant C accumulation and respiration, despite enhanced winter microbial activity. This
feedback mechanism, where winter microbial activity indirectly suppresses summer C fluxes, illustrates the
importance of seasonal coupling between microbial and plant nutrient dynamics.

As Arctic regions warm, the fall zero‐curtain period, when soil temperatures remain near 0°C, has been extending
later into the season (Arndt et al., 2019). This transitional period plays a critical role in carbon (C) and nitrogen
(N) cycling by influencing overwinter microbial respiration and the early‐season release of nutrients for plant
uptake (Figure S5e in Supporting Information S1). Although CO2 pulses during zero‐curtain periods have been

Table 3
Annual Average C and N Pools and Fluxes Under Current (Steady State) and Winter‐Warming (w.w.) Scenarios at YR 50 and YR 100 (g C or N m−2 yr−1)

a) Steady state (ambient)
b) Winter warming YR 50 (non‐steady

state)
c) Winter warming YR 100 (new steady

state)

SCAMPS SCAMPS_DAMM SCAMPSw.w SCAMPS_DAMMw.w SCAMPSw.w SCAMPS_DAMMw.w

Microbial biomass MC 78 99 114 (146) 116 (117) 99 (127) 95 (96)

MN 7.9 10.0 12.6 (159) 13.6 (137) 11.0 (139) 11.1 (111)

Microbial C/N 9.9 10.0 9.0 8.5 8.9 8.5

Nutrient pools DOC 5.7 6.3 3.0 3.4 2.8 2.9

DON 0.5 0.5 0.3 0.3 0.3 0.3

NH4
+ 0.4 0.4 0.2 0.3 0.2 0.3

Belowground carbon and
nitrogen pools

ppSOM 2,392 2,304 2,229 (93) 2,168 (94) 2,206 (92) 2,208 (96)

hcSOM 1,705 1,600 1,219 (71) 1,059 (66) 1,153 (68) 1,053 (66)

N‐rich SOM 834 763 697 (84) 660 (87) 753 (90) 763 (100)

Belowground C 4,931 4667 4,145 (84) 3,887 (83) 4,113 (83) 4,025 (86)
N‐rich SOM ‐ N 37 34 31 29 33 34

ppSOM ‐ N 24 23 22 22 22 22

Belowground N 61 57 53 (87) 51 (89) 55 (90) 56 (98)
Plant carbon and nitrogen

pools
Wood carbon 157 181 202 (129) 220 (121) 196 (125) 187 (97)

Leaf carbon 74 82 91 (123) 98 (120) 88 (119) 83 (101)

Root carbon 263 304 338 (128) 368 (121) 330 (125) 314 (103)

Plant C 494 574 630 (127) 687 (121) 614 (124) 584 (102)
Wood nitrogen 1.6 1.8 2.0 2.2 2.0 1.9

Leaf nitrogen 2.6 3.0 3.3 3.6 3.2 3.0

Root nitrogen 4.4 5.1 5.7 6.2 5.5 5.3

Plant N 8.6 9.9 11.0 (128) 12.0 (121) 10.7 (124) 10.2 (103)
Litter biomass 114 130 145 158 141 134

Ecosystem carbon 5,617 5,463 5,034 (90) 4,847 (89) 4,967 (88) 4,838 (89)
Microbial carbon fluxes Rt 55.9 61.8 101.8 (182) 99.7 (161) 87.4 (156) 81.7 (132)

Abiotic drivers Mean soil T −2.3 −2.3 0.3 0.3 0.3 0.3

Mean soil na 0.18 na 0.27 na 0.27

Note. Mean T = annual soil temperature (°C); mean θ = annual liquid water fraction. Values in () show percent change relative to steady state (values <100 = loss,
>100 = gain). Pools differ slightly at steady state across models due to dynamic feedbacks. pp = polyphenolic, hc = holocellulose, Rt = total respiration
(Rm+ Rg + Rw), Ecosystem C= belowground C+ plant C+ litter +MC, Belowground C= ppSOM+ hcSOM +N‐rich SOM, Belowground N=N‐rich SOM ‐ N +
ppSOM ‐ N, Plant C = wood carbon + leaf carbon + root carbon, Plant N = wood nitrogen + Leaf nitrogen + root nitroge.
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observed in field studies (Byrne et al., 2022; Commane et al., 2017), they are
rarely represented explicitly in ecosystem models.

Under the winter‐warming scenario, the fall zero‐curtain period lengthened
from 21 days under ambient conditions to 98 days after 50 years of warming
(Figure 4). This extension led to a marked rise in liquid‐water availability,
with mean daily soil temperatures near freezing and liquid water content
increasing until YR 41, when soils were fully thawed in fall (Table S3 in
Supporting Information S1). After YR 41, available liquid‐water plateaued
even as mean annual temperature rose another 0.25°C (Figure S4 in Sup-
porting Information S1), indicating a threshold where additional warming no
longer increases water availability.

These seasonal dynamics directly affect ecosystem fluxes. Under winter
warming, SCAMPS_DAMM predicted greater annual C loss (29%) than
SCAMPS (25%) after 50 years (Figure 5). The difference reflects how the
explicit representation of diffusion in SCAMPS_DAMM links soil temper-
ature and moisture to substrate and oxygen transport, whereas SCAMPS re-
sponds implicitly and statically to temperature and moisture via Q10 scaling.
As liquid‐water availability remained high during the extended fall zero‐
curtain, microbial activity in SCAMPS_DAMM intensified, producing
higher respiration and N mineralization (Figure S5e in Supporting Informa-
tion S1) when plants were dormant overwinter. This decoupled decomposi-
tion from plant uptake, creating short‐term N surpluses.

Microbial community composition also diverged between models.
SCAMPS_DAMM simulated a shift toward more bacterial‐like decomposers
with lower C:N ratios and higher N demand, increasing microbial competition
with plants and reducing productivity gains under warming. These patterns
were mirrored in modeled NH4

+ availability and microbial C:N ratios (Figure
S5c in Supporting Information S1), supporting the hypothesis that explicit
diffusion constraints most strongly affect ecosystem function during the fall
zero‐curtain, when microbial processes remain active, but plant uptake is
minimal.

From a process‐model perspective, these results emphasize that zero‐curtain
dynamics act as a seasonal “control point” for tundra C and N cycling.
Explicitly representing diffusion and freeze‐thaw dynamics allows the model
to capture transitional shifts in microbial activity and nutrient turnover that
drive long‐term ecosystem feedbacks under asymmetric winter warming.

3.3. Mechanistic Insights and Model Implications for Decadal Ecosystem Dynamics

We tested whether implicit (Q10‐based) versus explicit (diffusion‐limited) representations of liquid‐water control
on decomposition alter projected ecosystem trajectories under a 50‐year winter‐warming period followed by
50 years of steady state (Table 3, Figure 6). This structural difference produced distinct decadal C–N dynamics
even under identical thermal forcing, addressing the hypothesis that explicit representation of temperature‐
dependent diffusion would reduce soil C losses and dampen shifts in resource allocation under warming.

Winter warming disproportionately affected the fall zero‐curtain period, when soils remained near 0°C. During
this transition, the fraction of fall days above freezing increased from 37% in YR1 to 58% in YR41, raising mean
liquid‐water content until soils were fully thawed by YR41 (Figure S4 in Supporting Information S1). Beyond
that point, liquid water no longer increased despite continued temperature rise. These dynamics governed dif-
ferences in microbial respiration and C–N feedbacks between the model frameworks.

Cumulative Rt peaked earlier in SCAMPS_DAMM (YR 41) than in SCAMPS (YR 50) (Figure 6a), reflecting that
respiration in the explicit model equilibrated once diffusion no longer limited substrate supply, whereas the
implicit Q10 formulation continued to respond to temperature. This process coupling produced more dynamic

Figure 5. Seasonal dynamics after 50 years under ambient and winter‐
warming (w.w.) scenarios: (a) mean soil temperature, (b) available liquid
water, and (c) total soil respiration (Rt). Seasons: winter (DOY 1–115),
summer (DOY 116–248), fall (DOY 249–365). Fall zero‐curtain: ambient
DOY 265–286; extended w.w. DOY 265–365 (see Figure 4). See Table S3
in Supporting Information S1 for Rt changes and Figure S7 in Supporting
Information S1 for monthly temperature, water, and Rtotal patterns.
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shifts in plant biomass, available N, and ecosystem C/N (Figures 6b–6e). The explicit representation of substrate
transport allowed SCAMPS_DAMM to respond to both temperature and liquid‐water change during freeze–thaw
transitions, producing faster microbial and nutrient feedbacks under non‐steady‐state warming.

The tighter coupling of temperature and diffusion processes in SCAMPS_DAMM also produced indirect effects
on plant productivity. Enhanced microbial activity and N mineralization during winter increased microbial N
immobilization, reducing early spring N availability for plant uptake. As microbial communities shifted toward
more bacterial‐like assemblages and preferentially decomposed less N‐rich substrates, less mineral N was
released to the soil, further constraining plant nutrient supply (Figure 6d). Consequently, NH4

+ availability and
plant uptake shifted later in the season, with uptake occurring under cooler conditions near dormancy, limiting
overall plant growth and C accumulation. This feedback loop suppressed summer respiration rates, even though
microbial metabolism was more active during the cold season.

After 100 years of warming, both models predicted SOC loss, but their trajectories differed. SCAMPS_DAMM
showed minimal reduction in recalcitrant (ppSOM) and N‐rich (nrSOM) pools, yet greater depletion of labile
hcSOM (Table 3). Increased targeting of hcSOM reflects microbial communities shifting toward bacterial‐like
assemblages with higher enzyme efficiency (Figure 6b). This microbial adjustment reduced the stimulation of

Figure 6. Winter‐warming scenario over 100 years, with warming applied for the first 50 years and steady‐state temperatures thereafter. Panels show: (a) cumulative
change in Rt and mean annual soil temperature, (b) cumulative change in total belowground (SOM) and plant C pools, (c) mean annual C/N ratio, (d) mean available
DOC and annual change in plant N uptake, (e) mean annual NH4

+ and DON, and (f) cumulative change in each SOM pool. Black and gray lines indicate years 41 and 50,
respectively. Dark red denotes SCAMPSw.w and blue denote SCAMPS_DAMMw.w (unless otherwise indicated). See Figure S6 in Supporting Information S1 for
annual C allocation to wood, leaves, and roots.
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plant productivity (particularly in woodC and rootC, Figure S6 in Supporting Information S1), in SCAMPS_-
DAMM relative to SCAMPS, consistent with the model's tighter coupling of moisture and temperature control.

Introducing explicit diffusion constraints fundamentally altered system behavior: decomposition became limited
by substrate transport rather than temperature alone, leading to earlier equilibrium in respiration and nutrient
turnover. Summer Rt was more dampened in SCAMPS_DAMM because the explicit coupling of temperature and
moisture constrained microbial activity under high summer soil moisture. In the DAMM submodel, elevated
liquid water limits O2 diffusion to microsites, restricting substrate oxidation even as temperatures rise. This
diffusional limitation reduces microbial respiration during warm but saturated periods, a process implicitly
represented in the Q10 submodel of SCAMPS. As a result, SCAMPS_DAMMproduces dampened summer Rt and
more conservative seasonal C fluxes under warming. These results align with empirical evidence that substrate
and moisture diffusion dominate respiration at near‐freezing temperatures (Davidson et al., 2012; Sihi
et al., 2020) and that shifts toward bacterial dominance with higher N demand reduce plant–microbe comple-
mentarity (Klarenberg et al., 2022; McMahon et al., 2011).

Overall, the SCAMPS_DAMM framework links winter microbial processes to growing‐season plant responses
through nutrient competition and substrate feedbacks. By explicitly representing diffusion‐limited microbial
respiration, the model captures a mechanistic sequence in which enhanced winter microbial N demand limits plant
nutrient access, reducing summer productivity and substrate inputs. This mechanism provides a process‐based
explanation for the more conservative plant and respiration responses simulated by SCAMPS_DAMM and
aligns with empirical evidence of coupling between microbial and plant nutrient cycling in Arctic tundra eco-
systems (Koranda et al., 2023).

3.4. Sensitivity of Winter‐Warming Responses to Model Parameters

Model sensitivity was evaluated by varying plant and microbial nutrient uptake rates (±10%) and temperature‐
sensitivity parameters (Q10 for SCAMPS; Ea, and α for SCAMPS_DAMM) within empirically constrained
ranges based on Eight Mile Lake soil temperature data (Figure 3a, Table S4 in Supporting Information S1).
Across 50 iterations, SCAMPS exhibited lower sensitivity in belowground (2%) and plant C (6%) pools at YR 100
(Figures S8a and S8b in Supporting Information S1) than SCAMPS_DAMM (10% belowground C, 18% plant C),
with the latter's variability driven largely by its temperature‐dependent diffusion submodel (Figures S8c and S8d
in Supporting Information S1).

The greater responsiveness of SCAMPS_DAMM reflects its capacity to capture coupled temperature–moisture
interactions. In contrast, the narrower parameter range in SCAMPS may indicate reduced flexibility rather than
higher predictive accuracy, as the simpler Q10 formulation cannot adjust to shifts in substrate or water availability
under warming. These results reinforce that model framework, in this case, explicit versus implicit diffusional
control representation drives divergence in projected C–N trajectories.

4. Conclusions and Future Direction
This study shows that explicitly representing temperature‐dependent diffusion constraints substantially alter
projections of soil C and N cycling under winter warming in high‐latitude ecosystems. Incorporating freeze–thaw
dynamics with abiotic–biotic interactions changed simulated ecosystem C and N pool trajectories in line with
recent empirical studies from tundra warming experiments (refs), indicating that such processes should be rep-
resented explicitly to capture tundra responses to climate change. The SCAMPS_DAMM framework predicted
lower belowground C losses, shifts in decomposer‐targeted SOC pools, and modest redistribution of C and N
from below‐to aboveground components, illustrating the influence of physical diffusion limits on C feedbacks.

While SCAMPS_DAMM increases model sensitivity and complexity, its explicit representation of diffusion
constraints reveals process‐level differences that could substantially alter future carbon projections in permafrost
soils. Thus, incorporating similar formulations into large‐scale models is warranted where data permit. Improved
field measurements of soil liquid water, ice content, and seasonal C fluxes are critical for constraining mechanistic
parameters. When such data are available, we recommend adopting frameworks like SCAMPS_DAMM that
explicitly represent temperature‐ and moisture‐driven diffusion processes to enhance process‐based under-
standing of permafrost ecosystem responses to climate change. Our findings highlight that explicitly representing
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diffusion and freeze–thaw constraints could reduce biases in Earth system model projections of winter C fluxes
and improve representation of shoulder‐season processes.
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