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Simple Summary

Outdoor-biting Anopheles mosquitoes have been gaining attention due to their potential
role in sustaining malaria transmission by avoiding indoor vector control interventions.
The efficacy of mitigation efforts that primarily target indoor biting and resting mosquitoes
may be undermined by these mosquitoes. The identification of these less studied mosquito
taxa is challenging due to cryptic morphological features and the limited number of
molecular reference sequences in databases. Advancements in sequencing technologies
have led to a steady increase in the generation of mitochondrial genomes (mitogenomes).
Mitogenomes have proved to be robust in resolving species identification, population
structure and phylogenies in metazoans when compared to commonly used molecular
barcodes. Our work highlights the use of mitochondrial genomes for understanding
the genetic relatedness of the less-studied outdoor-biting anopheles with reference to
the primary vectors of malaria. The datasets generated in this study can be used to
improve interventions for malaria control and employ molecular diagnostics for accurate
species identification.

Abstract

The zoophilic and exophilic traits of outdoor-biting Anopheles have led to this group largely
being overlooked for their role in malaria transmission, despite several species now recog-
nized as locally important in regions of sub-Saharan Africa. Given the current limitations
with identification of these understudied species, it is crucial to accurately correlate mor-
phological features to molecular data. Here, we produced high quality reference sequence
data for representative understudied anopheline species to better understand the phyloge-
netic relationships between under- and well-studied vectors of malaria. For mitochondrial
genome assembly, shallow shotgun sequencing was implemented on single mosquito
specimens and phylogenetic analyses were performed on the concatenated protein coding
genes of the mitogenomes using a Bayesian approach. This study generated 10 complete
mitogenomes focusing on less studied taxa with an average length 15,380 bp and A-T
content of 77.4% consistent with other anophelines containing 37 genes. Bayesian infer-
ence analysis yielded four main clades with molecular dating indicating that well-studied
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malaria vectors diverged from outdoor-biting species more than 63 million years ago. These
findings support the taxonomic grouping of mosquitoes belonging to the Anopheles genus
based on morphological characteristics and can provide molecular diagnostics for species
identification enabling more precise and adept interventions for malaria control.

Keywords: outdoor biting; mitochondrial genome; malaria; Anopheles; understudied

1. Introduction

As African nations strive towards malaria control and elimination, insecticide re-
sistance and residual malaria transmission challenge current vector-targeted malaria
interventions [1-4]. While the primary vectors Anopheles funestus, An. coluzzii, and
An. gambiae are the focus of these mitigation strategies [5,6], selection pressure from
indoor-focused measures such as indoor residual spraying (IRS) and insecticide-treated
nets (ITNs) have led to changes in mosquito behavior and populations [7-9]. One key
change is the recognition that secondary Anopheles vectors such as An. rufipes [10,11],
An. pharoensis [12], An. squamosus [13], and An. coustani [13-15] contribute to sustaining
residual transmission in sub-Saharan Africa. These mosquito species are considered largely
exophagic and exophilic, behaviors that have allowed them to evade indoor vector control
interventions [7,8,16,17].

Despite frequent collection alongside the primary malaria vectors, the genomics,
ecology, biology, and behavior of these long-overlooked anopheline mosquito species
are poorly understood [9]. Furthermore, the constraints of overlapping and cryptic mor-
phological features [18-21], together with the absence of available molecular data in ge-
nomic databases [17,20,22,23], have made robust morphological and molecular identi-
fication of these less studied anopheline species extremely challenging. Studies have
also reported evidence of functional heterogeneity in anopheline genomes which influ-
ence their behavioral plasticity, a crucial characteristic for defining vectorial capacity and
adaptability [24,25]. Therefore, the accurate identification and bionomic characterization of
understudied Anopheles species is now critical given their key role as local vectors in driving
residual malaria transmission in Zambia, Madagascar, southern Mozambique, Ethiopia,
and Kenya [13,15,26-29].

Although there is an extensive list of Anopheles sequences generated using molecular
barcodes based on the cytochrome oxidase I (COI) and internal transcribed region 2 (ITS2)
genes [12,17,18,20,26-28,30-35], there still remain limitations in available sequence for
these understudied Anopheles species to produce robust differentiation between members
of closely related taxa [17,18,31,36]. This includes cryptic species that may be incrimi-
nated in residual malaria transmission but have been allotted placeholder names such as
An. species 11 [17,18,20], An. species 15 [18], and An. species unknown group 1 [20], partic-
ularly in the absence of comprehensive morphological identification to complement the
generated molecular barcode sequences. Furthermore, the use of the single COI gene to val-
idate identification for less-studied Anopheles has produced matches with low similarities
(less than 80%) and weakly supported phylogenies. For instance, this has led to inconclu-
sive identities for members of the An. coustani group in earlier studies from Zambia [17,31]
and Mozambique [26]. Recently, mitochondrial genomes were used to provide conclusive
identities and differentiate the cryptic taxa of the An. coustani group into phylogenetically
well-supported taxonomic clades [37].

The acquisition of genomic datasets has become more accessible due to the expan-
sion of sequencing and computational technologies, including mitochondrial genomes
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(mitogenomes), which have shown to be useful in the identification and resolution of phy-
logenies for several mosquito species and species groups [38-40]. These circular, double-
stranded DNA molecules encode 37 genes, including 13 protein-coding genes (PCGs),
22 transfer RNA (tRNA), 2 ribosomal RNA (rRNA), and a non-coding control region [40].
In addition to the 13 PCGs, key characteristics such as low incidence of recombination, high
copy number, and maternal inheritance make the mitogenome a more effective taxonomic
tool compared to single barcodes [40—45]. Expanding mitochondrial genome resources
to include less studied mosquito species is essential for accurate species delineation and
gaining insights into mosquito ecology and systematics for public health interventions. In
this study, we aimed to (i) generate mitochondrial genomes for representative understudied
and cryptic mosquito species, and (ii) demonstrate the strength of mitogenomes compared
to prior studies that were limited to the COI gene in attempts to resolve phylogenies.

2. Materials and Methods
2.1. Mosquito Collections

Specimens were collected during routine entomological surveillance in Nchelenge,
Zambia in 2023-2024 as part of the Southern and Central Africa International Centers
of Excellence for Malaria Research (ICEMR) investigations. Miniature CDC Light Traps
(John W. Hock Co., Gainesville, FL, USA), were positioned both indoors and outdoors
where people gather in the evening and near animal pens.

2.2. DNA Extraction and Sequencing

DNA extractions using a modified extraction method [46] were performed on sin-
gle mosquito specimens morphologically identified as An. rufipes, An. maculipalpis,
An. pretoriensis, An. squamosus, and An. pharoensis [21]. The extracted DNA and previously ex-
tracted specimens identified using the COI gene as species 11, species 15, unknown group 1,
unknown group 2, and unknown group 3 from a previous study [20] were quantified using
the Qubit dsDNA assay kit (Thermo Fisher Scientific, Waltham, MA, USA) and shipped to
SeqCenter (Pittsburgh, PA, USA) for library construction and Illumina sequencing. The
libraries were 150 bp paired end sequenced to a count of 13.3 million reads per sample.

2.3. Mitochondrial Genome Assembly and Annotation

The mitochondrial genomes were assembled using NOVOPlasty [47] (RRID:SCR_017335)
version 4.3.5 with k-mer set at 39 base pairs and An. squamosus (OP_77691) as the seed
sequence. Using the MITOchondrial genome annotation (MITOS) [47] galaxy tool, gen-
erated contigs were automatically annotated using the invertebrate genetic code un-
der default settings. The start and stop codon positions of the annotated contigs were
manually adjusted in Geneious Prime (RRID:SCR_010519) version 2025.1.2 (Biomatters,
Auckland, New Zealand) using reference anopheline mitochondrial genomes as a guide-
line. The generated contigs with corresponding annotations were submitted to the GenBank
database for the assignment of accession numbers.

2.4. Phylogenetic Analysis and Tree Construction

Using jModelTest (v2.1.10) [48], the best fit base pair substitution model based on
the Akaike information criterion (AIC) and the Bayesian information criterion (BIC)
was determined under default settings using an aligned sequence matrix. This align-
ment was generated using the MAFFT alignment tool implemented in the Geneious
Prime (RRID:SCR_010519) version 2025.1.2 (Biomatters, Auckland, New Zealand from
the 13 concatenated PCGs of mitogenomes generated in this study, available mitochon-
drial genomes of understudied African anopheline species; An. marshallii (NC_064607),
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An. moucheti (NC_064608), An. gibbinsi (OR_569715), An. nili (NC_064610), An. squamosus
(OP_776919, PP_093769), An. pharoensis (PP_105075), An. pretoriensis (PP_068258, PP_105074),
An. maculipalpis (NC_064606, PP_093768), An. rufipes (PP_105076), and An. coustani group
(PQ_585798, PQ_587039, PQ_587041, PQ_587036, PP_375116), and reference mitogenome se-
quences for the well-studied species An. gambiae (MG_930894), An. arabiensis (NC_028212),
and the An. funestus group (MG_742172, MG_742194, MT_917162, MT_917137, MT_91714,
MT_917157, MT_917163). Using Bayesian Evolutionary Analysis by Sampling Trees
(BEAST) 2 software [49], inference analysis was performed on the aligned sequence matrix
using tree independent runs and a 20% burn-in rate for tree building purposes under de-
fault settings. Bayesian analysis was also performed on an alignment generated from COI
sequences available from GenBank complementary to representative species in the mito-
chondrial genome tree. Trees were visualized and annotated using FigTree v.1.4.4 (Available
online: http://tree.bio.ed.ac.uk/software/figtree/ (accessed on 29 October 2025).

2.5. Dating Time Estimation

Divergence time estimations were calculated using the previously mentioned parame-
ters used for Bayesian inference in BEAST2. The frequently referenced Aedes—Anopheles
divergence time of approximately 154.7 million years ago (MYA) [50] was used as the
calibration point set to normal distribution.

3. Results

The 13 mitochondrial genomes produced in this study were consistent with other
African anopheline mitogenomes represented in NCBI's GenBank database, which com-
prised 13 PCGs, 22 tRNAs, and 2 rRNAs, with lengths ranging from 15,534 bp (Unknown
group 2) to 15,346 bp (An. pharoensis) and a mean AT content of 77.4% (Table 1).

Table 1. Genome characteristics for mitochondrial genomes of 13 understudied anopheline mosquito
species generated in this study.

Identification Contig Size GC% AT% GenBa.nk
Accession

Morphological
An. pretoriensis 15,348 23.0 77.0 PP_068257
An. pharoensis 15,346 23.7 76.3 PP_068256
An. rufipes 15,362 229 77.1 PP_068259
An. squamosus 15,349 23.1 76.9 PP_068255
An. maculipalpis 15,361 234 76.6 PP_093765

Molecular

An. species 11 15,354 23.0 77.0 PV_943469
An. species 11 15,350 23.1 76.9 PX_583105
An. species 15 15,350 20.0 80.0 PV_943468
An. species 15 15,354 22.8 77.2 PX_583106
Unknown group 1 15,398 22.5 77.5 PV_943467
Unknown group 1 15,394 22.1 78.9 PX 583104
Unknown group 2 15,534 23.1 76.9 PX_257875
Unknown group 3 15,436 20.3 79.7 PX_240906

Bayesian inference for the mitochondrial genomes resulted in a phylogenetic tree
that separated specimen sequences (Figure 1) compared to COI tree which resulted in
4 weakly supported main clades (Figure S1). The most recent common ancestor (MRCA)
for An. funestus and An. gambiae, with the outdoor-biting Anopheles included in this study,
dated back to 54.9 and 62.76 MYA, respectively (Figure 2).
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Figure 1. Bayesian tree showing the phylogenetic relationship of 13 new mitochondrial genomes
(highlighted in blue) of understudied Anopheles mosquito species with other available anopheline
sequences. The tree includes assigned accession numbers and was constructed using BEAST v2.7.6.
The posterior probabilities supporting the tree topology are represented by the values at the nodes.
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Figure 2. Phylogenetic tree showing inferred molecular divergence estimates (MYA) for outdoor-
biting Anopheles using the concatenated PCGs from mitogenomes generated in this study. The mean
divergence time (MYA) predicted for each event is represented by the values at the tree nodes. The
bars show the values at the tree nodes, 95% confidence intervals.

4. Discussion

Bayesian phylogenetic analysis based on the concatenated PCGs from the mi-
togenomes was able to clearly delineate less-studied African anopheline taxa compared to
phylogenetic analyses using exclusively the COI gene as in earlier studies [17,20]. Several
of these species are often misidentified during morphological examination or matched to
an unassigned species following molecular barcoding [20,26,33]. This may be attributed
at least in part to the unknown diversity of outdoor-biting anophelines and relative in-
experience in morphological identification of these numerous taxa, some of which may
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yet to be fully described due to the bias placed on understanding highly anthropophilic,
endophagic, and endophilic species [6,9,17,28,31]. The uncertainty of vector richness
of the exophagic anophelines, together with their perceived adaptability and undeter-
mined foraging times, habitats, and opportunistic feeding patterns, have led to ambigu-
ous species assignments [9,14,28,33,51]. This combination of characteristics emphasizes
the need for the expansion of outdoor surveillance and investigation of the anophelines
found in this space, as well as innovative strategies to overcome the shortcomings of
indoor-focused interventions.

A growing number of understudied anophelines have been confirmed or impli-
cated in human malaria transmission. Despite historic consideration as a secondary
vector [12,17,27,52], An. coustani is now regarded as a primary local vector in regions of
Madagascar [15,29,53]. Additionally, previous studies have identified An. pretoriensis [34],
An. pharoensis [52,54], and cryptic anopheline species [17,18,20] demonstrating opportunis-
tic feeding patterns on humans, some infected with sporozoites of human malaria parasite
species. Anopheles squamosus is another species strongly implicated as a malaria vector,
with a wide geographical range, and has demonstrated variable foraging behavior towards
human blood meals [13,55,56]. Related to this are a number of ‘molecular taxa’. Exam-
ples include An. species 11 and An. species 15, which are often morphologically keyed as
An. squamosus but are differentiated by the COI barcode and even more strongly by the
mitogenome sequence (Figure 1) [17,20]. Others include An. unknown groups 1-3 for which
morphology and molecular barcoding was inconclusive [20]. Here, the mitogenome data
provide the most comprehensive insight into the taxonomic placement of these ‘molecular
taxa’, but as with prior studies, without a more extensive sequence database of recognized
species, these specimens remain taxonomically unresolved. The fact that many of these
exophagic taxa cluster together in the phylogenetic analysis may be an artifact of their
shared ancestry and that these share behavioral adaptations may have been reinforced
over millennia.

It is clear that full mitogenomes offer much more discriminatory power for a phylo-
genetic approach to inquire about shared biological traits and possibly ascertain whether
behaviors such as biting preference are due to recent adaptations or reflect the existence of
genetically distinct lineages which may have been overlooked when restricted to morpho-
logical identification. Dating time estimations from well-recognized malaria vectors further
corroborate the presence of these outdoor-biting Anopheles as cryptic lineages with distinct
ecological niches, suggestive of understudied species that may maintain transmission
outdoors, perhaps under certain conditions such as relative absence of non-human hosts,
or human behavior that promotes high opportunistic human-biting rates. Furthermore, the
accurate taxonomic placement of these mosquitoes highlights the relationships between
known vectors and putative vector species which may provide further insights into un-
derstanding the differences in biting, foraging, and vectorial capacity of these less-studied
species. Linking morphological reference specimens to genomic data is key for the accurate
identification given the status of unassigned anopheles species with sporozoites collected
in the field [18,19,26,52].

5. Conclusions

Although reference sequences are available for many commonly encountered outdoor-
biting anopheline species, there remains a paucity of data to accurately identify and taxo-
nomically place these species in the wider Anopheles genus. This study contributes valuable
genetic datasets representing exophagic species collected in Zambia and present across
the African continent. The generation of mitochondrial genomes for cryptic unassigned
species that are commonly collected has given priority to the use of integrative taxonomy
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in future research. The linking of molecular data with morphological and type specimens
can further strengthen the credibility of species delimitation for the assigned zoological
nomenclature of these cryptic taxa. The analyses from this study identified the phylogenetic
relationships between the primary malaria vectors and understudied species implicated
in malaria transmission, assisting to close the genetic gap of what we know about these
anophelines of public health importance.

Supplementary Materials: The following supporting information can be downloaded at https://www.
mdpi.com/article/10.3390/insects16121198 /s1. Figure S1: Bayesian tree showing the phylogenetic
relationship of less studied Anopheles mosquito species with main vectors on malaria using the
cytochrome oxidase I gene (COI). The posterior probabilities supporting the tree topology are repre-
sented by the values at the nodes.
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AIC Akaike information criterion

BIC Bayesian information criterion
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