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Abstract: Cropland expansion is expected to increase across sub-Saharan African (SSA) countries in 
the next thirty years to meet growing food needs across the continent. These land transformations will 
have cascading social and ecological impacts that can be monitored using novel Earth observation 
techniques that produce datasets complementary to national cropland surveys. In this study, we pre-
sent a flexible Bayesian data synthesis workflow on Google Earth Engine (GEE) that can be used to 
fuse optical and synthetic aperture radar data and demonstrate its ability to track agricultural change 
at national scales. We adapted the previously developed Bayesian Updating of Land Cover (Unsuper-
vised) algorithm (BULC-U) by integrating a shapelet and slope thresholding algorithm to identify the 
locations and dates of cropland expansion and implemented a tiling scheme to allow the processing 
of large volumes of imagery. We apply this approach to map annual cropland change from 2000 to 
2015 for Zambia (750,000 km2), a country that is experiencing rapid growth in agricultural land. We 
applied our cropland mapping approach to a time series of unsupervised classifications developed 
from Landsat 5, 7, 8, Sentinel-1, and ALOS PALSAR within 1476 tiles covering Zambia. The annual 
cropland changes maps reveal active cropland expansion between 2000 to 2015 in Zambia, especially 
in the Southern, Central, and Eastern provinces. Our accuracy assessment estimates that we have iden-
tified 27.5% to 69.6% of the total cropland expansion from 2000 to 2015 in Zambia (commission errors 
between 6.1% to 37.6%), depending on the slope threshold. Our results demonstrate the usefulness of 
Bayesian data fusion and shapelet, slope-based thresholding to synthesize optical and synthetic aper-
ture radar for monitoring agricultural changes in situations where training data are scarce. In addition, 
the annual cropland maps provide one of the first spatially continuous, annually incremented accounts 
of cropland growth in this region. Our flexible, cloud-based workflow using GEE enables multi-sensor, 
national-scale agricultural change monitoring at low cost for users. 
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1. Introduction 
Africa’s food needs are expected to more than triple during the next 30 years, and at 

least 140 million hectares of new cropland will be needed to satisfy this demand [1–3]. 
Such a large-scale land transformation, which is already underway [4,5], will have sub-
stantial social, economic, political, and environmental consequences that will be felt from 
local to global scales [2,6,7]. 

Given the rapid pace of change and their potential consequences, it is essential to meas-
ure and monitor agricultural changes as they unfold over the continent, across the range of 
spatial scales that they will impact. The demand and production for food supplies are 
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jeopardized by the challenges of climate change, disease, pests, and increasingly lower 
productivity and yields urging for more effective and timely monitoring [8]. Conducting 
such monitoring is difficult, as comprehensive national survey datasets are typically lack-
ing, out of date, and of low spatial resolution [4,9,10]. As such, the only feasible way to un-
dertake this task is with remote sensing. However, developing accurate, remotely sensed 
maps of Africa’s smallholder-dominated agricultural systems is hard to accomplish [11–14]. 
For one, the nature of these systems—small fields, often mixed in with the surrounding veg-
etation types [13]—is a major source of confusion for the models used to convert remote 
sensing imagery into maps, while the spatial resolution of the imagery is often too coarse to 
separate small-scale agriculture from the surrounding vegetations [13,15–19]. In addition to 
this, the data needed to train and assess mapping models is either lacking or not publicly 
available, and is expensive to develop [12,13,16,17,20,21], while mapping over large regions 
at frequent time steps is a major computational challenge [13] with higher spatial resolution 
imagery. Given these limitations, the available regional land cover maps that include agri-
cultural land tend to be infrequently produced (e.g., made once or twice per decade) and 
may contain substantial errors [9,20–22]. Moreover, the available maps tend to be produced 
for different years and from separate efforts, using different training data, models, and clas-
sification schemes, resulting in inconsistencies that make their combined use and compari-
son difficult [15,22]. These factors cause large uncertainties as to where and how much 
cropland exists [20,23] and how it is changing. 

Fortunately, recent advances in Earth Observation methods are making it increas-
ingly possible to conduct accurate, large-area monitoring over hard-to-map regions 
[16,24]. Among the first of these advances was the opening of the multi-decadal Landsat 
archive under the free and open data policy in 2008 [17,25], as well as the rapid growth in 
Earth-observing satellites, which are increasing the frequency, resolution, and depth of 
information available from spaceborne observations [18], while lowering the cost. This 
increasing number of observations enables continuous, frequent mapping of land cover, 
while providing detailed imagery that can be used to create the training and reference 
data (labels) required by mapping algorithms [9,19,26]. Synthetic aperture radar (SAR) 
sensors, such as Sentinel-1 and ALOS, can characterize agricultural landscapes [27] due to 
their spectral ability to actively illuminate a target regardless of atmospheric effects using 
microwave frequencies [28]. SAR has proved useful for estimating crop planting area, 
yield, and other crop variables [29], not only because of imperviousness to atmospheric 
effects, but also its sensitivity to the geometric structure and dielectric properties of crops 
[27,30,31]. Some studies have used multi-scale and multi-sensor approaches to under-
stand field scale phenology by combining SAR and optical sensors resulting in a higher 
accuracy for mapping crop cover and yield [30,32]. In one study comparing the ability of 
Landsat, Sentinel-1, Sentinel-2, and the Moderate Resolution Imaging Spectroradiometer 
(MODIS) to analyze rapid changes in field scale phenology of corn and soy [30], high ac-
curacies were achieved using individual sensors, with marginal improvements when 
combining all sensors. However, classification performance was poor in regions of persis-
tent cloud cover, thus it was concluded that Sentinel-1 data may be critical for enabling 
crop mapping over large areas to mitigate the loss of information due to atmospheric ef-
fects [30]. Similarly, other studies have also used a sensor combination approach, but with 
radar sensors of different frequencies. In a study that evaluated the potential of SAR for 
early season corn, soy, and hay-pasture detection, both the TerraSAR-X and RADARSAT-
2 sensors were compared [33]. These studies demonstrated the importance of using mul-
tiple sensors, albeit in the same wavelengths, to increase the opportunities for multiple 
observations and re-look opportunities.  

There have also been large gains in the capabilities of the algorithms used to extract 
meaning from satellite imagery, e.g., [34], as well as image analytical approaches that help 
to minimize the requirements for training datasets. Such approaches include data fusion 
methods, which gather evidence from multiple datasets to create new hybrid products, 
such as cropland maps developed by synthesizing available land use land cover (LULC) 
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products [35,36]. These approaches vary from those that rely on expert ranking of the 
quality of different input datasets [37] to probabilistic techniques such as the Bayesian 
Updating of Land Cover (BULC) algorithm [38–44], which weighs the evidence and un-
certainty in different input maps while constructing LULC time series. 

Another key development is the growth of cloud-based Earth Observation analytical 
platforms, most prominently GEE [24], which bring together the pre-processed image ar-
chives, algorithms, and computing power to enable their application at large scales. Such 
platforms have given rise to several important breakthroughs in monitoring, including 
the creation of 30 m resolution datasets for tracking annual changes in forest cover [45], 
monthly changes in surface water across the entire globe [46], urban change [47], as well 
as multi-decadal changes in irrigated cropland dynamics across major crop production 
regions [44].  

Despite these tremendous gains, there are two primary challenges that need to be 
resolved to realize the capacity to remotely track the dynamics of complex smallholder-
dominated croplands. First, there is a critical lack of labeled data for training and assessing 
the accuracy of mapping algorithms [16]. However, most algorithms that enable continu-
ous tracking of land cover change [45] typically require many land cover labels, especially 
when the desired outcome includes classification of the type of change (“from to”) [19]. 
The second challenge is that it is difficult to develop large area, long-term, high frequency 
(yearly to sub-yearly) datasets of moderate (10–30 m) resolution imagery over areas of 
persistent cloud cover [13,45,48,49].  

In this study, we developed a mapping approach that addresses these outstanding 
challenges, to track annual agricultural change at a national extent in locations where 
training data are scarce and cloud cover is frequent. We demonstrate this approach by 
mapping cropland expansion in Zambia, a large country (~750,000 km2) with an extensive 
and geographically diverse agricultural sector that is undergoing rapid agricultural 
change [5,50]. Cropland in Zambia is difficult to map accurately due to the predominance 
of small-scale agriculture and the frequent cloud cover during the growing season [10,23]. 
To overcome the challenge of limited training data, we used the Bayesian Updating of 
Land Cover (Unsupervised) algorithm (BULC-U), an automated version of BULC that was 
developed to detect change in long time series of Landsat imagery by combining unsu-
pervised and object-based classification within the Earth Engine platform [37,38]. A key 
feature of BULC-U is that it greatly reduces the need for labeled data by using existing 
land cover maps to train the algorithm. In this study, we used a single existing 30 m land 
cover map to train BULC-U and extended BULC-U’s capabilities by applying linear re-
gression and shapelets [51] to estimate the year of agricultural expansion. To overcome 
the lower density of imagery due to high cloud cover while leveraging the capabilities of 
SAR for improving cropland classifications [31], we constructed a detailed satellite record 
using Landsat 5, 7, and 8 archives with SAR imagery collected by both the Sentinel-1 and 
the ALOS sensors. We implemented this approach on GEE [24], which provided the in-
frastructure in terms of access to pre-processed imagery, storage, and computational 
power [24] that we needed to conduct this large-scale analysis. Our results indicate the 
potential of this approach for fine-grained identification and analysis of agricultural ex-
pansion over large, hard-to-map areas.  

2. Materials and Methods 
2.1. Study Area 

Zambia was chosen for our analysis because it is representative of other agricultur-
ally rich countries in sub-Saharan Africa (SSA) that have experienced rapid crop expan-
sion [52,53]. Zambia is mainly a sub-tropical climate characterized by three seasons: hot 
and dry (mid-August to mid-November), wet and rainy (mid-November to April), and a 
cool and dry season (May to mid-August) [52]. Zambia is a large country with an area of 
752,612 km2 that requires 41 Landsat scenes to cover its full extent (Figure 1). Zambia is 
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categorized into three major agro-ecological regions (i.e., Regions I, II, and III) according 
to the countries’ agronomist on precipitation, soils, and climatic attributes [52]. Across 
these agro-ecological regions, agriculture is primarily rain-fed with little commercial irri-
gation [53]. Small-scale agriculture (farms < 5 Ha) is the most common form in Zambia, 
constituting more than three-quarters of existing farms, with the remaining share consist-
ing of medium- (5–100 ha) and large-scale (>100 ha) farms [50]. Farm size distributions are 
changing rapidly, however, as domestic agricultural investment has driven a rapid in-
crease in the number of medium-scale farms, which more than doubled between 2008–
2014, and now occupy over 50% of Zambia’s agricultural land [50]. These dynamics indi-
cate substantial diversity in Zambia’s agricultural systems, including substantial varia-
tions in the size and shape of fields and the crops they grow. Maize, groundnuts, soy-
beans, cassava, and cotton were the five most widely grown crops between 2015–2020 
[54], with maize constituting over 50% of harvested area on average. Regions I (semi-arid 
area) and III (high rain-fall area) are predominantly small-scale farming systems that in-
clude the southern, eastern, western, and high northern areas of Zambia. Some of these 
regions’ cropping systems include hand hoe, low input, shifting, and semi-permanent cul-
tivation techniques [52]. Region II, on the other hand, has many commercial farms, which 
can be found in much of central Zambia [55]. The major crop types are diverse and include 
a combination of staple and commodity cultivation, in addition to dairy and livestock [52]. 

In the following section, we outline the variable inputs (see Table 1.) and methods 
used in this study to track cropland changes in Zambia from 2000 to 2015 using GEE, 
following the workflow illustrated in Figure 2. Our processing workflow begins with the 
compilation of input data, including satellite imagery and the Global Food Security-Sup-
port Analysis Data (GFSAD) derived from the 2015 satellite imagery [56], the source for 
our binary crop base map starting in 2015. Satellite data was initially divided into smaller 
analytical units, and then classified using an unsupervised K-means approach. Resulting 
unsupervised cropland maps were then updated by GFSAD backwards in time using the 
BULC-U algorithm. Finally, areas of cropland expansion were assessed over the 15-year 
time series to determine where and when cropland change occurred.  
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Figure 1. Study area figure showing Zambia study region, cropland coverage, and Landsat tile foot-
print. The 812 validation samples are shown in the lower right inset map, with cropland labels for 
2015 shown in blue and non-cropland labels in red. 

 
Figure 2. An overview of our research workflow, which begins with the preparation of input da-
tasets. (1) Crop class extracted as mask from GFSAD. (2) Yearly optical and radar imagery spatially 
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filtered and pre-processed. (3) Identification of minimum mapping unit. (4) Cluster identification 
using a K–means classifier and segmentation. (5) BULC–U Algorithm executed in descending order 
from 2015. (6) Determination of yearly cropland probabilities and expansion given the slope thresh-
old (7) Determination of statistically significant shapelets of crop expansion over time. 

2.2. Description of Datasets & Pre-Processing Methods 
2.2.1. Basemap 

The Bayesian fusion algorithm (BULC-U) requires an input reference dataset to in-
form the initial probabilities. We used the 30 m Global Food Security-Support Analysis 
Data (GFSAD) cropland raster dataset for the year 2015 as our reference map [56]. 
Through a combination of pixel-based and object-oriented classifiers in addition to a Re-
cursive Hierarchical Image Segmentation approach, the NASA Making Earth System Data 
Records for Use in Research Environments (MEaSUREs) program was able to retrieve 
cropland extent at a 30-m spatial resolution. Each GFSAD GeoTIFF file contains a binary 
classification of cropland area and water bodies over a 10-degree by 10-degree area for the 
continent of Africa. Preliminary evaluation of the GFSAD product in Zambia using strat-
ified sampling (see Section 2.3.4) had an overall accuracy of 81, a producer’s accuracy of 
89%, and a user’s accuracy of 73% for the cropland class. We clipped the GFSAD map 
using Zambia’s national boundary and remapped the class values to their respective bi-
nary classes (cropland or non-cropland). 

2.2.2. Landsat Annual Medoid Composites  
To develop annual image composites, we utilized all available Collection 1 Level-1 

Surface Reflectance scenes from the Landsat 8 Operational Land Imager (L8 OLI) [57], 
Landsat 7 Enhanced Thematic Mapper Plus (L7 ETM+) [58], and Landsat 5 Thematic Map-
per (L5 TM) [59] sensors. These scenes were accessed using GEE [24] and represent the 
highest quality datasets given their Level-1 Precision and Terrain correction, typified ra-
diometry, and well-adjusted inter sensor calibration across Landsat sensors. This collec-
tion was selected due to its higher-level Tier 1 processing to atmospherically corrected 
surface reflectance using the USGS Land Surface Reflectance Code and Landsat Ecosys-
tem Disturbance Adaptive Processing System algorithms. The Landsat sensors used in 
this study have a temporal coverage from 2000 to 2015 with a return time of 16 days at a 
30 m multi-spectral spatial resolution along a 185 (115 mi) swath [24,57–59].  

Using a combination of various satellite sensors increased our ability to create more 
cloud-free observations. Some studies have demonstrated the utility of Landsat sensor 
combination by increasing the probability of cloud-free image observations, while simul-
taneously reducing the revisit interval [60,61]. This included 2813 images from L5 TM, 
8164 from L7 ETM+, and 2714 from L8 OLI. We used the deprecated Landsat collections 
that were available in GEE at the time of the analysis. The Landsat collections were first 
harmonized using a least-squares regression to maintain temporal continuity over the var-
ying sensors in the time series [48,62]. For each Landsat image, we selected the visible 
(red, green, blue), near-infrared (NIR), and short-wave infrared (SWIR) bands. We calcu-
lated the NDVI and the GCVI, the latter of which has been shown to capture greater areas 
of vegetation given its leaf area index [9]. We then constructed annual composites between 
the years 2000 and 2015 by calculating the medoid, which is a more temporally robust 
alternative to median per-pixel compositing [62–64]. To fill any remaining data gaps, we 
applied a focal mean filter with a 20-pixel radius as our last step in pre-processing the 
annual Landsat composites. 

2.2.3. Synthetic Aperture Radar Composites 
To develop a time series of SAR data that maximized coverage of the study period, 

we used four global 25 m Yearly Mosaic PALSAR images from 2007 to 2010 collected by 
the Phased Array L-band Synthetic Aperture Radar-2 (PALSAR) aboard the Advanced 
Land Observing Satellite-1 (ALOS) PALSAR from the Japan Aerospace Exploration 
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Agency (JAXA). These were accessed in the GEE data catalog [24,65], which houses the 
data for analysis. The collection was already ortho-rectified and slope-corrected using the 
90 m SRTM Digital Elevation Model and destriped to equalize differences in intensity be-
tween adjacent strips by GEE [24,66,67]. We converted the raw 16-bit DN horizontal-hor-
izontal (HH) and horizontal-vertical (HV) values to gamma naught values in decibel units 
(dB) using the equation provided by GEE [24].  

To increase observations from a second SAR sensor, we used 310 images from the 
Sentinel-1 C-band Synthetic Aperture Radar Ground Range Detected (GRD) dataset for 
the year 2015, which are provided within GEE already pre-processed using the Sentinel-1 
Toolbox workflow [68]. We developed annual median composites from Sentinel-1 using 
VV (vertical transmit, vertical receive) and VH (vertical transmit, horizontal receive) po-
larizations collected with the interferometric wide swath mode (IW) at a 10 m resolution. 
Additionally, the VH/VV ratio, as well as ratios between VV median composites, were 
calculated for two months (April and October) representing different seasons, calculated 
as VVApril/VVOctober, representing cropland seasonality [69]. 

Table 1. Overview of our variable inputs including our GFSAD basemap; Landsat ETM+, TM, and 
OLI; JAXA ALOS PALSAR/PALSAR-2; and Copernicus Sentinel-1. 

Variable 
Spatial & Temporal 

Resolution 
Sensor Data Source 

GFSAD Basemap 30 m, 2015 - [56] 

Blue, Green, Red, NIR,  30 m, 2000–2015 
Landsat ETM+, 

TM, OLI 
[57–59] 

Normalized difference 
vegetation index (NDVI) 

30 m, 2000–2015 
Landsat ETM+, 

TM, OLI 
[57–59] 

Green chlorophyl vege-
tation index (GCVI) 

30 m, 2000–2015 
Landsat ETM+, 

TM, OLI 
[57–59] 

HH, HV 25 m, 2007–2010 
JAXA ALOS 

PALSAR/ 
PALSAR-2 

[70,71] 

HH/HV 25 m, 2007–2010 
JAXA ALOS 

PALSAR/ 
PALSAR-2 

[70,71] 

VV, VH 10 m, 2014–2015 
Copernicus Sen-

tinel-1 GRD 
[68,72] 

2.3. Classification & Validation 
Following the pre-processing steps, the Landsat, PALSAR-2/PALSAR, and Sentinel-

1 observations were joined together in a time series stack. To enable the processing of 
these data over a large area, we split the study area into smaller units, using a 50 × 50 tile 
grid with a resolution of 25 × 22 km to divide the study extent, with 1476 of the resulting 
2500 cells intersecting Zambia (Step 3 in Figure 2). Processing the data within these smaller 
analytical units also enabled a more replicable and flexible workflow for subsequent clas-
sification and data fusion. The 25 × 22 km resolution used here was sufficiently small to 
limit the computation time in GEE, enabling rapid display of intermediate results quickly, 
such as unsupervised classification maps and avoiding potential memory limits. 
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Confining analyses within each tile also helped to improve performance by minimizing 
the amount of within-class spectral variability presented to the mapping algorithm.  

2.3.1. Segmentation and Unsupervised Classification 
The provisional classifications of Zambia were created in two stages: segmentation 

and unsupervised classification. We first segmented each composite into median objects 
using the Simple Non-Iterative Clustering (SNIC) segmentation algorithm that is available 
in GEE [24,41,73,74]. As an object-based processing technique, this segmentation algo-
rithm creates pixel clusters from input information such as texture, color or pixel values, 
shape, and size, which is especially useful for mapping cropland [51,75,76]. The SNIC 
function is an improved version of the Simple Linear Iterative Clustering (SLIC) computer 
vision algorithm [73], making it well-equipped to run faster and more efficiently on the 
GEE platform. SNIC is a bottom-up segmentation approach that uses “seeds” to group 
neighboring pixels into clusters based on the input data and function parameters like con-
nectivity, compactness, and neighborhood size. We used the code ‘Make_SNIC_cluster’ 
to apply the segmentation algorithm to each gridded composite, setting the connectivity 
parameter to 4, compactness to 1 (to enable more compact clusters), and neighborhood 
size to 16 pixels (to avoid tile boundary artifacts), and used a square seed pattern with a 
super pixel seed spacing of 8 pixels. Following the creation of the object vector boundaries, 
we summarized the intersecting pixels into median spectral values for each object’s extent, 
resulting in a segmented median composite for each year and grid.  

After adding spatial context into the provisional classification through the SNIC seg-
mentation algorithm, we applied the K-means unsupervised classifier on the segmented 
composites to differentiate cropland and non-cropland objects. K-means is an unsuper-
vised clustering algorithm available on the GEE platform that can be used to classify pixels 
or objects [77,78]. We used an input value of 20-classes in the K-means algorithm, resulting 
in a 20-class, segmented unsupervised classification for each of the 16 years and each of 
the 1476 grids. Initial tests showed that the visible, NIR, SWIR, and vegetation indices 
were particularly useful for separating rainfed crop, irrigated crop, natural vegetation, 
and urban areas in Zambia [9], and the number of clusters (k) did not impact the cropland 
classification in cases where k was larger than the potential number of land cover classes. 
These gridded time-series data stacks were then used as input into BULC-U to distinguish 
cropland and non-cropland areas, as described in the next section.  

To evaluate how well the unsupervised classifications distinguished cropland from 
non-cropland, we analyzed the overlap between the unsupervised clusters and the 
cropland and non-cropland classes derived from the GFSAD basemap in each tile. If the 
unsupervised classifier was maximally effective, the pixels in each cluster should corre-
spond with a single land cover class (e.g., cropland), while the most ineffective classifier 
would contain an equal mix of all classes. Therefore, to evaluate the accuracy of the clas-
sifier, we found the proportion of the dominant class in each cluster and then calculated 
the mean proportion across all clusters, weighted by the size of each cluster. The results 
of this analysis (see Supplementary Information) reveal that the average proportion across 
all tiles was 92.1%, with a standard deviation of 10.1%, showing generally good separa-
bility between classes.  

2.3.2. BULC and Crop Expansion 
The BULC-U algorithm is designed to examine a time series of unsupervised classifi-

cations with the goal of extracting signals about land-use/land-cover change [40]. By com-
paring a given unsupervised classification’s classes with those in a known higher-quality 
map, BULC-U uses Bayes’ formula to update probabilities of LULC change through time. 
When quantifying the relationship between a given unsupervised class and the comparison 
map, BULC-U adjusts the probability of classes being tracked based on the new evidence 
provided by each unsupervised classification. BULC-U’s developers demonstrated its abil-
ity to map LULC change in an agricultural setting with unsupervised Landsat classifications 
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and the GLOBCover 2009 dataset, using BULC-U to refine the coarser GLOBCover map 
while also producing a credible multi-decadal time series of change [40]. 

In this study, we followed the outlines of that approach while making several modi-
fications to address the challenges of mapping in this setting. The current state-of-the-art 
map for this region was the 30 m GFSAD product, which distinguishes cropland from 
non-cropland classes. The basemap was used to initialize BULC-U, which we ran in re-
verse chronological order from 2015, with the algorithm comparing the results of each 
unsupervised classification in each tile to the GFSAD map, and then producing a cropland 
probability for each 30 m pixel for each year.  

To identify pixels that experienced cropland gain, we fit a linear function to each 
pixel’s probability time series and examined the slope, using a slope-based threshold to 
distinguish areas of probable cropland gain from stable non-cropland areas, areas that 
had intermittent or unclear cropland history, or croplands that became abandoned. We 
tested a range of single slope thresholds to examine the relationship between the threshold 
and resulting accuracy. Figure 3 shows examples of each: cropland gain showing a posi-
tive slope (a,b); persistent crop and non-crop slopes that are effectively flat (c, d); cropland 
loss indicated with a negative slope (e), and pixels with a land use signal that alternates 
between crop and non-crop (f). 

 
Figure 3. The crop class probability slope trend (black dots and line) fitted with a simple linear 
regression (red line) for cropland gain (a,b), persistent cropland (c), and persistent non-cropland 
(d), crop abandonment (e), and intermittent cropland (f). 

2.3.3. Shapelet Analysis  
Following the identification of pixels that experienced cropland gain, we identified 

when the gain occurred. In a previous study [69], the shapelet method was developed to 
detect change and classify the land cover responsible for that change based on the shape 
of a Landsat-NDVI time series. The “shapelet” was defined as a temporal segment within 
the Landsat-NDVI time series with a pattern that is highly predictive of its class. In that 
study [69], which detected tree plantations, the pattern was one in which there was a time 
period of consistently low vegetation cover (or bare ground) due to pre-planting land 
clearing, whereas other land uses had consistently dense vegetation cover [79–82]. That 
approach searched along an NDVI time series to identify shapelets characterizing inter-
vals with low NDVI values, followed by a simple statistical test that examined whether 
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the NDVI values in the shapelet were different than those in the time series outside of the 
shapelet, resulting in a land cover classification and an estimate of the year in which the 
plantation was established [79]. The advantage of the shapelet method is that it enables 
more reliable detection of change in a time series by ignoring “unimportant” time points, 
while improving classification results [79,80,83,84]. We adapted this shapelet method to 
identify the year of cropland gain for a time series of cropland probabilities, as described 
in the steps outlined below.  

Step 1. For a given time series ts (here 2000–2015) with a yearly time step length of l, 
we arbitrarily chose a window size (w) of 3. The size of the window can be any value smaller 
than the length of the time-series but must also be greater than one and be narrow enough 
to suggest the year that a time series shapelet method experienced the most change.  

Step 2. Segment the ts into a candidate shapelet (also referred to as S_candidate), and 
then one or two non-shapelet segments (or N_candidate) by moving the window from one 
side of the ts (at t = 0, in our case, it is the year 2015) to the end year (at time t = l − w +1, in 
our case, year-end 2000). For each time t, the window stands for a candidate shapelet 
S_candidate at (t, t + − 1), and thus segments the rest of the ts into one or two non-shapelet 
segments N_candidate or N_candidateleft and N_candidateright, depending on if the window 
starts from t=0 or is found at the end of ts.  

Step 3. We selected the candidate shapelet S_candidate segment that was most differ-
ent from its corresponding non-shapelet (s) as the final shapelet S using an unsupervised 
method for identifying and extracting shapelets [79,81], which measures the mean and 
standard deviation difference between S_candiate and the corresponding N_candidate to 
calculate an overall “gap” score that quantifies the size of the decrease of crop probability 
in S_candiate. The final selected shapelet S is the one that maximizes the gap score. In our 
study, we modified this approach by separating non-shapelets into N_candidateleft and 
N_candidateright, measuring their standard deviation separately because the cropland 
probability before and after cropland gain will have large differences, which should not 
be combined and measured. Then, we calculate the mean of their standard deviation, or 
mean(NS_candidate_left_sd, NS_candidate_right_sd) unless there is only one N_candidate, 
which indicates it is at the beginning or end of the time-series. S_candidate_sd and NS_can-
didate_sd values that capture the steep monotonic crop probability changes within the 
S_candidate and NS_candidate should be selected.  

Figure 4 presents two examples of crop probability slopes and the selected shapelet win-
dows. The first (Figure 4A) represents cropland gain that occurred later in the time series, 
which the maximum gap score identified as taking place in 2009, while the second (Figure 4B) 
shows cropland gain that was identified as occurring earlier in the time series (2003). 

 
Figure 4. The identified shapelet (blue box) for two cropland gain examples. The GAP score was 
labeled for each point and the point of max GAP score was labeled with a red triangle for 2009 (A) 
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and 2003 (B). Note the moving window starts from 2015 and moves towards 2000, following the 
same direction as the BULC–U update, but for clarity the x–axis starts in the year 2000. 

2.3.4. Error Assessment 
To assess errors in our maps, we created a reference sample following best practices 

for stratified random sampling and map validation [85] to select a sample of 406 points 
for each class (crop and non-crop) over the study area. Using the Collect Earth land mon-
itoring platform [86] three experienced workers inspected each point using historical 
Google Earth imagery [87] that was collected on or near the years 2000, 2010, and 2015, 
providing a label for each class and time period. Points were labeled as cropland when 
more than 50% of a 90 m × 90 m square centered on the sample point was covered by 
agricultural fields as cropland, or otherwise labeled as non-cropland.  

The labeling task was difficult because the earlier years were primarily covered by 
lower resolution Google Earth imagery, which made it challenging to distinguish 
cropland from non-cropland, particularly when there was low contrast between land co-
vers. The labels (crop or non-crop) assigned by different workers to the same point there-
fore frequently disagreed, and there were several possible methods for reconciling these 
disagreements when assigning a final class for each point and time period, ranging from 
full agreement to majority agreement, or by assigning the label from the lowest frequency 
class if it was selected by at least one worker. In this case, the lowest frequency class is 
cropland, which represents approximately 10–15% of total area in Zambia [5,88]. Each ap-
proach has its advantages and disadvantages and will lead to different estimates—and 
thus different understanding—of map accuracy; complete agreement increases confi-
dence but shrinks the total pool of reference samples (if one worker disagrees, the sample 
is excluded), while majority agreement preserves the sample size, but may bias the sample 
towards the most dominant and easiest to recognize class (non-cropland in this case). The 
last approach, assigning the cropland class if at least one labeler selected it, which we refer 
to here as “cropland wins”, improves representation of the cropland class at the potential 
expense of increased commission error (i.e., non-cropland classified as cropland). For this 
study, we use the last two approaches, majority agreement and cropland wins, and report 
results from both. Further details on how the label methods vary in their impacts on map 
accuracy assessment can be seen in Figure S1.  

We used the resulting reference sample to conduct three different error assessments, 
the first of which was to evaluate the overall User’s (73%), and Producer’s (89%) accuracy 
of the 30 m GFSAD base map in 2015 as well as the BULC-U created cropland map for the 
year 2000. The second and third assessments respectively evaluated the ability of our 
method to accurately detect cropland change and to estimate the year of cropland gain. 
To conduct these last two assessments, we estimated the total cropland gain, loss, and 
persistence between three different time intervals (2000–2010, 2010–2015, 2000–2015), us-
ing the reference classes to assess the class transitions between each time interval based 
on the quantity of samples in each class (Table 2). The sample revealed a net cropland 
expansion of 11.3% between 2000–2010, and 2.9% between 2010–2015, and 14.7% overall 
between 2000–2015. To estimate how accurately the map identified cropland gain, we cal-
culated the percentage of map-predicted cropland change pixels that corresponded to ref-
erence sample-identified cropland change, as well as the percentage of mapped cropland 
change pixels that were identified as non-change points in the reference sample. Samples 
that experienced cropland change were those that were non-cropland in 2000 but became 
cropland by 2015, while those corresponding to no change were samples that were persis-
tent cropland or non-cropland in 2000, 2010, and 2015. To estimate how accurately the 
modeling approach estimated the date of cropland change, we grouped the reference sam-
ples into classes of persistent cropland, persistent non-cropland, early cropland gain 
(2000–2010), and late cropland gain (2010–2015) and used these points to extract their cor-
responding estimated year of change from the shapelet analysis. 
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Table 2. Validation points and label distributions grouped according to year of observation, and by 
intervals defining different change periods. 

 type 2000 2010 2015 
2000, 

2010 

2010, 

2015 

2000, 

2015 

2000, 2010, 

2015 

C
ro

pl
an

d 
w

in
s 

Cropland 324 358 368 - - - - 

Non–cropland 488 454 444 - - - - 

Persistent 

cropland 

- - - 302 343 299 296 

Persistent non-

cropland 

-  - 432 429 419 410 

Cropland gain - - - 56 25 69 - 

Cropland lost - - - 22 15 25 - 

M
aj

or
ity

 a
gr

ee
m

en
t 

Cropland 205 256 271 - - - - 

Non–cropland 607 556 541 - - - - 

Persistent 

cropland 

- - - 187 238 183 178 

Persistent non-

cropland 

-  - 538 523 519 - 

Cropland gain - - - 69 33 88 - 

Cropland lost - - - 18 18 22 - 

3. Results 
We ran the entire workflow (Figure 1) for each of the 1476 tiles covering Zambia with 

the goal of identifying cropland expansion and the year in which it occurred. We begin by 
illustrating the analytical steps of this process within an example grid in western Zambia 
that experienced cropland expansion between 2000–2015 (Figures 5 and 6). This example 
illustrates results for 4 of the 16 years (2000, 2005, 2010, 2015) for this tile. The high-reso-
lution imagery and Landsat composites (Figure 5, rows 1 and 2) show the locations of 
cropland during the four-time intervals, as well as the variability of the vegetation condi-
tion captured by the imagery between years. The third row details the segmentation/un-
supervised classification results, which shows the variability of the cropland and non-
cropland areas, while row 4 shows the probabilities calculated by the BULC-U algorithm. 
The slope of the linear regressions fit to the time-series of BULC-U probabilities in each 
pixel is illustrated in Figure 6 row 1 (column 1), along with identified cropland gains from 
three different slope thresholds (column 2–4), followed by shapelet results (Figure 6 row 
2) illustrating the year of cropland change.  
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Figure 5. An example of the workflow output for four time points (2015, 2010, 2005, and 2000). For 
each time point, the Google image (top row, for reference), Landsat composites (second row), unsu-
pervised classification with segmentation (third row), resulting cropland probabilities from the 
BULC-U algorithm (fourth row) are shown. The white locator box highlights high probability 
cropland that appears in 2010 and disappears in 2015, indicating a probable loss of cropland area. 

For context, it is important to remember that the BULC-U procedure was started in 
the year 2015 with the cropland and non-cropland classes in the GFSAD basemap set to 
probabilities of 0.8 and 0.2, respectively. The 2015 BULC-U image therefore shows a dis-
tinct contrast between low and high crop probabilities at the beginning of BULC-U updat-
ing (Figure 5 row 3 column 1). The central northern area shows a clear pattern of high crop 
probabilities with certain areas distributed into rows (likely associated with subsistence 
row crop farming). The majority of the 2015 BULC-U probabilities are low, with some 
areas close to zero, indicating a surrounding no crop area. The central portion (dark pur-
ple) of the tile had the lowest crop probabilities, while the most eastern, western, and 
southern edges of the tile show slightly higher cropland probabilities (lighter tone of pur-
ple). The land cover in the bottom outer edges of the tile is likely associated with grass-
lands or open canopy forest, which are spectrally similar to cropland. It may also be at-
tributed to the unsupervised classification producing clusters that were associated with 
both non-cropland and cropland areas. In the year 2010, the extent of higher cropland 
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probability pixels increased, while the non-crop areas changed little in comparison to 
2015. Then in 2005 and 2000, a similar distribution of crop probability pixels is still evident, 
with higher crop probabilities occurring in the areas that were previously consistently 
low. The white locator box overlaid on the BULC-U image highlights where the GFSAD 
basemap had an omission error in the cropland class. This patch had low cropland prob-
abilities (purple) in 2015, then transitioned to high probability (yellow orange) in 2010, 
before reverting to low probability in 2000. This transition indicates cropland that was 
initially missed by GFSAD but was captured in 2010 given its spectral signature of 
cropland in the years from 2015 to 2010, although the 2010 Google Image suggests a non-
cropland area. Then, this cropland loss was captured in early years, indicated by the de-
crease of the cropland probability in the 2005 and 2000 images. In contrast, the east and 
southwest edges of the image, which were not cropland at any point in the study, showed 
increasing cropland probability from 2010 back to 2000, which reflect the spectral similar-
ities between cropland and shrublands (a term we use here to encompass savannas, wood-
lands, and other non-cropland vegetation types with varying degrees of woody vegeta-
tion cover), which was particularly pronounced in 2005 and 2000. Using the GFSAD 
cropland class as a mask helped to remove such areas of falsely detected cropland, thereby 
helping to reduce spurious detections of cropland and cropland change (Figure 5, row 3). 
However, this masking excluded cropland areas that were missed by GFSAD. 

 
Figure 6. Post BULC-U analysis to identify cropland expansion and the expansion year between 
2000 and 2015. The first row illustrates the calculated slope of probability values (column 1) along 
with the areas of cropland gain identified by using different slope thresholds (columns 2–4). The 
last row is the shapelet estimated cropland gain year without a mask (column 1) and with a mask 
applied (columns 2–4) using masks from the first row. 

Following the BULC-U probability outputs, the slope of cropland probabilities was cal-
culated for each image pixel across the 15 annual probability values (Figure 6, row 1, column 
1). The region falling within the GSFAD 2015 mask had slope values ranging from near zero 
(white) in areas where the cropland was present since 2000, such as the north-central region, 
to positive values (blue) where cropland expansion occurred closer to 2015 (e.g., towards 
the northwest). Near-zero slope values are also seen in the central region because of the 
persistence of non-cropland between 2000–2015. Negative slopes are evident in the east and 
west due to cropland probabilities decreasing from 2000 to 2015, which reflects the false 
detections of cropland in earlier years. Adjusting the slope threshold alters the amount of 
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cropland expansion identified (Figure 6, row 1, columns 2–4). As the slope threshold moves 
closer to zero, more pixels are identified as cropland gain. 

The steps illustrated in Figure 5 were performed within each tile in the grid, followed 
by the application of the shapelet method to detect the year of change. Figure 7 illustrates 
the resulting cropland gain map for all of Zambia, along with the shapelet-estimated year. 
The results show that cropland gain was widely distributed throughout the country and 
steadily expanded within the vicinity of existing croplands over the 15-year time period. 
Visual observation indicates our methods appeared to be effective in delineating individ-
ual fields or clusters of fields, although some edge effects do exist (e.g., in the northeastern 
part of the lower inset in Figure 7). 

 
Figure 7. The areas where cropland expanded in Zambia between 2000–2015, color-coded by the 
year of expansion, shown in relation to cropland established prior to 2000 (white), as mapped by 
the GSFAD cropland layer. 

The trajectories of the probabilities at reference sample points (Figure 8) provides fur-
ther quantitative insight into BULC-U’s ability to distinguish cropland gain events (e.g., ex-
pansion between 2000–2010 and between 2010–2015) from areas representing persistent 
cropland or non-cropland. As the BULC-U process began in 2015 and ran backwards to-
wards the year 2000, cropland probabilities in the persistent non-cropland class were ex-
pected to start at low values that remained low for all 16 years and persistent cropland to 
have high values that remained high. In contrast, the two cropland gain classes that were 
expected to have high probabilities that became low either between 2000–2010 (early 
cropland gain) or between 2010–2015 (late cropland gain). In our assessment, which was 
conducted for our set of validation points, these patterns generally held, with exceptions 
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indicating model error and the relatively small size of the samples in the two gain classes, 
as well as variability related to the method used to develop the reference sample.  

 
Figure 8. Probability trajectories within four change-based classes in cropland wins reference da-
taset: (a) Persistent Cropland; (b) Persistent Non-Cropland; (c) Early Cropland Gain (expansion be-
tween 2000–2010); (d) Late Cropland Gain (expansion between 2010–2015). The probability trajecto-
ries within the same four classes, as assessed with the majority agreement reference dataset, are 
shown in subplots (e–h). Cropland probabilities are summarized as box plots for each year in the 
time series, with the bar indicating the median probability in each time period, the upper and lower 
ends of the box showing the 75th and 25th percentile of probabilities, and the whiskers showing 1.5 
times the interquartile range. The initial probability distributions on the right side of each plot are 
drawn from the probability value assigned to the two GSFAD classes (0.8 for cropland, 0.2 for non-
cropland) prior to BULC-U updating. 
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For example, under the cropland wins reference sample, most persistent cropland 
(Figure 8a) started from high cropland probabilities in 2015, and as updates proceeded 
towards 2000, many cropland pixels retained high probability with the median annual 
probability stable at ~0.8. However, the 25th percentile probability value gradually de-
creased from 0.8 to 0.6, with the range of values below the 25th percentile also gradually 
declining to below 0.2, which indicates a general decrease in cropland probabilities within 
the stable cropland class from 2015 towards 2000. The persistent cropland class showed 
the same pattern when using the majority agreement reference set (Figure 8e), albeit with 
a narrower range and smaller reduction in the probability values.  

The persistent non-cropland (Figure 8b,f) showed a similar tendency under both ref-
erence datasets, beginning with low cropland probabilities in 2015 (median = 0.2) that re-
mained low at all time points, but with slight increases towards a median of 0.4 as updates 
moved towards 2000. In contrast to the persistent cropland class, however, the distribu-
tion of cropland probabilities in the non-cropland class was much wider in each year (Fig-
ure 8f), with the 75th percentile extending between 0.3 and 0.7 (up to 0.8 under the major-
ity agreement reference set), suggesting that there were numerous commission errors 
within the persistent non-cropland class. These errors were most pronounced in 2015, re-
flecting the GFSAD’s tendency to over-predict cropland. The high initial cropland proba-
bilities in the persistent non-cropland class (Figure 8f) might also be due to the potential 
omission error in our majority agreement reference dataset since the requirement for ma-
jority agreement rejects more cropland. It is therefore possible that GFSAD correctly clas-
sified such areas as cropland and were placed into the persistent non-cropland class be-
cause of misclassification in our reference labels. The increases in the median values to-
wards 2000 might be explained by the mix of cropland and non-cropland in the unsuper-
vised classification.  

The early cropland gain class (Figure 8c,g) had an initial high cropland probability in 
2015 and an overall decrease of median cropland in both cropland wins and majority 
agreement reference dataset. For the cropland wins reference dataset (Figure 8c), the most 
substantial decreases in median cropland probabilities were between 2009 to 2005, and 
2003 to 2000. For the majority agreement reference set (Figure 8g), the most substantial 
decreases occurred between 2008 to 2005 and 2003 to 2000. The declining median values 
were accompanied by a substantial increase in the interquartile range (IQR, the range be-
tween the 25th and 75th percentiles), which may indicate the difference in years in which 
cropland to non-cropland transitions were detected as BULC-U updated towards 2000. 
However, nearly 25% of the data in this class (upper whisker) had cropland probabilities 
that were persistently greater than 0.8, although these cropland probabilities also de-
creased slightly, given the decline in the 75th percentile towards 2000.  

The late cropland gain class (Figure 8d,h) had an initial median probability of 0.5 
when using the cropland wins validation sample (Figure 8d), with a relatively wide IQR 
(0.2 to 0.83). For the majority agreement validation sample, the median initial probability 
was 0.8 (Figure 8h), with the higher value reflecting the fact that the majority agreement 
sample had a greater correspondence with GFSAD’s cropland class. Under the cropland 
wins reference set, the increase in the median cropland probability between the initial 
condition to ~0.6 in 2014, going as high as ~0.8 in 2012, could indicate the repair of initial 
false negative error (cropland missed by GSFAD) by BULC-U, while the declines in prob-
abilities from 2012 to ~0.5 in 2009 shows the system detecting post-2010 cropland gains. 
However, there is no clear trend in earlier years, and the number of observations in this 
class is relatively small, which contributes to the noise. For the majority agreement refer-
ence dataset, the cropland probability dropped from the initial condition of 0.8 to 0.6 in 
2013, then increased a little to ~0.65 and stabilized until a sudden rise in 2000. 

The percentage of cropland gain and the corresponding false positive error that oc-
curred between 2000 and 2015 varied according to the slope threshold that was used, (Ta-
ble 3 and Figure 9). For example, using a threshold of 0.03 captured 27.5% of the cropland 
gain in estimate using the reference sample, with a false positive rate of 6.9%. Since the 
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update is based on the basemap (GFSAD), if we exclude the validations points falling 
outside the basemap, then this threshold captures 35.8% of reference cropland gain, with 
a false positive rate of 13%. As the slope threshold moves towards zero, the amount of 
cropland gain captured increases, but at the cost of a higher false positive rate. However, 
between the thresholds of 0.03 and 0.01, the gains in percentage of cropland gain captured 
increased from just over 25% to nearly 51%, while the overall false positive rate remained 
less than 18%. Lowering the slope threshold from 0.01 to 0.005 increased the amount of 
cropland gain captured to 70% and increased the false positive rate to 38%. The high com-
mission error when evaluating cropland gain confined to the base map was caused by the 
relatively high commission error in the base map together with the improvements in map 
accuracy resulting from BULC-U updates. In other words, areas falsely classified by the 
basemap as cropland in 2015 had their probabilities reduced by BULC-U in earlier years, 
which caused these areas to be falsely identified as cropland gain. 

 
Figure 9. The percentage of actual cropland gain captured by the mapped cropland gain, as deter-
mined by varying slope thresholds, along with the commission error (reference samples points that 
showed no cropland gain but were mapped as cropland gain by BULC-U for the reference sample 
transition class). 
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Table 3. The percentage of actual cropland gain (per the reference sample, refer to Section 2.3.4) 
captured by the mapped cropland gain by slope threshold, along with the commission error (com-
mission error represents areas that did not have cropland gain but were mapped as such). 

 Slope 

Thresh 

Cropland Gain 

Captured (Zambia) 

Commission Error 

(Zambia) 

Cropland Gain Captured 

(GFSAD 2015) 

Commission Error 

(GFSAD 2015) 

C
ro

pl
an

d 
w

in
s 

0.005 0.696 0.37 0.736 0.598 

0.01 0.507 0.178 0.623 0.329 

0.015 0.435 0.144 0.547 0.269 

0.02 0.406 0.108 0.509 0.198 

0.025 0.348 0.084 0.453 0.158 

0.03 0.275 0.069 0.358 0.13 

M
aj

or
ity

 a
gr

ee
m

en
t 

0.005 0.705 0.36 0.77 0.596 

0.01 0.5 0.166 0.581 0.316 

0.015 0.466 0.132 0.554 0.254 

0.02 0.42 0.099 0.5 0.187 

0.025 0.375 0.073 0.446 0.143 

0.03 0.33 0.06 0.392 0.117 

Finally, to evaluate the accuracy of the estimated year of cropland gain, we inter-
sected the reference labels for early (2000 to 2010) and late (2010 to 2015) gain with the 
years estimated from our shapelet method, excluding cropland gain labels that were omit-
ted by our slope method. Figure 10 (lower) shows the histogram of shapelet-detected gain 
years for both cropland gain classes (early and late), corresponding to reference labels 
developed using the majority agreement strategy (see Section 2.3.4). Although there is 
substantial overlap in the distributions of gain years between each class, and only 11 ob-
servations in the late gain class, 55% of the detected years in the late gain class were after 
2010 while 77% of the values for the early class were before 2010, with the mode at the 
year 2003. Both percentages are larger than the outcomes expected purely by chance, 
which would be 33% of detected gain years in each 5-year bin (with 67% in the two pre-
2010 bins). Results of the same analysis based on the reference labels developed using the 
cropland wins strategy (see Figure 10 upper) showed lower performance for the late gain 
class, with just 44% of the late gain class correctly identified, although this sample size (8) 
was even smaller. The early gain class was more accurate, with 69% of the sample cor-
rectly detected, although the model value (7, or 22%) occurred around 2014. 
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Figure 10. Reference labels (based on the cropland wins (upper) and majority agreement (lower) 
strategy to determine label class) of early cropland expansion (2000 = non-crop, 2010 and 2015 = 
crop) and late cropland expansion (2000 and 2010 = non-crop, 2015 = crop), and their corresponding 
estimated cropland expansion year (x-axis) from the shapelet method. A slope threshold of 0.005 
was used to detect cropland expansion, to maximize the amount of cropland gain detected. The 
histograms do not include cropland expansion events that the method failed to detect. Darker bars 
indicate the number of gain events in individual years, while lighter bars summarize the number of 
events in five-year intervals. 

4. Discussion 
This study demonstrated a new capability to track agricultural change at medium 

resolution over large areas by mapping annual cropland expansion over 16 years in Zam-
bia, a country that covers 750,000 km2. To enable this capability, we leveraged and ex-
tended the large-scale processing capabilities of GEE and the Bayesian-synthesis approach 
provided by the BULC-U algorithm, which we trained using a single high quality 
cropland base map, thereby removing the need to collect extensive training data. We ap-
plied this method to annually composited Landsat Surface Reflectance and synthetic ap-
erture radar (Sentinel-1 and ALOS PALSAR) data at 30 m resolution, which improved the 
depth and variety of information available to the classifier, while helping to overcome the 
limits to observation posed by frequent cloud cover. Applying regression and shapelets 
to the BULC-U-generated cropland probability time series enabled us to identify where 
and when cropland expansion occurred. Using validation protocols for change detection 
(cropland gain versus non-cropland gain) and land-cover classification (cropland versus 
non-cropland) accuracy, we found that this approach showed fair to good performance in 
detecting cropland expansion events in a hard-to-map environment, while helping to im-
prove the accuracy of annual cropland maps. Although we confined our analysis to 
cropland expansion, which is by far the dominant mode of agricultural land cover change 
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in this region [5], our method can be adapted to analyze other cropland change patterns 
(e.g., loss, shifting agriculture patterns). This method complements similar recent global-
scale efforts [89] by providing an ability to map cropland change at higher temporal fre-
quencies, which can provide additional opportunities for understanding the drivers and 
impacts of those land cover changes. 

In the following sections, we provide a detailed discussion of the effectiveness of the 
individual components of our approach, including suggestions for further improvements.  

4.1. Factors Impacting Classification Accuracy  
The complexity and diversity of Zambian croplands, together with the spatial-spec-

tral similarities between croplands and shrublands, caused confusion in our provisional 
classifications, especially for the annual Landsat mosaics. Distinguishing between these 
two classes with 30 m Landsat TM imagery can be challenging [10], and we saw this error 
reflected in the overall increase in cropland probability in areas covered by shrublands, as 
highlighted in Figure 5. This confusion was caused by the inability of the unsupervised 
classification to differentiate cropland from shrubland. Beyond those errors, there was 
also confusion between natural vegetation and small-scale crop fields, which often have 
remnant large trees and indistinct boundaries, or may be fallow [90]. There are opportu-
nities to reduce this misclassification by including predictor variables that can further help 
distinguish cropland from non-cropland, such as seasonal NDVI composites [91] and a 
spatial index [92]. 

In this study, we used annual median composites because the lack of cloud-free ob-
servations prevented us from making seasonal composites, especially during the growing 
season, as is common in many agricultural regions [43,93]. As seasonal composites pro-
vide better separability between croplands and non-croplands [51,92], future studies 
could focus on integrating observations from other sensors, such as Sentinel-2 or Plan-
etScope, in order to create higher temporal resolution composites that can provide this 
seasonal contrast. The moderate spatial resolution of Landsat is too coarse in some in-
stances to classify smallholder cropland, as the average size of crop fields in such systems 
is <0.64 ha [94], which underscores the value of integrating higher spatial resolution data 
into the composites. Further gains may be obtained by incorporating data from active sen-
sors, as we found that SAR backscatter helped to increase observations in cloud-heavy 
regions while providing complementary information that helped to distinguish croplands 
from other land covers [95]. Unfortunately, there are limitations to accessing raw SAR 
observations prior to the launch of Sentinel-1 in 2014, because data from other SAR satel-
lites are not publicly accessible or have limited availability on the GEE data catalog. For 
example, the ALOS PALSAR data we used in this study that was shared on GEE are not 
the raw observations but rather a yearly mosaic, and ALOS PALSAR is only available for 
the years 2007–2010 [24,66].  

4.2. BULC-U for Tracking Cropland Change 
The unsupervised, object-based classifications from annual multi-sensor observa-

tions were effectively fused together by BULC-U to construct annual cropland maps for 
Zambia. In this study, we focused on a binary classification (cropland and non-cropland) 
problem, but the BULC/BULC-U algorithm can be extended to multiple land-cover clas-
ses. Future work could track multiple land cover conversion pathways using the work-
flow that we have developed, with minor input parameter changes in BULC-U.  

BULC-U was able to integrate additional evidence from the input classifications to 
improve upon the quality of the base map when calculating the initial class probabilities. 
The GFSAD we used to initialize BULC-U missed some smaller regions of croplands (Fig-
ure 5), but as the update events were synthesized in BULC-U, the omitted cropland was 
detected by the unsupervised classifications and the cropland probabilities increased in 
the direction of BULC-U updates (backwards in time). This ability to improve the accuracy 
of an existing map is one of the features of BULC-U [40] and could be further improved 
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by increasing the frequency of updated events (e.g., by applying unsupervised classifica-
tions to seasonal image composites), or by running BULC-U backwards and then forwards 
again [44]. Another means for improvement is to start with a more accurate base map, 
which should in turn enhance BULC-U’s ability to map cropland gain. The accuracy of 
the base map is crucial because it was used to calculate the initial cropland probability 
against the first provisional classification input. Based on the comparison of the GFSAD 
with our reference data, the GFSAD had a high producer’s accuracy (89%) but a lower 
user’s accuracy (73%). In terms of our results, these base map errors were propagated into 
our dataset through the initialization of the cropland and non-cropland probabilities (Fig-
ure 8). As a result, most cropland was correctly assigned with a high initial cropland prob-
ability (Figure 8, lower-right) in BULC-U because its high producer’s accuracy of GFSAD 
meant that it was less likely to miss cropland. However, some non-cropland pixels were 
initialized with high cropland probability because of the relatively low user’s accuracy of 
cropland in GFSAD (non-cropland was mapped as cropland). Therefore, future studies 
could explore using a basemap with higher accuracies to create more robust initial prob-
abilities, and even potentially interspersing multiple basemaps within the time series. As 
mentioned in the previous section, newer sources of imagery together with improved clas-
sification algorithms, particularly neural networks [34], offer the possibility of generating 
improved basemaps [96,97].  

4.3. Benefits of Gridded Processing Units 
In addition to being necessary for processing a long time series of imagery over a 

large area, we found that there were additional advantages to using a smaller gridded 
processing unit in mapping workflow. First, the computational load scales linearly with 
the study area, thus the smaller unit enables rapid processing of the imagery, followed by 
application of BULC-U on the data stacks, and then downloading the resulting probabili-
ties for visualizing or post-processing on a local computer. This ability to rapidly analyze 
and then re-run improves accuracy by allowing more permutations to be assessed and 
helps to catch coding and analytical errors. Second, the relatively small study area pro-
vided by the tiled grids were less impacted by the quality of radiometric correction or the 
atmospheric conditions across the processed image’s extent [98]. Although advances in 
Landsat data processing have improved the consistency of the radiometric response over 
the land surface within and across Landsat scenes [99], as with the LEDAPS [100] surface 
reflectance product, radiometric variability over large areas remains a problem that can 
influence results. Using smaller processing units helped to limit the impacts of such radi-
ometric bias in the resulting classifications of annual Landsat mosaics and subsequent 
Bayesian data fusion. Third, a smaller processing unit helped to reduce regional errors 
from low-quality unsupervised classifications or inaccurate reference map data. By using 
the gridded system, such errors were isolated within their own grids, limiting their influ-
ence on the BULC-U algorithm. Furthermore, the gridded processing system enables the 
application of local modifications to the algorithm, such as varying thresholds, which can 
help to further improve overall accuracy. However, future applications could explore 
ways to limit edge effects (e.g., by building in and then averaging across tile overlaps), as 
we found from our uniformed slope thresholding. While we ran BULC-U using 25 km by 
22 km gridded tiles in our study, we found that using larger grid sizes is also feasible.  

This gridded processing system can also support the use of other advanced data fu-
sion and classification methods available in GEE, which may also have high memory and 
computing resource requirements and would not complete if the study area is too large.  

4.4. The Effectiveness of the Threshold and Shapelet Method 
We found that the slope-based threshold method was effective for identifying 

cropland gain given the clear boundaries of cropland in this region (Figures 5 and 7). In-
stead of choosing a final slope threshold in this study, we tested a sequence of slopes ex-
perimentally to allow us to identify the best threshold for the given features. Future 
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studies could use a subset of our cropland and non-cropland regions to identify the ideal 
slope that maximizes the separation of cropland and non-cropland samples. 

The shapelet method, which was previously shown to be effective for detecting the 
year of tree crop plantings [79], proved useful for estimating the year of cropland expan-
sion. In our study, we applied multiple methods to evaluate the effectiveness of the shape-
let method using historical imagery from Google Earth, visual interpretation of example 
sites, and reference points for the validation of the entire results. From the example sites, 
we found that the shapelet method was generally able to capture the relative chronologi-
cal order of cropland expansion. Figure 10 also gave an estimation of the effectiveness of 
the shapelet method, indicating it can distinguish between earlier and later cropland ex-
pansion, although the number of gain observations in our reference sample was too small 
to precisely measure how well the timing of gain events were captured. Future work 
should increase the sample size within gain classes and could apply annual validation to 
further evaluate the shapelet method’s strength for identifying cropland gain. In addition 
to improving classification accuracy, adding more frequent intra-annual observations to 
the time series could also improve the shapelet method’s effectiveness. Finer time inter-
vals would allow the shapelet method to identify cropland gain in a window of one year 
instead of three years. Detecting multiple shapelets could also help to identify fields in 
areas of shifting cultivation (e.g., in Northern Zambia) within the cropland probability 
time series. To achieve this, both the direction and magnitude of cropland probability 
change would need to be used to detect multiple shapelets.  

4.5. The Impact of Reference Label Uncertainty on Understanding Performance  
An important point to note regarding our reported results is that the range in as-

sessed classification accuracy and change detection performance in large part reflects the 
varying levels of confidence within the reference label classes used (see Section 2.3.4). The 
uncertainty in the reference labels arises from the fact that they were developed through 
visual interpretation of imagery that was of varying, and primarily moderate, resolution. 
Identifying smallholder cropland within moderate resolution imagery can be difficult, re-
sulting in higher labeling error and greater between-labeler disagreement. The reliability 
of our reference sample was therefore lower in the earlier years of our study period (see 
Figure S1), when the image archives are primarily composed of Landsat data. That uncer-
tainty, and the way it was handled when aggregating the sample, had substantial impacts 
on the performance metrics for each of the three assessments.  

Another limitation of our reference data is that it only covered three time points, 
which limited our ability to assess how well our methods can detect annual change events. 
These factors demonstrate that the lack of high-quality reference data remains one of the 
major hurdles to land cover change mapping [101,102]. A fuller assessment of the perfor-
mance of our methods will therefore require a higher quality reference dataset, as the ac-
curacy of the reference labels sets the upper bound on knowable map accuracy.  

4.6. Detecting Other Patterns of Cropland Change 
Our current method is limited to detecting cropland gain events, but the probability time 

series generated by BULC-U provides the ability to detect other patterns of cropland change, 
such as cropland abandonment, or cycles of gain and loss that commonly occur in swidden 
agricultural systems. Detecting other, more complex events (e.g., cropland gain followed by 
cropland loss) will require methods that can recognize change points within more complex, 
polynomial functions. Therefore, more sophisticated temporal segmentation algorithms could 
be used, such as the trajectory detection method described in LandTrendr [64], or approaches 
based on continuous change detection and classification [103–106].  
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5. Conclusions 
In this study, we demonstrated how to use a flexible GEE-based workflow using 

BULC-U, slope-thresholding, and shapelets to identify cropland expansion between 2000 
to 2015 across a large region experiencing rapid agricultural growth, in this case Zambia. 
By initializing the workflow with a single existing land cover map, our approach also 
demonstrates a potential solution for overcoming the challenge of limited training data, 
while showing how optical and SAR data can be combined to improve the frequency and 
depth of information needed to effectively distinguish cropland from other land cover types 
in a cloudy region. Future opportunities exist to build upon the methods presented here by 
using more accurate land cover data to initialize the workflow, and by integrating a more 
sophisticated time-series shape detection method. Ultimately, our flexible approach makes 
mapping cropland change dynamics across large areas more accessible, further advancing 
opportunities for cropland monitoring on cloud-based processing platforms. 

Supplementary Materials: The following supporting information can be downloaded at: 
www.mdpi.com/xxx/s1. Figure S1: Label consistency among three workers. First row: Crop labels. 
Second row: non-crop labels. Note: circle sizes were scaled in each subplot and were not comparable 
to other subplots. Figure S2: The consistency among three workers in the created crop labels. Worker 
A has a smaller crop label size in all three years compared with workers B and C (first row). Three 
candidate strategies were considered to unify the validation labels as vote (second row), favoring 
crop (third row) and favoring non-crop (last row). Figure S3: Cluster Purity Score. Figure S4: Com-
parison of validation points. red: more than two people think it is non-crop; blue: more than two 
people think it is crop; green: only one person thinks it is crop. Table S1: Comparison of the accuracy 
of a BULC-U derived crop map for 2000* compared to the base GFSAD 2015 cropland map, includ-
ing the overall accuracy and User’s and Producer’s accuracy of the cropland class. The cropland 
map for 2000, which we made by subtracting the area of cropland gain identified by BULC-U with 
a 0.03 slope threshold from the 2015 base map, had similar but slightly lower levels of overall, User’s, 
and Producer’s accuracy than the base map. 
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