
The Tale of Errors in Microservices: Extended Abstract

I-Ting Angelina Lee
Washington University in St. Louis

Department of Computer Science & Engineering
St. Louis, Missouri, USA
angelee@wustl.edu

Zhizhou Zhang
Uber Technologies Inc.

Programming Systems Group
Sunnyvale, California, USA

zzzhang@uber.com

Abhishek Parwal
Uber Technologies Inc.

Marketplace Con�gurations
Sunnyvale, California, USA
abhishek.parwal@uber.com

Milind Chabbi
Uber Technologies Inc.

Programming Systems Group
Sunnyvale, California, USA

milind@uber.com

Abstract

Microservice architectures have become the de facto paradigm for

building scalable, service-oriented systems. Although their decen-

tralized design promotes resilience and rapid development, the

inherent complexity leads to subtle performance challenges. In par-

ticular, non-fatal errors — internal failures of remote procedure

calls that do not cause top-level request failures — can accumulate

along the critical path, in�ating latency and wasting resources.

In this work, we analyze over 11 billion RPCs across more than

6,000 microservices at Uber. Our study shows that nearly 29% of

successful requests experience non-fatal errors that remain hidden

in traditional monitoring. We propose a novel latency-reduction

estimator (LR estimator) to quantify the potential bene�t of elimi-

nating these errors. Our contributions include a systematic study of

RPC error patterns, a methodology to estimate latency reductions,

and case studies demonstrating up to a 30% reduction in tail latency.

CCS Concepts

• Software and its engineering→Cloud computing; •Comput-

ing methodologies → Modeling methodologies; • Computer

systems organization → Reliability.

Keywords

Microservices, Non-fatal Errors, Latency Estimation, Critical Path

Analysis, RPC Errors, Performance Optimization

ACM Reference Format:

I-Ting Angelina Lee, Zhizhou Zhang, Abhishek Parwal, and Milind Chabbi.

2025. The Tale of Errors in Microservices: Extended Abstract. In Abstracts

of the 2025 ACM SIGMETRICS International Conference on Measurement

and Modeling of Computer Systems (SIGMETRICS Abstracts ’25), June 9–

13, 2025, Stony Brook, NY, USA. ACM, New York, NY, USA, 3 pages. https:

//doi.org/10.1145/3726854.3727320

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for pro�t or commercial advantage and that copies bear this notice and the full citation
on the �rst page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).

SIGMETRICS Abstracts ’25, Stony Brook, NY, USA

© 2025 Copyright held by the owner/author(s).
ACM ISBN 979-8-4007-1593-8/2025/06
https://doi.org/10.1145/3726854.3727320

1 Introduction

Microservices decompose monolithic applications into small, inde-

pendently deployable services. Each service handles a distinct busi-

ness functionality and communicates via Remote Procedure Call

(or RPC for short) mechanisms (e.g., REST, gRPC, Thrift, YARPC).

Although this architecture supports agile development and scalable

deployment, it also results in complex call graphs.

A single user request may trigger hundreds of RPCs. Although

many of these RPCs succeed, our data shows that a substantial

fraction fail but remain non-fatal — the top-level request still

completes with a success code. Such “hidden” errors often arise

from best-e�ort calls or repeated lookups that fail for a portion of

requests. Developers frequently overlook these errors because they

do not show up in the �nal error metrics. Yet, these errors often

appear on the critical path [3], the longest sequence of dependent

RPCs in the request, in�ating tail latencies and wasting resources.

At Uber, more than 6,000 microservices interact in a dynamic,

large-scale ecosystem catering to hundreds of millions of users. Our

distributed tracing system, Jaeger, samples over 840 million traces

daily; logging each RPC within the sampled request to provide a

detailed view of internal RPC behavior. Despite an overall RPC

error rate of only 0.9%, our analysis reveals:

• Approximately 29% of successful requests contain at least

one non-fatal error.

• Nearly 84% of user-exposed endpoints experience non-fatal

errors, while only 16% remain consistently error-free.

Such observations motivate the need for a systematic approach

to quantify and mitigate the impact of non-fatal errors.

2 Key Contributions

Our work makes the following key contributions:

(1) ComprehensiveCharacterization:We systematically study

RPC error patterns in large-scale microservices and demon-

strate that non-fatal errors are widespread and correlate

strongly with increased tail latency. By analyzing more than

52 million traces and 11 billion RPCs, we provide detailed

insights into error propagation, error types, and their impact

on performance.

(2) Latency-ReductionEstimator:We introduce a novelmethod-

ology to simulate an “error-eliminated” execution by zeroing

out erroring RPCs while preserving causal dependencies.



SIGMETRICS Abstracts ’25, June 9–13, 2025, Stony Brook, NY, USA I-Ting Angelina Lee, Zhizhou Zhang, Abhishek Parwal, and Milind Chabbi

Figure 1: Distribution of non-fatal errors over endpoints.

Figure 2: Latency is higher for requests with non-fatal errors

compared to that of error-free requests.

This approach yields an upper bound on the latency reduc-

tion potential.

(3) Practical Use Cases: We present case studies — such as

mobile app launch optimization, user customization failures,

and parallel data fetch ine�ciencies — that demonstrate

how eliminating redundant or guaranteed-failure RPCs can

reduce tail latency, reduing the up to . In one case, we reduced

the latency by 30%.

3 Observations

Our analysis leads to several important observations:

• Observation 1:Most endpoints (84%) experience a non-trivial

fraction of requests with non-fatal errors.
• Observation 2: Requests with non-fatal errors often contain

multiple RPC errors, even when the overall failure rate is low.
• Observation 3: The majority of non-fatal errors cluster around

four key types: entity not found, aborted, failed precondition,

and resource exhausted.
• Observation 4: Non-fatal errors typically originate deeper in

the RPC call graph than fatal errors and exhibit short propagation

lengths.
• Observation 5: Internal APIs exhibit a bimodal resiliency dis-

tribution—most either completely stop or propagate errors.
• Observation 6: Requests with non-fatal errors perform more

work, on average having 1.9× more RPCs than error-free re-

quests.
• Observation 7: Latency in requests with non-fatal errors is

signi�cantly higher (1.8× median, 2.9× P99) compared to error-

free requests.
• Observation 8: The LR estimator indicates a signi�cant poten-

tial for latency reduction across many endpoints and APIs.
• Observation 9: Non-fatal errors disproportionately impact tail

latency more than overall latency.

Figure 1 displays a histogram correlating the fraction of requests

with non-fatal errors (x-axis) to the number of endpoints (y-axis).

The �rst histogram bin shows that 288 endpoints had (0, 5%] of

their gateway requests containing at least one non-fatal error. As

the error rate increases, the number of a�ected endpoints decreases

and then spikes again, where 198 endpoints have over 95% of their

requests containing non-fatal errors—indicating these endpoints

consistently operate with errors.

Figure 2 compares the tail (99th percentile) latency of error-free

requests with those that have non-fatal errors. The x-axis repre-

sents di�erent endpoints, and the y-axis is the 99Cℎ percentile of

request latency. The blue line shows error-free requests, whereas

the orange line shows requests with non-fatal errors. The P99 la-

tency of requests with non-fatal errors is, on average, 2.9× more

than the P99 latency of error-free requests.

4 The LR estimator

A key challenge in mitigating the impact of non-fatal errors is de-

termining which endpoints warrant deeper investigation. Straight-

forward approaches do not yield the desired outcome. For instance,

simply targeting endpoints with the highest number of non-fatal

errors is ine�ective, since not all non-fatal errors a�ect overall la-

tency. Similarly, one can focus on endpoints with the most non-fatal

errors on the critical path; however, a larger number of non-fatal

errors does not necessarily translate into higher latency. Finally,

one might measure the impact of non-fatal errors on the critical

path using a method similar to [3]. Yet this, too, can be problematic

because eliminating erroneous RPCs might alter the critical path,

such that the resulting latency does not shrink proportionally to the

duration of the eliminated erroring RPCs from the original critical

path.

We propose a latency-reduction estimator (LR estimator) to

quantify the latency impact of non-fatal errors. The LR estimator

computes the hypothetical latency of an execution if all non-fatal

RPCs were eliminated while preserving the causal dependencies

among RPC calls. The LR estimator operates under two key assump-

tions:

(1) Zero Duration for Errors: All RPCs that return errors in

the observed execution are assumed to have zero duration

in the error-eliminated execution.

(2) Preservation of Dependencies: The causal relationships

among RPC calls are maintained. This ensures that inherent

sequence and delays dictated by program semantics remain

even when error durations are removed.

By applying these assumptions to a Jaeger trace, the LR estima-

tor simulates a new “error-eliminated” timeline and recomputes

the critical path of a request. The di�erence between the observed

latency and the hypothetical latency represents the maximum po-

tential improvement achievable by mitigating non-fatal errors.

Unlike naive methods that might subtract the duration of error-

ing RPCs, the LR estimator is cognizant of erroring RPCs occurring

o� the critical path. Moreover, eliminating an error may cause shifts

in the critical path—sometimes revealing new bottlenecks. The LR

estimator recursively adjusts the timeline, ensuring that:

• The relative ordering of dependent RPCs is preserved.

• The minimal work required by parent services (before initi-

ating a child RPC) remains intact.

• Any shift in the critical path is recalculated, providing a

realistic estimate of latency reduction.



The Tale of Errors in Microservices: Extended Abstract SIGMETRICS Abstracts ’25, June 9–13, 2025, Stony Brook, NY, USA

% latency Number of endpoints

reduction Tail-1 Tail-5 Tail-10 Tail-20 Tail-50

(10, 20] 62 62 60 57 60

(20, 30] 24 22 22 26 25

(30, 40] 12 11 11 8 6

(40, 50] 8 10 9 8 13

(50, 60] 7 6 7 9 3

(60, 70] 7 7 7 6 8

(70, 80] 5 5 5 5 7

(80, 90] 6 6 6 5 2

(90, 100] 1 1 1 2 3

Table 1: Endpoint count with tail latency-saving potentials.

Using LR estimator, we performed analyses on a large set of

traces from production. Table 1 bins the endpoints by their saving

potential at di�erent tail latencies. Tail-1% shows how much the

worst 1% (averaged from 99th to 100th percentile) of the latency can

be reduced by eliminating errors in those traces. Tail-5, Tail-10, Tail-

20, and Tail-50 are de�ned similarly. We notice that 62 endpoints

can reduce their Tail-1% latency by 10-20%; 24 endpoints can reduce

their Tail-1% latency by 20-30%; cumulatively, 26 endpoints can

reduce their Tail-1% latency by > 50%. Similarly, 60 endpoints

can reduce their Tail-50% latency by 10-20% and 25 endpoints can

reduce their Tail-50% latency by 20-30%. > 50%.

The LR estimator provides engineers with a robust and practical

tool to prioritize optimization e�orts by precisely quantifying the

latency improvements achievable by mitigating non-fatal errors

across diverse endpoints and internal APIs. In contrast to previ-

ous work, such as LatenSeer [2], which also performs “what-if”

analyses on distributed traces, the LR estimator o�ers two critical

advantages. First, unlike LatenSeer’s probabilistic approach, which

provides limited guarantees, the LR estimator employs a determin-

istic methodology that rigorously maintains causal relationships.

Second, the LR estimator avoids the expensive, repeated training re-

quired by LatenSeer, which can take hours per endpoint; instead, LR

estimator incurs zero training cost and completes analysis rapidly

(e.g., only 1.5`B for a large trace with 10,000 RPCs). Additional

details, proofs, and evaluations can be found in our full paper [1].

5 Case Studies and Outcomes

Our methodology was applied to multiple endpoints and internal

APIs at Uber. Notable use cases include:

• App-Launch Optimization: The mobile app launch work�ow

is critical for our company due to its high usage and stringent

latency requirements. A request to the app-launch gateway

endpoint triggers numerous RPCs for state-machine transitions,

database queries, and other services. The LR estimator analysis

identi�ed the app-launch endpoint as a major latency contribu-

tor, revealing a potential 27.8% reduction in P99 latency. Flame

graphs in Figure 3 showed that two RPCs—pool-provider and

internal-provider—consistently failed in tail requests. Al-

though the overall request succeeded, these failures in�ated

latency. Further investigation revealed that while most requests

were correctly handled by internal-provider, about 3% were

misrouted to an external-provider due to lingering code from

a discontinued pooling feature. This unnecessary invocation

Figure 3: pool-provider and internal-provider RPCs fail in

the P99 pro�les on two di�erent call paths but app-launch

succeeds. Wasteful pool-provider call consumes 27.8% of the

critical path.

of the pool-provider RPC, which was guaranteed to fail, was

responsible for signi�cant delays.

By eliminating the redundant pool-provider call, the team

achieved approximately a 30% reduction in tail latency for the

app-launch endpoint, with related endpoints also bene�ting

from up to a 10% latency improvement.
• User Customization Failure: For the get-stores-view endpoint,

redundant calls to get-user led to errors that accounted for 57%

of the P99 latency. A proposed solution is to implement request-

level caching to avoid repeated error invocations.
• Parallel Data Fetch Optimization: An internal API (fetchInfo)

issued concurrent queries to two data stores. In practice, the calls

were executed sequentially, leading to 50% wasteful work. Opti-

mizing the routing of these requests based on context (mobile

vs. web) can yield signi�cant improvements.

6 Conclusions

Our study of non-fatal errors in Uber’s microservice ecosystem

reveals that, although these errors do not cause outright request

failures, they incur a substantial latency penalty, especially at the

tail end of the distribution. The proposed latency-reduction estima-

tor quanti�es the potential bene�ts of eliminating such errors by

simulating an error-eliminated execution. Our key contributions

include a comprehensive characterization of error patterns, a novel

estimation methodology, and real-world case studies demonstrating

tangible performance improvements.

In summary, our �ndings emphasize that proactive error man-

agement and targeted optimization — by focusing on the most im-

pactful non-fatal errors — can lead to more e�cient, scalable, and

responsive microservice architectures. We believe these methods

broadly apply beyond Uber’s ecosystem, o�ering valuable insights

for any organization facing similar challenges. While this work fo-

cuses on non-fatal errors, the LR estimator methodology is general.

It can estimate latency changes due to increasing or decreasing the

duration of any set of RPCs in a complex microservice graph.

References
[1] I-Ting Angelina Lee, Zhizhou Zhang, Abhishek Parwal, and Milind Chabbi. 2024.

The Tale of Errors in Microservices. Proceedings of the ACM on Measurement and
Analysis of Computing Systems 8, 3, Article 46 (Dec. 2024), 36 pages.

[2] Yazhuo Zhang, Rebecca Isaacs, Yao Yue, Juncheng Yang, Lei Zhang, and Ymir
Vigfusson. 2023. LatenSeer: Causal Modeling of End-to-End Latency Distributions
by Harnessing Distributed Tracing. In Proceedings of the 2023 ACM Symposium on
Cloud Computing (Santa Cruz, CA, USA) (SoCC ’23). Association for Computing
Machinery, New York, NY, USA, 502–519.

[3] Zhizhou Zhang, Murali Krishna Ramanathan, Prithvi Raj, Abhishek Parwal, Timo-
thy Sherwood, and Milind Chabbi. 2022. CRISP: Critical path analysis of Large-
Scale Microservice Architectures. In 2022 USENIX Annual Technical Conference
(USENIX ATC 22). 655–672.


	Abstract
	1 Introduction
	2 Key Contributions
	3 Observations
	4 The LR estimator
	5 Case Studies and Outcomes
	6 Conclusions
	References

