Check for
Updates

The Tale of Errors in Microservices: Extended Abstract

I-Ting Angelina Lee
Washington University in St. Louis
Department of Computer Science & Engineering
St. Louis, Missouri, USA
angelee@wustl.edu

Abhishek Parwal
Uber Technologies Inc.
Marketplace Configurations
Sunnyvale, California, USA
abhishek.parwal@uber.com

Abstract

Microservice architectures have become the de facto paradigm for
building scalable, service-oriented systems. Although their decen-
tralized design promotes resilience and rapid development, the
inherent complexity leads to subtle performance challenges. In par-
ticular, non-fatal errors — internal failures of remote procedure
calls that do not cause top-level request failures — can accumulate
along the critical path, inflating latency and wasting resources.

In this work, we analyze over 11 billion RPCs across more than
6,000 microservices at Uber. Our study shows that nearly 29% of
successful requests experience non-fatal errors that remain hidden
in traditional monitoring. We propose a novel latency-reduction
estimator (LR estimator) to quantify the potential benefit of elimi-
nating these errors. Our contributions include a systematic study of
RPC error patterns, a methodology to estimate latency reductions,
and case studies demonstrating up to a 30% reduction in tail latency.

CCS Concepts

« Software and its engineering — Cloud computing; - Comput-
ing methodologies — Modeling methodologies; « Computer
systems organization — Reliability.

Keywords

Microservices, Non-fatal Errors, Latency Estimation, Critical Path
Analysis, RPC Errors, Performance Optimization

ACM Reference Format:

I-Ting Angelina Lee, Zhizhou Zhang, Abhishek Parwal, and Milind Chabbi.
2025. The Tale of Errors in Microservices: Extended Abstract. In Abstracts
of the 2025 ACM SIGMETRICS International Conference on Measurement
and Modeling of Computer Systems (SIGMETRICS Abstracts °25), June 9—
13, 2025, Stony Brook, NY, USA. ACM, New York, NY, USA, 3 pages. https:
//doi.org/10.1145/3726854.3727320

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).

SIGMETRICS Abstracts °25, Stony Brook, NY, USA

© 2025 Copyright held by the owner/author(s).

ACM ISBN 979-8-4007-1593-8/2025/06

https://doi.org/10.1145/3726854.3727320

61

Zhizhou Zhang
Uber Technologies Inc.
Programming Systems Group
Sunnyvale, California, USA
zzzhang@uber.com

Milind Chabbi
Uber Technologies Inc.
Programming Systems Group
Sunnyvale, California, USA
milind@uber.com

1 Introduction

Microservices decompose monolithic applications into small, inde-
pendently deployable services. Each service handles a distinct busi-
ness functionality and communicates via Remote Procedure Call
(or RPC for short) mechanisms (e.g., REST, gRPC, Thrift, YARPC).
Although this architecture supports agile development and scalable
deployment, it also results in complex call graphs.

A single user request may trigger hundreds of RPCs. Although
many of these RPCs succeed, our data shows that a substantial
fraction fail but remain non-fatal — the top-level request still
completes with a success code. Such “hidden” errors often arise
from best-effort calls or repeated lookups that fail for a portion of
requests. Developers frequently overlook these errors because they
do not show up in the final error metrics. Yet, these errors often
appear on the critical path [3], the longest sequence of dependent
RPCs in the request, inflating tail latencies and wasting resources.

At Uber, more than 6,000 microservices interact in a dynamic,
large-scale ecosystem catering to hundreds of millions of users. Our
distributed tracing system, Jaeger, samples over 840 million traces
daily; logging each RPC within the sampled request to provide a
detailed view of internal RPC behavior. Despite an overall RPC
error rate of only 0.9%, our analysis reveals:

o Approximately 29% of successful requests contain at least
one non-fatal error.

o Nearly 84% of user-exposed endpoints experience non-fatal
errors, while only 16% remain consistently error-free.

Such observations motivate the need for a systematic approach
to quantify and mitigate the impact of non-fatal errors.

2 Key Contributions
Our work makes the following key contributions:

(1) Comprehensive Characterization: We systematically study
RPC error patterns in large-scale microservices and demon-
strate that non-fatal errors are widespread and correlate
strongly with increased tail latency. By analyzing more than
52 million traces and 11 billion RPCs, we provide detailed
insights into error propagation, error types, and their impact
on performance.

Latency-Reduction Estimator: We introduce a novel method-
ology to simulate an “error-eliminated” execution by zeroing
out erroring RPCs while preserving causal dependencies.

—
)
~

SIGMETRICS Abstracts "25, June 9-13, 2025, Stony Brook, NY, USA

Num endpoints
(% total endpoints)

o

POPLY PP PP O P PP OO PP

% requests with non-zero non-fatal errors

Figure 1: Distribution of non-fatal errors over endpoints.

107

10°

10°
o — Error-free requests

104 e v s Requests w/ non-fatal errors -
£ ;

400

P99 request latency (us)

200 300

Endpoint ids
Figure 2: Latency is higher for requests with non-fatal errors
compared to that of error-free requests.

This approach yields an upper bound on the latency reduc-
tion potential.

(3) Practical Use Cases: We present case studies — such as
mobile app launch optimization, user customization failures,
and parallel data fetch inefficiencies — that demonstrate
how eliminating redundant or guaranteed-failure RPCs can
reduce tail latency, reduing the up to . In one case, we reduced
the latency by 30%.

3 Observations

Our analysis leads to several important observations:

Observation 1: Most endpoints (84%) experience a non-trivial
fraction of requests with non-fatal errors.

Observation 2: Requests with non-fatal errors often contain
multiple RPC errors, even when the overall failure rate is low.
Observation 3: The majority of non-fatal errors cluster around
four key types: entity not found, aborted, failed precondition,
and resource exhausted.

Observation 4: Non-fatal errors typically originate deeper in
the RPC call graph than fatal errors and exhibit short propagation
lengths.

Observation 5: Internal APIs exhibit a bimodal resiliency dis-
tribution—most either completely stop or propagate errors.
Observation 6: Requests with non-fatal errors perform more
work, on average having 1.9x more RPCs than error-free re-
quests.

Observation 7: Latency in requests with non-fatal errors is
significantly higher (1.8x median, 2.9 P99) compared to error-
free requests.

Observation 8: The LR estimator indicates a significant poten-
tial for latency reduction across many endpoints and APIs.
Observation 9: Non-fatal errors disproportionately impact tail
latency more than overall latency.

Figure 1 displays a histogram correlating the fraction of requests
with non-fatal errors (x-axis) to the number of endpoints (y-axis).
The first histogram bin shows that 288 endpoints had (0, 5%] of

62

I-Ting Angelina Lee, Zhizhou Zhang, Abhishek Parwal, and Milind Chabbi

their gateway requests containing at least one non-fatal error. As
the error rate increases, the number of affected endpoints decreases
and then spikes again, where 198 endpoints have over 95% of their
requests containing non-fatal errors—indicating these endpoints
consistently operate with errors.

Figure 2 compares the tail (99th percentile) latency of error-free
requests with those that have non-fatal errors. The x-axis repre-
sents different endpoints, and the y-axis is the 99th percentile of
request latency. The blue line shows error-free requests, whereas
the orange line shows requests with non-fatal errors. The P99 la-
tency of requests with non-fatal errors is, on average, 2.9X more
than the P99 latency of error-free requests.

4 The LR estimator

A key challenge in mitigating the impact of non-fatal errors is de-
termining which endpoints warrant deeper investigation. Straight-
forward approaches do not yield the desired outcome. For instance,
simply targeting endpoints with the highest number of non-fatal
errors is ineffective, since not all non-fatal errors affect overall la-
tency. Similarly, one can focus on endpoints with the most non-fatal
errors on the critical path; however, a larger number of non-fatal
errors does not necessarily translate into higher latency. Finally,
one might measure the impact of non-fatal errors on the critical
path using a method similar to [3]. Yet this, too, can be problematic
because eliminating erroneous RPCs might alter the critical path,
such that the resulting latency does not shrink proportionally to the
duration of the eliminated erroring RPCs from the original critical
path.

We propose a latency-reduction estimator (LR estimator) to
quantify the latency impact of non-fatal errors. The LR estimator
computes the hypothetical latency of an execution if all non-fatal
RPCs were eliminated while preserving the causal dependencies
among RPC calls. The LR estimator operates under two key assump-
tions:

(1) Zero Duration for Errors: All RPCs that return errors in
the observed execution are assumed to have zero duration
in the error-eliminated execution.

(2) Preservation of Dependencies: The causal relationships
among RPC calls are maintained. This ensures that inherent
sequence and delays dictated by program semantics remain
even when error durations are removed.

By applying these assumptions to a Jaeger trace, the LR estima-
tor simulates a new “error-eliminated” timeline and recomputes
the critical path of a request. The difference between the observed
latency and the hypothetical latency represents the maximum po-
tential improvement achievable by mitigating non-fatal errors.

Unlike naive methods that might subtract the duration of error-
ing RPCs, the LR estimator is cognizant of erroring RPCs occurring
off the critical path. Moreover, eliminating an error may cause shifts
in the critical path—sometimes revealing new bottlenecks. The LR
estimator recursively adjusts the timeline, ensuring that:

o The relative ordering of dependent RPCs is preserved.

e The minimal work required by parent services (before initi-
ating a child RPC) remains intact.

e Any shift in the critical path is recalculated, providing a
realistic estimate of latency reduction.

The Tale of Errors in Microservices: Extended Abstract

% latency Number of endpoints
reduction || Tail-1 | Tail-5 | Tail-10 | Tail-20 | Tail-50
(10, 20] 62 62 60 57 60
(20, 30] 24 22 22 26 25
(30, 40] 12 11 11 8 6
(40, 50] 8 10 9 8 13
(50, 60] 7 6 7 9 3
(60, 70] 7 7 7 6 8
(70, 80] 5 5 5 5 7
(80, 90] 6 6 6 5 2
(90, 100] 1 1 1 2 3

Table 1: Endpoint count with tail latency-saving potentials.

Using LR estimator, we performed analyses on a large set of
traces from production. Table 1 bins the endpoints by their saving
potential at different tail latencies. Tail-1% shows how much the
worst 1% (averaged from 99th to 100th percentile) of the latency can
be reduced by eliminating errors in those traces. Tail-5, Tail-10, Tail-
20, and Tail-50 are defined similarly. We notice that 62 endpoints
can reduce their Tail-1% latency by 10-20%; 24 endpoints can reduce
their Tail-1% latency by 20-30%; cumulatively, 26 endpoints can
reduce their Tail-1% latency by > 50%. Similarly, 60 endpoints
can reduce their Tail-50% latency by 10-20% and 25 endpoints can
reduce their Tail-50% latency by 20-30%. > 50%.

The LR estimator provides engineers with a robust and practical
tool to prioritize optimization efforts by precisely quantifying the
latency improvements achievable by mitigating non-fatal errors
across diverse endpoints and internal APIs. In contrast to previ-
ous work, such as LatenSeer [2], which also performs “what-if”
analyses on distributed traces, the LR estimator offers two critical
advantages. First, unlike LatenSeer’s probabilistic approach, which
provides limited guarantees, the LR estimator employs a determin-
istic methodology that rigorously maintains causal relationships.
Second, the LR estimator avoids the expensive, repeated training re-
quired by LatenSeer, which can take hours per endpoint; instead, LR
estimator incurs zero training cost and completes analysis rapidly
(e.g., only 1.5us for a large trace with 10,000 RPCs). Additional
details, proofs, and evaluations can be found in our full paper [1].

5 Case Studies and Outcomes

Our methodology was applied to multiple endpoints and internal
APIs at Uber. Notable use cases include:

e App-Launch Optimization: The mobile app launch workflow
is critical for our company due to its high usage and stringent
latency requirements. A request to the app-launch gateway
endpoint triggers numerous RPCs for state-machine transitions,
database queries, and other services. The LR estimator analysis
identified the app-launch endpoint as a major latency contribu-
tor, revealing a potential 27.8% reduction in P99 latency. Flame
graphs in Figure 3 showed that two RPCs—pool-provider and
internal-provider—consistently failed in tail requests. Al-
though the overall request succeeded, these failures inflated
latency. Further investigation revealed that while most requests
were correctly handled by internal-provider, about 3% were
misrouted to an external-provider due to lingering code from
a discontinued pooling feature. This unnecessary invocation

63

SIGMETRICS Abstracts ’25, June 9-13, 2025, Stony Brook, NY, USA

~state-machine "\ (state-machine

state-machine) internal-provide RPC pool-provider RPC
u‘\urnﬂg-vlrovg-ggpc always fails in P99 always fails in P99
Clgpid Sl \(~18% time on critical path) / \ (~22% time on critical path) /
(~4.5% time on critical path} N - \p - %

7 [state-machine ~ [statemach

pool-provider RPC
' always fails in P99
+_(~5.5% time on critical path)

[state-machinet] EP-4
[proxy) €7-3

~ . | App-launch o]
o1 €72 s e pres = - -
[presentation-layer] get-preferences. /-/ —
[gateway] launcher
Igatewey] app-aun e

Figure 3: pool-provider and internal-provider RPCs fail in
the P99 profiles on two different call paths but app-launch
succeeds. Wasteful pool-provider call consumes 27.8% of the
critical path.

of the pool-provider RPC, which was guaranteed to fail, was
responsible for significant delays.

By eliminating the redundant pool-provider call, the team
achieved approximately a 30% reduction in tail latency for the
app-launch endpoint, with related endpoints also benefiting
from up to a 10% latency improvement.

User Customization Failure: For the get-stores-view endpoint,
redundant calls to get-user led to errors that accounted for 57%
of the P99 latency. A proposed solution is to implement request-
level caching to avoid repeated error invocations.

Parallel Data Fetch Optimization: An internal API (fetchInfo)
issued concurrent queries to two data stores. In practice, the calls
were executed sequentially, leading to 50% wasteful work. Opti-
mizing the routing of these requests based on context (mobile
vs. web) can yield significant improvements.

6 Conclusions

Our study of non-fatal errors in Uber’s microservice ecosystem
reveals that, although these errors do not cause outright request
failures, they incur a substantial latency penalty, especially at the
tail end of the distribution. The proposed latency-reduction estima-
tor quantifies the potential benefits of eliminating such errors by
simulating an error-eliminated execution. Our key contributions
include a comprehensive characterization of error patterns, a novel
estimation methodology, and real-world case studies demonstrating
tangible performance improvements.

In summary, our findings emphasize that proactive error man-
agement and targeted optimization — by focusing on the most im-
pactful non-fatal errors — can lead to more efficient, scalable, and
responsive microservice architectures. We believe these methods
broadly apply beyond Uber’s ecosystem, offering valuable insights
for any organization facing similar challenges. While this work fo-
cuses on non-fatal errors, the LR estimator methodology is general.
It can estimate latency changes due to increasing or decreasing the
duration of any set of RPCs in a complex microservice graph.

References

[1] I-Ting Angelina Lee, Zhizhou Zhang, Abhishek Parwal, and Milind Chabbi. 2024.
The Tale of Errors in Microservices. Proceedings of the ACM on Measurement and
Analysis of Computing Systems 8, 3, Article 46 (Dec. 2024), 36 pages.

Yazhuo Zhang, Rebecca Isaacs, Yao Yue, Juncheng Yang, Lei Zhang, and Ymir
Vigfusson. 2023. LatenSeer: Causal Modeling of End-to-End Latency Distributions
by Harnessing Distributed Tracing. In Proceedings of the 2023 ACM Symposium on
Cloud Computing (Santa Cruz, CA, USA) (SoCC ’23). Association for Computing
Machinery, New York, NY, USA, 502-519.

Zhizhou Zhang, Murali Krishna Ramanathan, Prithvi Raj, Abhishek Parwal, Timo-
thy Sherwood, and Milind Chabbi. 2022. CRISP: Critical path analysis of Large-
Scale Microservice Architectures. In 2022 USENIX Annual Technical Conference
(USENIX ATC 22). 655-672.

[2

&

	Abstract
	1 Introduction
	2 Key Contributions
	3 Observations
	4 The LR estimator
	5 Case Studies and Outcomes
	6 Conclusions
	References

