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Abstract

Effective performance optimization of deep learning mod-
els requires comprehensive profiling across heterogeneous
computing environments, yet existing tools fail to bridge
the semantic gap between high-level operations and low-
level execution. This paper presents DEEPCONTEXT, a novel
profiling system that correlates program contexts across
Python code, deep learning frameworks, C/C++ libraries,
and GPU execution. DEEPCONTEXT features a framework-
agnostic shim layer that seamlessly correlates the behavior
of the deep learning framework with hardware performance
metrics. Furthermore, DEEPCONTEXT provides an automated
performance analyzer that offers actionable optimization
guidance based on its holistic view of the entire software
stack of deep learning applications. DEEPCONTEXT works for
mainstream deep learning frameworks and runs on modern
CPU+GPU architectures with low overhead. Our evaluation
demonstrates that DEEPCONTEXT uncovers previously hid-
den performance bottlenecks in real-world deep-learning
applications. Guided by DEEPCONTEXT, we are able to fix
multiple performance issues, achieving speed-ups between
1.06x and 1.66X.
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1 Introduction

The rapid advancement of deep learning has led to increas-
ingly complex models [3, 19, 46] deployed across diverse and
heterogeneous computing environments. Optimizing the
training and inference of these models is critical for improv-
ing performance and reducing computational costs [27, 33].
However, the sophisticated interactions between CPUs and
GPUs, coupled with the diversity of frameworks [11, 45]
and compilation modes [6], pose significant challenges for
developers seeking to identify and address performance bot-
tlenecks effectively.

Profiling tools play a critical role in identifying perfor-
mance issues in deep learning workloads. These tools in-
clude framework-specific solutions, such as the PyTorch
profiler [47] and the JAX profiler [32], as well as those pro-
vided by vendors, such as Nsight Systems [41], rocprof [5],
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Figure 1. Comparison of highlighted call paths w/o and w
framework contexts in two framegraphs [23].

and VTune [29]. The primary functionality of these tools is
tracing, which captures metrics associated with individual
CPU and GPU operations and displays them on a compre-
hensive timeline to assist users in investigating performance
bottlenecks.

The landscape of profiling tools presents significant chal-
lenges for comprehensive performance analysis and opti-
mization of deep learning workloads. Table 1 summarizes
the features and limitations across five categories of exist-
ing tools: system, hardware, framework, Python, and deep
learning profilers.

System profilers such as Linux perf and eBPF provide
strong CPU profiling capabilities and cross-framework sup-
port, but lack Python and framework context that is critical
for deep learning workloads. Hardware profilers (i.e., profil-
ers provided by hardware vendors) such as Nsight Systems,
rocprof, and Intel VTune offer hardware-specific insights
but have varying limitations: Nsight Systems lack frame-
work context; rocprof is particularly limited in its contextual
awareness; and all have constraints in cross-device profiling.
Framework profilers like JAX and PyTorch profilers pro-
vide good Python integration and some device context, but
are framework-specific. Dedicated Python profilers such as
Scalene offer Python visibility, but lack framework-specific
insights. Existing deep learning profilers such as XSP provide
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framework and device context but still miss the full stack
view.

These limitations significantly hinder thorough perfor-
mance analysis. For example, Figure 1 illustrates a key short-
coming. In Figure 1a, only the C++ code is visible in the call
path, obscuring where convolution operations originate, es-
pecially problematic since frameworks like PyTorch launch
backward and forward operators from different CPU threads.
This limitation makes it challenging to pinpoint performance
bottlenecks in complex models that may invoke hundreds of
convolution operations [26]. In contrast, Figure 1b reveals
both the Python call path and the associated deep learning
operators, providing deeper insights for optimization.

Additionally, most existing tools [5, 32, 35, 47] trace and
record every operation, generating enormous profiles for
long-running training workloads. This not only consumes
excessive memory resources, but also makes bottleneck iden-
tification tedious and manual. While some tools can aggre-
gate metrics postmortem for individual kernels, they cannot
streamline metrics aggregation online to reduce profile size
or differentiate between instances called from different con-
texts for automated problem identification.

The incompatibility across platforms and frameworks fur-
ther complicates analysis. Vendor tools such as Nvidia’s
Nsight suite work with multiple frameworks on Nvidia GPUs,
but are incompatible with AMD GPUs. Similarly, framework-
specific tools such as the PyTorch profiler support both AMD
and Nvidia GPUs, but cannot handle JAX workloads. This
siloed approach increases the learning curve and limits cross-
referencing across frameworks and hardware, making it dif-
ficult for users to determine optimal configurations for their
specific workloads.

To address these challenges, we introduce DEEPCONTEXT,
a novel profiler that delivers comprehensive performance
insights for deep learning workloads. As shown in Table 1,
DEeerPCONTEXT captures all critical program context infor-
mation across the entire software and hardware stack, en-
abling the identification of performance issues from high-
level Python code down to the device code on GPUs. It pro-
vides cross-GPU profiling capabilities and maintains visibil-
ity across multiple frameworks—supporting both PyTorch
and JAX on AMD and Nvidia GPUs, as well as x86 and ARM
CPUs. By effectively collecting, attributing, and aggregating
performance metrics, DEEPCONTEXT facilitates an in-depth
analysis of performance bottlenecks and reveals optimiza-
tion opportunities at the architectural and system levels that
conventional profiling tools typically miss.

This paper presents the design, implementation, and eval-
uation of DEEPCONTEXT and makes the following contribu-
tions:



DeepContext: A Context-aware, Cross-platform, and Cross-framework Profiling Tool

ASPLOS 25, March 30-April 3, 2025, Rotterdam, Netherlands

Table 1. Comparison of DEEPCONTEXT with existing profiling tools. (v = supported; X= not supported.)

Profiling Tools Python Framework C++ Device  Cross Cross CPU

Category Name Context Context Context Context GPUs Frameworks Profiling

Linux perf [36] X X V4 X X V4 V4
System Profil

ystem Trolilers eBPF [30, 31] X X v X X v v
Hardware Nsight Systems [41] v X v X X v v
Profilers rocprof [4] X X X X X X X
Intel VTune [29] X X v X X v v
Framework JAX profiler [32] v X X X v X v
Profilers PyTorch profiler [47] v v X X v X v
Python Profilers Scalene [8] v X X X X v v
Deep Learning XSP [35] X v X v X v X
Profilers DEEPCONTEXT (our tool) v v v v v v v

e We introduce a “shim” layer—DLMonNITOR—that converts
deep learning framework-specific data into a framework-
agnostic format, enabling seamless integration of frame-
work information with third-party performance tools.

e We design an automated performance analyzer that pro-
vides actionable optimization suggestions based on per-
formance metrics and program contexts. Such optimiza-
tion suggestions include fusing operators, changing data
layouts, modifying hardware configurations, and many
others.

e We adopt a series of optimizations to reduce the runtime
overhead and memory and storage requirements of DEEP
CONTEXT to enable it running on real deep learning ap-
plications, which typically have complex code hierarchies
and long execution time.

We evaluated DEEPCONTEXT using a diverse range of
deep learning workloads across various platforms and frame-
works, demonstrating that DEEPCONTEXT significantly saves
memory and disk space usage with similar runtime over-
head compared to the state-of-the-art performance tools.
Through case studies, we show that DEEPCONTEXT can ef-
fectively identify performance issues and suggest insightful
code changes, enabling straightforward optimization of deep
learning models. Even users with limited experience in deep
learning frameworks or CPU and GPU architectures can
achieve speedups ranging from 1.06X to 1.66X.

2 Related Work

In this section, we review existing approaches about deep
learning profilers, call path profiling, and automated perfor-
mance analysis.

Deep Learning Profilers. Many profilers can measure
deep learning workloads. These tools include vendor-
provided tools such as Nsight Systems [41], VTune [29],
rocprof [4] and DLProf [13], as well as framework-based tools
such as the JAX profiler [32] and the PyTorch profiler [47].
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However, these tools often focus on specific frameworks or
platforms with limited applicability.

Some workload-specific profilers, such as RL-Scope [22]
and XSP [35], analyze interactions across layers of the deep
learning stack to identify bottlenecks that are not obvious
when examining individual layers. DEEPCONTEXT advances
these tools by employing a generic solution for different
frameworks, GPUs, and platforms.

There are profilers that post-process metrics from existing
profiling tools. For instance, Hotline Profiler [50] introduces
a multi-scale timeline with annotations for DNN training,
based on the postmortem analysis of results from the Py-
Torch profiler [47]. Similarly, DLProf [13] analyzes the re-
sults collected from Nsight Systems. Since these tools do not
modify the runtime, they suffer from the same limitations as
trace-based profilers, which incur significant memory and
disk overhead.

Skyline [56], as the most related tool to our tool, offers an
interactive profiling experience by integrating the profiler
into the development environment. However, unlike DEEP
CoNTEXT that intercepts “native” C/C++ operations, Skyline
uses monkey patching [9] for PyTorch Python operations,
which introduces overhead and prevents it from obtaining
native call path information. Additionally, it does not interact
with vendor-provided profiling substrates, limiting its ability
to gather abundant low-level information using performance
counters.

Call Path Profilers. General performance tools such as
HPCToolkit [59], TAU [49], perf [36], and DrCCTProf [58] of-
fer call path profiling and performance analysis for low-level
languages such as Fortran and C/C++. These tools provide
deep insights into the complex behaviors of the underlying
software stack and operating system, offering a complemen-
tary perspective to what deep learning profilers may miss.
Additionally, some of these tools can sample a large set of
CPU performance counters, going beyond coarse-grained
metrics. However, these tools often lack integration with
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Python runtime and deep learning frameworks, limiting their
effectiveness in profiling multi-language environments.

On the other hand, Python-specific profiling tools like
Scalene [8] and cProfile [21] provide effective analysis of
Python call paths but lack the ability to analyze call paths
in lower-level languages. Moreover, they can only collect
limited information about accelerators. DEEPCONTEXT ad-
dresses these shortcomings by providing a comprehensive
call context that spans every level of the software stack, ef-
fectively bridging the gap between native language profiling
and high-level language analysis.

Automated Performance Analysis. Existing automated
performance analysis tools often target specific or limited do-
mains. For instance, tools such as NCU [14] and GPA [61] fo-
cus on pattern matching of GPU kernels using expert-defined
rules based on fine-grained metrics. These tools provide in-
sights into how and where to modify kernel source code
to improve performance. On the other hand, tools such as
Nsight Systems [41] and DLProf [13] analyze trace patterns
to provide coarse-grained recommendations. They offer in-
sights into which GPU operations are expensive and whether
the CPU is causing performance bottlenecks. However, these
tools do not consider both low- and high-level contexts simul-
taneously. In contrast, DEEPCONTEXT introduces a pattern
matching system that allows flexible rules to be defined for
analysis, incorporating low- and high-level contexts based
on fine- and coarse-grained metrics. This approach provides
a more holistic view of performance issues, enabling more
flexible analysis and effective optimizations.

3 Overview

DEEPCONTEXT is designed to achieve multiple objectives,
including providing a holistic view that spans high- and
low-level contexts, enabling cross-framework profiling, and
supporting fast or even automated performance analysis.
Each of these objectives presents unique challenges: (1) High-
and low-level contexts are obtained through different meth-
ods, as Python is interpreted while C++ is compiled, and
framework-specific information cannot be obtained simply
by examining either C/C++ or Python code alone. (2) Differ-
ent frameworks are implemented in vastly different ways,
making direct instrumentation of their source code to cap-
ture information both unstable and unmaintainable. (3) For
complex deep learning workloads, the profiling database will
include extensive program context, numerous GPU kernel
invocations, and various metrics, making it challenging to
manually identify performance issues.

To address these challenges, DEEPCONTEXT is structured
into four primary components, as shown in Figure 2, each
designed to handle distinct aspects of performance profiling
for deep learning workloads. The profiler is responsible for
collecting, attributing, and aggregating performance metrics.
It gathers performance metrics from Nvidia and AMD GPUs
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Figure 2. Major components of DEEPCONTEXT.

through the CUPTI [40] and RocTracer [5] APIs, and from
CPUs through Linux system calls, Perf events [36], and the
PAPI API [55]. Once the program context is obtained from
DLMONITOR, the profiler associates the metrics collected
with the program context and aggregates the metrics within
the same context when necessary. DLMONITOR serves as
a “shim” layer between the profiler and the deep learning
framework. It allows the profiler to intercept framework op-
erations during the execution of deep learning frameworks
and provides a comprehensive context when the profiler
calls DLMoNITOR. Next, the performance analyzer processes
the collected data postmortem, identifying performance bot-
tlenecks and optimization opportunities. Finally, the GUI
presents the analyzed data in an intuitive format, compatible
with Visual Studio Code [37], to facilitate interpretation and
inspection of performance issues.

4 Design and Implementation

This section is organized into five subsections: four dedicated
to the aforementioned modules of DEEPCONTEXT, and a fifth
that discusses how DEEPCONTEXT s modular design facili-
tates updates as profiling APIs evolve, while also explaining
its support for diverse GPU generations and features.

4.1 DLMONITOR

DLMoNITOR is a key component of DEEPCONTEXT, provid-
ing a unified interface for obtaining call paths and registering
callbacks within deep learning frameworks. Profilers interact
with deep learning frameworks by invoking DLMONITOR’s
APIs. The core APIs include:

e dlmonitor_init:Initializes DLMONITOR’s shared library,
libdlmonitor. so, which is typically loaded at the start
of execution using utilities like LD_PRELOAD.

e dlmonitor_callback_register: Registers the callback
specified by profilers to intercept operations in a specific
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domain, such as deep learning frameworks and GPU run-
time.

e dlmonitor_finalize: Disables DLMONITOR monitoring
and releases all interceptions.

e dlmonitor_callpath_get: Constructs and returns a
multi-layer call path to the profiler.

In Figure 3, we illustrate how DEEPCONTEXT provides
multi-layer insights that differentiate it from comparable
tools like Nvidia Nsight and perf/eBPF. Figure 3 (a) shows the
limited call path visibility provided by traditional profilers,
which only capture C/C++ frames (native call path) without
contextual information about Python code, deep learning
framework operations, or GPU kernel execution details. In
contrast, Figure 3 (b) demonstrates DEEPCONTEXT’S compre-
hensive call path construction through DLMONITOR, which
seamlessly integrates frames from all critical layers: high-
level Python code, framework operators, native C/C++ func-
tions, GPU kernel invocations, and even execution metrics
within GPU kernels. This multi-layer visibility enables DEEP
CONTEXT to establish precise correlations between high-level
operations and low-level performance bottlenecks while sup-
porting runtime metric aggregation across the entire soft-
ware stack. By maintaining these cross-layer relationships,
DeEPCONTEXT can attribute performance issues to specific
framework operators or Python functions—a capability that
remains beyond the reach of hardware-focused tools like
Nvidia Nsight or system-level profilers like perf/eBPF. In the
following, we describe implementation details about how
DLMOoNTITOR intercepts operations and constructs call paths.

Intercepting Framework Operations. DLMONITOR

intercepts operations in PyTorch and JAX, al-
lowing profilers to register callbacks wusing the
dlmonitor_callback_register function before and

after each operation. Here, the domain provided to the func-
tion is DLMONITOR_FRAMEWORK. Interception points include
individual deep learning operators (e.g., torch.matmul),
the start and end of compute graph compilation, and
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tensor memory allocation/deallocation. At these points,
profilers can access information such as operators in-
puts and outputs, and retrieve the full call path via the
dlmonitor_callpath_get function.

DLMon1ToR employs different mechanisms to support
PyTorch and JAX, ensuring compatibility with frameworks
installed via pip wheels without source code modifications. For
PyTorch, it leverages PyTorch’s aten: :addGlobalCallback
interface, which allows for invoking customizable call-
backs at various points. Unlike PyTorch, implementing
DLMoni1Tor for JAX presents two challenges. First, JAX does
not inherently support registering callbacks before and after
each deep learning operator. Second, while PyTorch’s eager
mode is widely used, where each operator is executed indi-
vidually, JAX compiles operators into computation graphs
with fused operations before execution. Once compiled, the
runtime call path of each operator differs from its call path
in the original code where it was compiled from. To address
these challenges, we implemented a lightweight binary in-
strumentation utility that allows JAX to provide profiling
information comparable to that of PyTorch. Specifically, to
address the first challenge, we utilize binary instrumentation
to intercept JAX’s compilation function for passes of compu-
tation graphs and insert callbacks before and after each JAX
operator after the very last pass. For the second challenge,
we record the mappings between fused operators to original
ones (Figure 4) in the operator fusion pass. The call path of
each original operator is recorded during the compilation
phase, while the call path of the fused operator is recorded
at runtime. In the GUIL, we display all possible original call
paths associated with the runtime call path of each fused
operator.

Just-in-time compilation

1
1
1
1
1
1
1
1
—
1
1
1
1
1
1
1
]
<

Actual
call
paths

Runtime
call
paths

S

Captured during the compilation phase

Figure 4. DLMoONITOR intercepts JAX’s compilation phase
to map fused operators to original ones.

Intercepting GPU APIs. In addition to intercepting
framework operations, DLMoONITOR can intercept GPU
APIs, such as kernel launches, memory copies, and
memory allocation/free operations. To enable it, pro-
filers indicate the domain as DLMONITOR_GPU to the



ASPLOS 25, March 30-April 3, 2025, Rotterdam, Netherlands

dlmonitor_callback_register function. Profilers that
register callbacks for GPU APIs can capture not only ar-
guments and results about lower-level APIs, but can ob-
tain frames between the low-level APIs and framework op-
erations. DLMONITOR registers callbacks using CUPTI for
Nvidia GPUs and RocTracer for AMD GPUs. To extend
DLMonIToR for hardware that does not have a vendor-
provided callback mechanism, users can define the function
signature of the driver function and its in a configuration file.
DLMonrToRr will register custom callbacks using LD_AUDIT
for all functions recorded in the configuration file.

Call Path Integration. One key innovation of
DLMONITOR is its ability to assemble a unified call path
that spans from high-level Python code to low-level
GPU kernel execution. At each interception point, if
dlmonitor_callpath_get is called, DLMONITOR retrieves
call paths from multiple sources. The Python call path
is obtained using CPython’s PyFrame-related APIs. The
“native” call path, which includes C/C++ function symbols,
is captured using libunwind [38]. The framework call path
is maintained via a shadow stack in each CPU thread.
DLMonITOR updates the stack for operators as they are
entered and exited, along with their corresponding memory
locations. dlmonitor_callpath_get also allows users to
choose which specific call path source to integrate or ignore
to reduce overhead.

Next, DLMONITOR integrates these three call paths into a
single comprehensive call path. It traverses the native call
path in a bottom-up direction, matching the address of each
frame with the recorded addresses of deep learning operators.
If a match is found, DLMoNITOR inserts the operator name
under the caller frame. If a frame’s address falls within the
libpython.so address space (recorded using LD_AUDIT), all
frames above it are replaced with the Python call path. If
we are at a GPU kernel launch callback, we read parse the
function object (e.g., CUfunction) to obtain the kernel name
and insert it to the bottom of the call path.

Optimizations. We have implemented optimizations
to provide more insights and reduce the overhead of
DLMONITOR.

Forward and backward operator association. In PyTorch,
when training is enabled, the backward method initiates
backward propagation from the leaf operators to the root
of the computation graph. New CPU threads, called back-
ward threads, are created for each GPU device to handle this
process. As a result, the native call path of an operator ob-
tained from a backward thread loses the original context
of the forward operator, with no Python source code avail-
able. This issue is particularly problematic for GPU kernels
without meaningful names, such as the elementwise ker-
nel in PyTorch, as it becomes difficult to trace which source
code triggered these calls. To address this, we record each
forward operator’s call path and sequence ID. In PyTorch,
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all backward operators associated with a forward operator
share the same sequence ID. Using the sequence ID, the back-
ward thread looks up the forward CPU thread, fetches the
Python and framework call path of the corresponding for-
ward operator, and integrates it with the native call path of
the backward operator obtained from the backward thread
itself.

Call path caching. Unwinding call paths from multiple
sources is expensive, particularly when GPU APIs are fre-
quently invoked in deep learning workloads. To mitigate
this overhead, we leverage the observation that multiple
GPU kernels launched within the same deep learning opera-
tor typically share identical Python and operator call paths.
Based on this insight, we implement a caching mechanism
that stores both the Python call path and the deep learn-
ing operator information in a thread-local variable upon the
operator’s first invocation.

To accommodate varying performance requirements, we
support two operational modes with different overhead:

1. Lightweight Mode: This mode produces a simplified
call path that includes Python context while avoiding
expensive native unwinding. Since native call path
collection is disabled in this mode, we concatenate the
shadow call path, GPU API, and GPU kernel function
with the cached Python call path from the thread-local
variable, bypassing the costly native stack unwinding
process entirely.

2. Comprehensive Mode: This mode generates a com-
plete cross-language call path that captures both
Python and C++ execution contexts. We utilize libun-
wind’s unw_step to retrieve native frames incremen-
tally, constructing the native call path in a bottom-up
fashion until we reach the cached deep learning oper-
ator. We then combine this native segment with the
previously cached Python call path to form a compre-
hensive execution trace.

4.2 Profiler

In this section, we describe how DEEPCONTEXT’s profiler col-
lects GPU and CPU metrics and attributes them to a calling
context tree as shown in Figure 5.

Calling Context Tree. The calling context tree is con-
structed by inserting call paths obtained from DLMONITOR
and collapsing frames that refer to the same locations. For
C/C++, GPU API, and GPU kernel frames, two frames are
considered the same if they share the same library path and
program counter (PC). For Python frames, they are compared
by file path and line number, while framework-based frames
are checked by operator names. Each node in the calling con-
text tree maintains a list of metrics, which are aggregated by
sum, minimum, average, and standard deviation for metrics
of the same type. Once a metric has been updated at the
bottom of a call path, it is propagated to the root node of the
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Figure 5. Operations for building a calling context tree and
adding performance metrics.

calling context tree, updating the metric along the entire call
path.

GPU Metrics. DEEPCONTEXT can collect both coarse- and
fine-grained metrics on Nvidia and AMD GPUs. Example
coarse-grained metrics include time, parallelism, and shared
memory usage, and fine-grained metrics include instruction
samples of GPU kernels. It first registers callbacks for GPU
APIs using DLMONITOR, then specifies the metrics to pro-
file by calling CUPTI or RocTracer APIs. At each callback,
the profiler emits a unique correlation ID, retrieves the call
path, and associates the correlation ID with the call path.
GPU metrics are gathered asynchronously without blocking
GPU API calls from the CPU. When the GPU buffer storing
metrics is full, DEEPCONTEXT flushes the metrics, using the
correlation ID to link and aggregate them with the corre-
sponding call path. Note that if fine-grained metrics, such
as instruction samples, are collected, we will extend the call
path by inserting the PC of each instruction collected.

CPU Metrics. DEEPCONTEXT can profile GPU metrics and
CPU metrics in the same run using Linux system calls or
CPU measurement substrates. For example, DEEPCONTEXT
invokes the sigaction system call to registers a signal call-
back for CPU_TIME and REAL_TIME events. Once a sample is
triggered, it will get the current CPU or REAL time, subtract
the previous timestamp from it, and use the result as the in-
terval between two samples. Next, DEEPCONTEXT will obtain
the current call path by calling dlmonitor_callpath_get
and associate the interval with the call path. The profiler can
also register Linux perf events or invoke PAPI API to obtain
metrics from hardware counters.

4.3 Performance Analyzer

The performance analyzer of DEEPCONTEXT provides a com-
prehensive framework for analyzing the profile results and
identifying potential performance issues in deep learning
workloads. It initializes the analysis environment by map-
ping GPU/CPU instructions back to the source code using
the DWARF information. We have designed a flexible Python
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interface allows analysis from three key dimensions, typi-
cally executed through a workflow of call path search, metrics
analysis, and visualization. The process starts with (1) Pro-
gram Structure Analysis, which traverses calling contexts
and matches call paths given patterns. This is followed by
() Model Analysis and (3) Operator Analysis, where perfor-
mance metrics are queried for semantic nodes (such as train-
ing, inference, loss functions, and individual operators) and
custom filters are applied to detect potential issues. Finally,
the detected problems are flagged with warning messages
and reported in the GUIL

Example Analyses. Beyond custom analysis created by
users, DEEPCONTEXT implements a set of example analyses
to detect common performance issues using the analysis API.
Below we demonstrate some of the example analyses:

@ Hotspot Identification

This analysis identifies the nodes that spend more time than
a given threshold and returns their call paths.

1 total_time =
2 for n in call_tree.kernels:

3 if n.time / total_time > hotspot_threshold:

4 flag_hotspot(n)

@ Kernel Fusion Analysis

This analysis detects potential inefficiencies caused by the
launch of many small kernels by identifying frames that
contain a large number of kernels with short GPU execution
times.

call_tree.root.time

1 for n in bfs(call_tree.nodes):
2 if n.gpu_time / n.count < gpu_threshold:

3 flag_issue(n, "Small_GPU_kernels")

© Forward/Backward Operator Analysis

This analysis identifies deep learning operators whose back-
ward pass takes significantly longer than the forward pass,
potentially indicating optimization opportunities because
backward phase shouldn’t take significantly longer than its
forward counterpart.

1 for n in call_tree.operators:

2 if n.backward.time / n.forward.time > 2:
3 flag_issue(n, "Backward_abnormality")

O Fine-grained Stall Analysis

This analysis identifies fine-grained stall reasons within
hotspot GPU kernels. Stall reasons for each GPU instruc-
tion can be collected using the instruction sampling APIs
available on Nvidia and AMD GPUs.

1 hotspots = hotspot_analysis(call_tree)

2 stalls = []

3 for n in hotspots:

4 for ¢ in n.children:

5 if c.stalls > stall_threshold:

6 stalls.append(c)

7 topk (stalls)

8 "Kernel_is_mainly_stalled_by._{

stall_reasons =
flag_issue(n,
stall_reasons}")
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@ CPU Latency Analysis

This analysis traverses the calling context tree in the top-
down manner to identify frames whose CPU time is signif-
icantly higher than GPU time, indicating potential imbal-
anced workload or synchronization issues.

1 for n in bfs(call_tree.nodes):

2 if n.cpu_time / n.gpu_time > cpu_threshold:

3 flag_issue(n, "CPU_time_abnormality")

44 GUI

DeePCONTEXT integrates a lightweight GUI built on the VS-
Code API, supporting VSCode and other compatible IDEs
such as VSCodium [2] and Eclipse Theia [1]. It features inter-
active flame graphs [23] with both top-down and bottom-up
views for visualizing calling context trees, and highlights
performance hotspots identified by the performance ana-
lyzer. Users can click on frames to inspect detailed metrics
and navigate directly to relevant source code, streamlining
the performance debugging process.

4.5 API and Hardware Adaptability

DeePCoNTEXT s modular architecture enables efficient adap-
tation to evolving frameworks and hardware through clear
separation of component dependencies. Referring to the com-
ponent division shown in Figure 2, DLMONITOR component
only requires updates when framework APIs change, while
the Profiler component is updated only when hardware pro-
filing interfaces evolve. Meanwhile, the Performance Ana-
lyzer and GUI remain framework and hardware-agnostic,
operating solely on abstracted performance data. This tar-
geted update approach minimizes maintenance overhead as
deep learning frameworks like PyTorch and JAX frequently
modify their internal structures.

DEEPCONTEXT achieves robust cross-generation hardware
support through abstracted profiling interfaces that leverage
common APIs across GPU generations (CUPTI for Nvidia,
RocTracer for AMD). The Profiler’s abstraction layer maps
vendor-specific metrics to a unified internal representation,
automatically adapting to hardware capabilities at runtime.
Additionally, DEEPCONTEXT supports extension mechanisms
including configuration-based hardware support through
LD_AUDIT, a plugin architecture for new metric collection
mechanisms, and framework-agnostic analysis patterns. This
modular design ensures DEEPCONTEXT can evolve alongside
the rapidly changing landscape of deep learning frameworks
and hardware accelerators while maintaining long-term via-

bility.

5 Evaluation

Platforms. We evaluated DEEPCONTEXT’s overhead on
two platforms: one with an AMD EPYC 7543 CPU, 256 GB
RAM, and an NVIDIA A100 SXM GPU (80 GB, 108 SMs,
156 TF32 TFLOP/s, 2 TB/s bandwidth), and the other with
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the same CPU, 2048 GB RAM, and an AMD MI250 GPU
(64 GB, 208 Compute Units, 362.1 FP16 TFLOP/s, 3.2 TB/s
bandwidth).

Workloads. We used DEEPCONTEXT to profile the ML-
Commons Algorithm Efficiency benchmark [16], imple-
mented in both PyTorch [6] and JAX [11]. We evaluated
the eager mode of PyTorch and the JIT mode of JAX. We run
each model for 100 iterations using different profiling tools.

The following workloads and datasets were used.

e Conformer [25] with the LibriSpeech [44] dataset.

e DLRM-small [39] with the Criteo 1TB [15] dataset.

e U-Net [48] with the fastMRI [57] dataset.

e GNN [7] with the OGBG-MOLPCBA [28] dataset.

e ResNet [26] with the ImageNet [17] dataset.

e Vision Transformer [18] with the ImageNet dataset.

e Transformer-Big [54] with the WMT[10] dataset.

e Llama 3 [19] inference with a sample prompt from
huggingface official example.

e Gemma [52] with the same prompt as Llama 3.

e nanoGPT [34] with the same prompt as Llama 3.

Results. We measured the end-to-end running time of
each workload under three circumstances: without profiler
enabled, DEEPCONTEXT with Python and framework call
paths obtained from DLMoNITOR, and DEEPCONTEXT with
Python, deep learing framework, and native C/C++ call paths.
Then we divide the running time of DEEPCONTEXT enabled
by the running time without DEEPCONTEXT enabled to cal-
culate the overhead, as shown in Figure 6.

We measured the end-to-end running time of each work-
load under four circumstances: without profiler enabled, with
framework profiler (PyTorch profiler or JAX profiler) enabled,
DEePCONTEXT operating in Lightweight Mode (collecting
only Python and framework call paths), and DEEPCONTEXT
operating in Comprehensive Mode (collecting Python, deep
learning framework, and native C/C++ call paths). Then we
divide the running time of DEEPCONTEXT or framework pro-
filer enabled by the running time without profiler enabled
to calculate the overhead, as shown in Figure 6. In the fig-
ure, "Framework Profiler" refers to the PyTorch profiler in
PyTorch workload tests and the JAX profiler in JAX work-
load tests, "DeepContext" corresponds to our tool running
in Lightweight Mode, and "DeepContext Native" represents
our tool operating in Comprehensive Mode.

The median running time overhead of DEEPCONTEXT is
1.12x and 1.50x for PyTorch on Nvidia and AMD GPUs, re-
spectively. For JAX, its median overhead is 1.33%X and 1.28%
on Nvidia and AMD GPUs, respectively. When the C/C++ na-
tive call path is not collected, we observed median overheads
of 1.50x and 1.90x for PyTorch, and 1.60x and 1.46X for JAX,
on Nvidia and AMD GPUs, respectively. The overhead with
native call path is higher than the variant without the na-
tive call path due to the additional overhead in unwinding
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Figure 6. Comparison of time and memory overheads (normalized to baseline without profiling) across various workloads

using DEEPCONTEXT, the PyTorch profiler, and the JAX profiler.

C/C++ call paths and concatenating them with Python and
framework call paths.

The median running time overhead of DEEPCONTEXT in
Lightweight Mode is 1.12X and 1.50% for PyTorch on Nvidia
and AMD GPUs, respectively. For JAX, its median over-
head in Lightweight Mode is 1.33% and 1.28X on Nvidia
and AMD GPUs, respectively. When operating in Compre-
hensive Mode, we observed median overheads of 1.50x and
1.90x for PyTorch, and 1.60%x and 1.46X for JAX, on Nvidia
and AMD GPUgs, respectively.
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In comparison, PyTorch profiler incurs a median overhead
of 1.06x and 1.01x on Nvidia and AMD GPUs, respectively.
JAX profiler incurs a median overhead of 1.17X and 1.10x
on Nvidia and AMD GPUs, respectively. Without native call
path collection, the overhead of DEEPCONTEXT is compara-
ble to that of framework profilers. We do observe a much
higher time overhead from profiling Llama3 and Gemma-7B
using PyTorch. The overhead is caused by two factors: our
frame unification system, which identifies the same file path
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Table 2. Summary of case studies.

Qidong Zhao et al.

Deep Learning Model Dataset Platform Analysis Client Optimization Method Speedup

B . L . replace aten: :index

DLRM-small Criteo 1TB Nvidia @ Forward/Backward Operator Analysis with aten: : index_select 1.66X
1 1
GNN OGBG-MOLPCBA Nvidia @ Forward/Backward Operator Analysis reprace at‘en Lndex 1.07x
with aten: :index_select

Avoid ch 1_firstt

UNet fastMRI Nvidia @ Hotspot Identification void channeZ_tirst to 1.28%
channel_last conversion
1 . Match worker_num
UNet fastMRI Nvidia @ CPU Latency Analysis with #CPU cores 1.15%
. - . . Fuse small kernels

Transformer-Big WMT Nvidia @ Kernel Fusion Analysis . . 1.06x

using torch.compile

Use fast data t

Llama3 Sample Prompt Nvidia @ Fine-grained Stall Analysis se ast cala type 1.25%

conversion instructions
UNet fastMRI AMD & Nvidia @) Hotspot Identification Use pinned memory N/A
DLRM-small Criteo 1TB Nvidia-JAX @ Kernel Fusion Analysis Fuse small kernels 1.11x
UNet fastMRI Nvidia-PyTorch N using torch.compile 1.02x

and line number, and our metrics aggregation and propaga-
tion mechanism along the call paths, introduces additional
overhead. These two factors are especially significant with
such workloads launch many small kernels.

The median memory overhead of DEEPCONTEXT is 1.00X-
2.44x, compared with that of 1.29x-27.28x and 1.27X-6.98%
of PyTorch and JAX profilers, respectively. Note that the
memory overhead of the framework profilers will increase
with the increase in the number of iterations. Also, the Py-
Torch profiler encountered out-of-memory issues when ex-
porting the profiling database to disk, failing to provide any
insights for optimization. DEEPCONTEXT incurs significant
lower memory overhead compared to these tools because it
aggregates metrics at runtime and thus is more feasible for
long-running workloads.

6 Insights obtained by DEEPCONTEXT

In this section, we present seven performance optimization
cases conducted using additional insights obtained from
DeerPCoONTEXT, which were not discoverable through vendor-
specific profiling tools alone. By comparing DEEPCONTEXT’s
cross-layer analysis capabilities with industry-standard tools
like Nvidia Nsight Systems, Nsight Compute, and AMD
rocprof—each selected as the most capable tool for its respec-
tive case—we demonstrate how DEEPCONTEXT’s unified view
of Python code, framework operations, and hardware execu-
tion reveals critical optimization opportunities that remain
hidden when using conventional profilers. These cases span
diverse workloads including DLRM [39], U-Net [48], Trans-
former [54], GNN [7], and Llama3 [19] models across both
Nvidia and AMD platforms, resulting in performance im-
provements of 6-40%, as summarized in Table 2. For each case,
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we highlight the specific advantage of DEEPCONTEXT s multi-
layer approach over the most relevant vendor tool, focus-
ing on the comparison that best illustrates DEEPCONTEXT’s
added value.

6.1 Forward/backward Operator Analysis

Show Metric:  [Nel Ul N NGMEIZ0]3)) v
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Figure 7. Forward-Backward association view of the DLRM-
small workload.

We profiled the DLRM-small workload using the Criteo
1TB dataset on the A100 platform. In DEEPCONTEXT’s bot-
tom up view, we noticed that the hotspot is on the
indexing_backward_kernel kernel (30.5s), which takes
39.6% of the total GPU kernel time. Using the DEEp
ConTExT’s framework call path, which associates the
forward call path with the corresponding backward ker-
nels, we found that this GPU kernel is triggered by
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the backward computation of aten::index called by
embedding_table[idx_lookup], as illustrated in Figure 7.

It should be noted that while the backward computa-
tions of aten: :index take 39.9% of the total time, the for-
ward computation takes only 0.8% of the total time. This
discrepancy is caused by the deterministic nature [24] of
aten::index, which serializes GPU threads accessing the
same memory location and is unnecessary in this workload
if determinism is not required. To optimize the code, we
substituted aten: :index with a non-deterministic opera-
tor aten: :index_select, which uses atomic operations in
the backward phase to avoid serialization and reduced the
total GPU time from 73.2s to 44.0s. We also observed
the same problem in the GNN workload; applying the same
optimization reduced the total GPU time from 3.97s to
3.71s.

Comparison with Nsight Systems. Although Nsight Sys-
tems can capture the indexing_backward_kernel asa GPU
hotspot, it does not automatically correlate backward ker-
nels with their corresponding forward operators in a unified
top-down or bottom-up hierarchy. Consequently, users must
manually traverse event traces to identify the invocation
context of the corresponding forward operator aten: : index
(with DL framework expertise) to make optimizations. In
contrast, DEEPCONTEXT integrates framework call paths,
providing a direct link between the backward kernel and its
forward invocation site, facilitating the determination of the
feasibility of non-deterministic optimization and streamlin-
ing the modification of the source code.

6.2 Hotspot Identification with Call Path

When profiling U-Net using the fastMRI dataset on the A100
platform, we observed that the cudnn: : nchwToNhwcKernel
kernel takes 15.4% of the GPU time. Using DEEPCONTEXT’S

BLEIAVEH GPUOP (us)(* 1.00E-06) v

cudnn::ops::nchwToNhwcKernel[float, float, float, false, true, (cudnnKernelDataType_t)2]
(cudnn::ops::nchw2nhwc_params_t[float], float const* float*) %:{2712827/13774387)
VIRTUAL ROOT

O [gpu kernel]
at..  at:nativer.. a.. . i cT
= cudnn::ops::nchwToNhwcKernel[float, float, ...
at.... | atinative:.. @.. at.. | 7ip: right click node to open source file
cl... at::(anony... a.. at.
at:... c10:impl::... a.. at..
tor... at::_ops:... a.. at..

Figure 8. The bottom-up view of U-Net.

framework and Python call paths, we identified every Py-
Torch operator that invokes the conversion. In addition, with
the help of native call paths, we also identified that the in-
put tensor’s memory format is converted from PyTorch’s
default channels_first layout [53] to the channels_last
layout—a layout that is more efficient for CUDNN—and then
reverted back to channels_first after the computations,
introducing excessive overhead. To address memory format
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Figure 9. Top-down view of Transformer-Big.

conversion issues, we optimized the code by storing input
tensors with channels_last layout before computations,
and refactored LayerNorm and InstanceNorm layers to store
weights in the channels_last layout to avoid conversion.
This optimization reduced the end-to-end time of 100 it-
erations from 54s to 42s.

Comparison with Nsight Systems. While
Nsight Systems can display CUDA kernels (such as
cudnn: :nchwToNhwcKernel) in its trace timeline, it does
not associate them with PyTorch operators that invoke
these kernels. As a result, users have to manually locate
where these conversion kernels are triggered in the timeline
and correlate them with PyTorch operators based on the
kernels invoked before and after, as well as the events that
happened on the CPU, demanding considerable manual
effort and deep DL expertise. In contrast, DEEPCONTEXT
associates each kernel with its PyTorch and native C/C++
call path in a unified call path to provide insights about
where and why layout conversion happens, expediting the
diagnosis of low-level performance issues.

6.3 Kernel Fusion Analysis

Using DEEPCONTEXT, we profiled the Transformer-Big work-
load on the A100 platform. DEEPCONTEXT can gather multi-
ple metrics in a single run, such as the number of invocations,
the number of warps and blocks, as well as the number of
shared memory and registers, in addition to the GPU time.
These metrics are attributed to the corresponding frames in
the call paths to assist performance analysis.

For instance, from the top-down view in Figure 9, we ob-
served that 1loss_fn takes 7.36s, which is 23.9% of total time.
Under this frame, there are three different kernels invoked:
including softmax, copy, and n11_loss, each with the same
number of invocations. The kernel fusion analysis suggests
an opportunity for optimization by combining small kernels
to reduce overall time. Further analysis expanding the call
paths also reveals that the softmax kernel has relatively low
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register usage, which implies that fusing this kernel will not
cause significant register overhead. Based on the suggestion
and observation, we manually fused these small kernels into
a single and more efficient kernel. After optimization, the
total GPU time is decreased from 30.5s to 23.9s.

Comparison with Nsight Systems. When profiling the
Transformer-Big workload using Nsight Systems, small ker-
nels like softmax or copy may appear as fragmented events
in the trace view. Without explicit NVTX annotations [42]
around loss_fn, it is labor-intensive to cluster these kernels
and identify a fusion opportunity. In contrast, DEEPCONTEXT
not only flags these sub-kernels under the same Python call
path with its automated kernel fusion analysis but also re-
ports their resource usage collectively, making it evident that
fusion can be beneficial and does not exceed register limits.

6.4 CPU Latency Analysis

We enabled both CPU and GPU metrics to profile the U-Net
workload. The CPU latency analysis highlighted that the call
path to the data_selection function takes 69% of the CPU
time with 16 threads running concurrently, while the GPU
time of the same frame is only 1.3 seconds. Further investi-
gation shows that the first iteration of loading data from the
disk to the memory takes 10 seconds, and the GPU remains
idle. By expanding the call paths of data_selection, we
noted that an inefficient setting of parallel threads has been
invoked. Our allocated node only has 6 physical CPU cores,
but the data loader is hard coded with 16 threads to load
the data, causing significant scheduling overhead. After we
reduced the thread number to 8, we reduced the end-to-end
time of 100 iterations by 7s, from 54s to 47s.

Comparison with Nsight Systems. Although Nsight Sys-
tems offers CPU profiling features, correlating CPU events
directly with GPU idle times typically requires inspection
across multiple traces and manual alignment. DEEPCONTEXT
automatically integrates both CPU and GPU metrics within
their respective contexts, enabling users to immediately iden-
tify where CPU inefficiencies cause GPU idle periods.

6.5 AMD vs Nvidia

We profiled the U-Net workload on both AMD and Nvidia
GPUs. From the top-down view shown in Figure 10, we
can see differences between these two platforms. Fig-
ure 10a shows that on Nvidia GPUs, the performance
hotspot is on the convolution operator aten: :conv2d; on
the other hand, Figure 10b shows that on AMD GPUs,
the performance hotspot lies on the instance norm op-
erator aten::instance_norm. In order to find out the
cause of performance degradation on AMD GPU, we
checked the low-level call paths of aten::instance_norm
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provided by DEePCoONTEXT and found that the imple-
mentation of aten::instance_norm for AMD GPUs pro-
vided by PyTorch reused the same kernel template—
batch_norm_backward_cuda_template—as that for Nvidia
GPUs [12]. However, through further investigation, we ob-
served that performance can vary drastically when using
different PyTorch versions (i.e., 2.7.0 and 2.6.0) and ROCm
versions (i.e., 6.3, 6.2, and 6.0). Performance regressions were
observed, where using newer versions of software can yield
up to 18.29x slowdown on this kernel compared to older
versions. While DEEPCONTEXT can detect that this kernel
suffers from significant memory stalls, it does not provide
sufficient visibility into the exact underlying cause, which
could involve page faults or other system-level issues. Using
pinned memory can offer a workaround to achieve perfor-
mance comparable to Nvidia GPUs. We also employed other
tools, including rocprof and PyTorch profiler, but they did
not offer additional clarity into the performance discrepancy
as well. We have reported this issue to AMD for further
investigation.

Comparison with rocprof. Nsight Systems is primarily
optimized for Nvidia GPUs, whereas its counterpart, rocprof,
lacks an equivalent visualization view. This discrepancy
makes it challenging to compare performance across dif-
ferent GPUs. Furthermore, while rocprof can collect basic
CPU and GPU events, it lacks call path correlation with
Python and C/C++ native frames. DEEPCONTEXT provides
consistent multi-layer profiling across both AMD and Nvidia
backends, enabling an apples-to-apples comparison of oper-
ator hotspots such as instance_norm.
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Figure 10. Performance comparison on AMD and Nvidia.

6.6 JAX vsPyTorch

We compared the performance of JAX and PyTorch across
two datasets/models: DLRM-small and U-Net. Our results
show that JAX significantly outperforms PyTorch in all tasks,
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achieving performance improvements exceeding 50%. By
comparing the number of kernel operations, we observed
that the JAX version consistently requires fewer operations
than its PyTorch counterpart. This substantial performance
gap is primarily attributed to the advantages of JAX’s XLA
compiler, which effectively fuses operators to reduce redun-
dant memory access and overlap compute and memory in-
structions. To narrow this performance gap, we can use
torch.compile to optimize some workloads, and we ob-
served a 1.11X speedup and a 1.02X speedup in DLRM-
small and UNet, respectively. However, we observed that
it cannot successfully compile all PyTorch modules, yields
slowdowns in cases such as GNN and ResNet, and may
cause significant autotuning overhead, especially with the
max-autotune mode.

Comparison with Nsight Systems. While Nsight Sys-
tems can reveal that JAX and PyTorch versions execute differ-
ent kernels with varying counts, it provides no mechanism
to correlate these differences with high-level framework op-
erations or optimization strategies. Users must manually
analyze kernel patterns to hypothesize potential optimiza-
tion opportunities, requiring specialized knowledge of both
frameworks. In contrast, DEEPCONTEXT s automated analy-
sis compares average kernel execution times and identifies
patterns indicative of suboptimal kernel fusion in the Py-
Torch implementation. This cross-framework analysis capa-
bility enables DEEPCONTEXT to automatically recommend
specific optimization approaches for PyTorch workloads
based on observed patterns in JAX’s execution, effectively
bridging the semantic gap between different framework im-
plementations.

6.7 Fine-grained Stall Analysis

We profiled the Llama3 workload running low-precision
including float16 and float8 using fine-grained instruc-
tion sampling. On both AMD and Nvidia GPUs, we have
identified time spent on the data conversion operators (i.e.,
torch.to) in the L1amaRMSNorm module [20], due to the
fact that the variance calculation has to be done in float32
for numeric stability [51]. The fine-grained stall analysis
identifies non-trivial constant memory misses due to the
loading of constants for each CTA. Since the input is small,
there is a relatively high overhead in reading the constant
memory compared to loading the data itself. Additionally,
we observed math dependency-related stalls caused by non-
vectorized data conversion instructions from/to float32.
To optimize the kernel, we can (1) ensure that each block
loads the minimum number of bytes required to use vec-
torized data conversion instructions, and (2) fuse the con-
version operator with other operators to ensure that the
constant memory overhead is minimized. We adopted the
former to enable vectorized data conversions between float32
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and float16/float8 and achieved non-trivial speedups. For ex-
ample, the conversion from float8 to float32 is 3.47x
faster with each thread loading and converting four
float8 elements simultaneously, with the L1amaRMSNorm
module improved by 1.25%. On Nvidia Ada or later archi-
tectures, we can further adopt cvt with e5m2x2 [43] to first
convert multiple float8 elements using a single instruction
without workarounds such as byte permutation.

Comparison with Nsight Compute (NCU). Both NCU
and DEEPCONTEXT can collect instruction samples, but NCU
is approximately 100x! slower than DEEPCONTEXT for sev-
eral reasons. First, NCU synchronizes the CPU and GPU after
each GPU kernel instance, whereas DEEPCONTEXT avoids
synchronization and parses binary information offline. Ad-
ditionally, NCU often applies kernel replay to collect addi-
tional metrics along with instruction samples. The profil-
ing view in NCU displays each kernel instance separately
without aggregating metrics, making it difficult to identify
performance hotspots in source code. In contrast, the con-
text view in DEEPCONTEXT clearly reveals that all kernels
in the L1amaRMSNorm kernel are affected by data conversion,
leading to an increased memory and compute overhead.

7 Limitations and Future Work

While DEEPCONTEXT offers rich profiling for deep-learning
workloads, its primary limitation is the overhead incurred
when unwinding call paths for workloads with many
small kernels. We will mitigate this by adopting call-path
caching techniques [60]. In the future, we also plan to
extend DEEPCONTEXT to PyTorch workloads that employ
torch.compile, leveraging the JAX-style tracing already in
place to capture operator call paths.

8 Conclusions

DEeepCoONTEXT addresses a critical gap in performance pro-
filing for deep learning workloads in heterogeneous com-
puting environments, where the interaction between CPUs,
GPUs, and deep learning frameworks is inherently complex.
DeepConTEeXT fulfills this need by providing a multi-level,
automated analysis that bridges the different layers of the
software and hardware stack. Our detailed case studies and
evaluations show that DEEPCONTEXT improves the ability to
identify and resolve performance bottlenecks in deep learn-
ing workflows.
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A Artifact Appendix
A.1 Abstract

DEEPCONTEXT is a cross-framework, context-aware profiler
that correlates execution contexts from high-level Python
code, deep-learning frameworks, underlying C/C++ libraries,
and GPU kernels, delivering both coarse- and fine-grained
performance metrics to developers and researchers. Version
v1 of the artifact (49.2 MB, DOI 10.5281/zenodo.15589616)
packages the profiler together with example traces, the
browser-based GUI, and the automated analyzer, and is
released under the MIT License. DeepContext supports
PyTorch, JAX, and other CUDA/HIP-enabled frameworks
across Nvidia and AMD GPUs, as well as x86 and ARM CPUs,
allowing users to pinpoint multi-layer hotspots and receive
optimization suggestions directly in the interface. Through
representative case studies, the artifact demonstrates how
unified context correlation and automatic insight generation
accelerate the diagnosis and tuning of complex training and
inference workloads, making DeepContext a practical tool
for performance engineers tasked with optimizing hetero-
geneous deep-learning pipelines that span diverse compute
environments.

A.2 Artifact check-list (meta-information)

DOI: https://doi.org/10.5281/zenodo.15589616
Version: v2.0
Archive size: 49.3 MB

[ ]
[ ]
[ ]
e License: MIT License?

A.3 Dependencies

Config 1: x86 + NVIDIA AMD EPYC 7543 (32c¢/64t, Zen 3)
with 256 GB DDR4 and an NVIDIA A100 80 GB GPU.

Config 2: Arm + NVIDIA Arm Neoverse-V2 (64 cores)
with 480 GB LPDDR5 and an NVIDIA GH200 (Grace
Hopper) 96 GB GPU.

Zhttps://opensource.org/license/mit
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Config 3: x86 + AMD AMD EPYC 7643 (48c/96t, Zen 3)
with 2 TB DDR4 and an AMD Instinct MI250 accelera-
tor (128 GB HBMz2e).

All experiments reported in the paper were conducted on
at least one of the configurations listed above; the pro-
filer’s instrumentation code is ISA-agnostic and requires
only Python > 3.10 and ROCm 6.0+ or CUDA 11.8+ on the host.

A.4 Getting the Artifact

Retrieve with:
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1 wget https://zenodo.org/record/15589616/files/
DeepContext.zip

2 unzip DeepContext.zip

3# README.md in the root describes directory
layout

A.5 Reuse Policy

This artifact is released under the MIT License.
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