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Abstract

E!ective performance optimization of deep learning mod-
els requires comprehensive pro"ling across heterogeneous
computing environments, yet existing tools fail to bridge
the semantic gap between high-level operations and low-
level execution. This paper presents D!!"C#$%!&%, a novel
pro"ling system that correlates program contexts across
Python code, deep learning frameworks, C/C++ libraries,
and GPU execution. D!!"C#$%!&% features a framework-
agnostic shim layer that seamlessly correlates the behavior
of the deep learning framework with hardware performance
metrics. Furthermore, D!!"C#$%!&% provides an automated
performance analyzer that o!ers actionable optimization
guidance based on its holistic view of the entire software
stack of deep learning applications. D!!"C#$%!&%works for
mainstream deep learning frameworks and runs on modern
CPU+GPU architectures with low overhead. Our evaluation
demonstrates that D!!"C#$%!&% uncovers previously hid-
den performance bottlenecks in real-world deep-learning
applications. Guided by D!!"C#$%!&%, we are able to "x
multiple performance issues, achieving speed-ups between
1.06→ and 1.66→.
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1 Introduction

The rapid advancement of deep learning has led to increas-
ingly complex models [3, 19, 46] deployed across diverse and
heterogeneous computing environments. Optimizing the
training and inference of these models is critical for improv-
ing performance and reducing computational costs [27, 33].
However, the sophisticated interactions between CPUs and
GPUs, coupled with the diversity of frameworks [11, 45]
and compilation modes [6], pose signi"cant challenges for
developers seeking to identify and address performance bot-
tlenecks e!ectively.
Pro"ling tools play a critical role in identifying perfor-

mance issues in deep learning workloads. These tools in-
clude framework-speci"c solutions, such as the PyTorch
pro"ler [47] and the JAX pro"ler [32], as well as those pro-
vided by vendors, such as Nsight Systems [41], rocprof [5],
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(a) The hot call path w/o framework context

(b) The hot call path w/ framework context

Figure 1. Comparison of highlighted call paths w/o and w
framework contexts in two framegraphs [23].

and VTune [29]. The primary functionality of these tools is
tracing, which captures metrics associated with individual
CPU and GPU operations and displays them on a compre-
hensive timeline to assist users in investigating performance
bottlenecks.

The landscape of pro"ling tools presents signi"cant chal-
lenges for comprehensive performance analysis and opti-
mization of deep learning workloads. Table 1 summarizes
the features and limitations across "ve categories of exist-
ing tools: system, hardware, framework, Python, and deep
learning pro"lers.
System pro"lers such as Linux perf and eBPF provide

strong CPU pro"ling capabilities and cross-framework sup-
port, but lack Python and framework context that is critical
for deep learning workloads. Hardware pro"lers (i.e., pro"l-
ers provided by hardware vendors) such as Nsight Systems,
rocprof, and Intel VTune o!er hardware-speci"c insights
but have varying limitations: Nsight Systems lack frame-
work context; rocprof is particularly limited in its contextual
awareness; and all have constraints in cross-device pro"ling.
Framework pro"lers like JAX and PyTorch pro"lers pro-
vide good Python integration and some device context, but
are framework-speci"c. Dedicated Python pro"lers such as
Scalene o!er Python visibility, but lack framework-speci"c
insights. Existing deep learning pro"lers such as XSP provide

framework and device context but still miss the full stack
view.

These limitations signi"cantly hinder thorough perfor-
mance analysis. For example, Figure 1 illustrates a key short-
coming. In Figure 1a, only the C++ code is visible in the call
path, obscuring where convolution operations originate, es-
pecially problematic since frameworks like PyTorch launch
backward and forward operators from di!erent CPU threads.
This limitation makes it challenging to pinpoint performance
bottlenecks in complex models that may invoke hundreds of
convolution operations [26]. In contrast, Figure 1b reveals
both the Python call path and the associated deep learning
operators, providing deeper insights for optimization.
Additionally, most existing tools [5, 32, 35, 47] trace and

record every operation, generating enormous pro"les for
long-running training workloads. This not only consumes
excessive memory resources, but also makes bottleneck iden-
ti"cation tedious and manual. While some tools can aggre-
gate metrics postmortem for individual kernels, they cannot
streamline metrics aggregation online to reduce pro"le size
or di!erentiate between instances called from di!erent con-
texts for automated problem identi"cation.

The incompatibility across platforms and frameworks fur-
ther complicates analysis. Vendor tools such as Nvidia’s
Nsight suite workwithmultiple frameworks on Nvidia GPUs,
but are incompatible with AMD GPUs. Similarly, framework-
speci"c tools such as the PyTorch pro"ler support both AMD
and Nvidia GPUs, but cannot handle JAX workloads. This
siloed approach increases the learning curve and limits cross-
referencing across frameworks and hardware, making it dif-
"cult for users to determine optimal con"gurations for their
speci"c workloads.

To address these challenges, we introduce D!!"C#$%!&%,
a novel pro"ler that delivers comprehensive performance
insights for deep learning workloads. As shown in Table 1,
D!!"C#$%!&% captures all critical program context infor-
mation across the entire software and hardware stack, en-
abling the identi"cation of performance issues from high-
level Python code down to the device code on GPUs. It pro-
vides cross-GPU pro"ling capabilities and maintains visibil-
ity across multiple frameworks—supporting both PyTorch
and JAX on AMD and Nvidia GPUs, as well as x86 and ARM
CPUs. By e!ectively collecting, attributing, and aggregating
performance metrics, D!!"C#$%!&% facilitates an in-depth
analysis of performance bottlenecks and reveals optimiza-
tion opportunities at the architectural and system levels that
conventional pro"ling tools typically miss.

This paper presents the design, implementation, and eval-
uation of D!!"C#$%!&% and makes the following contribu-
tions:
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Table 1. Comparison of D!!"C#$%!&% with existing pro"ling tools. (⊋= supported;→= not supported.)

Pro!ling Tools Python

Context

Framework

Context

C++

Context

Device

Context

Cross

GPUs

Cross

Frameworks

CPU

Pro!lingCategory Name

System Pro!lers
Linux perf [36] → → ⊋ → → ⊋ ⊋

eBPF [30, 31] → → ⊋ → → ⊋ ⊋

Hardware

Pro!lers

Nsight Systems [41] ⊋ → ⊋ → → ⊋ ⊋

rocprof [4] → → → → → → →

Intel VTune [29] → → ⊋ → → ⊋ ⊋

Framework

Pro!lers

JAX pro!ler [32] ⊋ → → → ⊋ → ⊋

PyTorch pro!ler [47] ⊋ ⊋ → → ⊋ → ⊋

Python Pro!lers Scalene [8] ⊋ → → → → ⊋ ⊋

Deep Learning

Pro!lers

XSP [35] → ⊋ → ⊋ → ⊋ →

D!!"C#$%!&% (our tool) ⊋ ⊋ ⊋ ⊋ ⊋ ⊋ ⊋

• We introduce a “shim” layer—DLM#$’%#(—that converts
deep learning framework-speci"c data into a framework-
agnostic format, enabling seamless integration of frame-
work information with third-party performance tools.

• We design an automated performance analyzer that pro-
vides actionable optimization suggestions based on per-
formance metrics and program contexts. Such optimiza-
tion suggestions include fusing operators, changing data
layouts, modifying hardware con"gurations, and many
others.

• We adopt a series of optimizations to reduce the runtime
overhead and memory and storage requirements of D!!"
C#$%!&% to enable it running on real deep learning ap-
plications, which typically have complex code hierarchies
and long execution time.

We evaluated D!!"C#$%!&% using a diverse range of
deep learning workloads across various platforms and frame-
works, demonstrating that D!!"C#$%!&% signi"cantly saves
memory and disk space usage with similar runtime over-
head compared to the state-of-the-art performance tools.
Through case studies, we show that D!!"C#$%!&% can ef-
fectively identify performance issues and suggest insightful
code changes, enabling straightforward optimization of deep
learning models. Even users with limited experience in deep
learning frameworks or CPU and GPU architectures can
achieve speedups ranging from 1.06→ to 1.66→.

2 Related Work

In this section, we review existing approaches about deep
learning pro"lers, call path pro"ling, and automated perfor-
mance analysis.

Deep Learning Pro!lers. Many pro"lers can measure
deep learning workloads. These tools include vendor-
provided tools such as Nsight Systems [41], VTune [29],
rocprof [4] andDLProf [13], as well as framework-based tools
such as the JAX pro"ler [32] and the PyTorch pro"ler [47].

However, these tools often focus on speci"c frameworks or
platforms with limited applicability.
Some workload-speci"c pro"lers, such as RL-Scope [22]

and XSP [35], analyze interactions across layers of the deep
learning stack to identify bottlenecks that are not obvious
when examining individual layers. D!!"C#$%!&% advances
these tools by employing a generic solution for di!erent
frameworks, GPUs, and platforms.

There are pro"lers that post-process metrics from existing
pro"ling tools. For instance, Hotline Pro"ler [50] introduces
a multi-scale timeline with annotations for DNN training,
based on the postmortem analysis of results from the Py-
Torch pro"ler [47]. Similarly, DLProf [13] analyzes the re-
sults collected from Nsight Systems. Since these tools do not
modify the runtime, they su!er from the same limitations as
trace-based pro"lers, which incur signi"cant memory and
disk overhead.

Skyline [56], as the most related tool to our tool, o!ers an
interactive pro"ling experience by integrating the pro"ler
into the development environment. However, unlike D!!"
C#$%!&% that intercepts “native” C/C++ operations, Skyline
uses monkey patching [9] for PyTorch Python operations,
which introduces overhead and prevents it from obtaining
native call path information. Additionally, it does not interact
with vendor-provided pro"ling substrates, limiting its ability
to gather abundant low-level information using performance
counters.

Call Path Pro!lers. General performance tools such as
HPCToolkit [59], TAU [49], perf [36], and DrCCTProf [58] of-
fer call path pro"ling and performance analysis for low-level
languages such as Fortran and C/C++. These tools provide
deep insights into the complex behaviors of the underlying
software stack and operating system, o!ering a complemen-
tary perspective to what deep learning pro"lers may miss.
Additionally, some of these tools can sample a large set of
CPU performance counters, going beyond coarse-grained
metrics. However, these tools often lack integration with
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Python runtime and deep learning frameworks, limiting their
e!ectiveness in pro"ling multi-language environments.
On the other hand, Python-speci"c pro"ling tools like

Scalene [8] and cPro"le [21] provide e!ective analysis of
Python call paths but lack the ability to analyze call paths
in lower-level languages. Moreover, they can only collect
limited information about accelerators. D!!"C#$%!&% ad-
dresses these shortcomings by providing a comprehensive
call context that spans every level of the software stack, ef-
fectively bridging the gap between native language pro"ling
and high-level language analysis.

Automated Performance Analysis. Existing automated
performance analysis tools often target speci"c or limited do-
mains. For instance, tools such as NCU [14] and GPA [61] fo-
cus on patternmatching of GPU kernels using expert-de"ned
rules based on "ne-grained metrics. These tools provide in-
sights into how and where to modify kernel source code
to improve performance. On the other hand, tools such as
Nsight Systems [41] and DLProf [13] analyze trace patterns
to provide coarse-grained recommendations. They o!er in-
sights into which GPU operations are expensive and whether
the CPU is causing performance bottlenecks. However, these
tools do not consider both low- and high-level contexts simul-
taneously. In contrast, D!!"C#$%!&% introduces a pattern
matching system that allows #exible rules to be de"ned for
analysis, incorporating low- and high-level contexts based
on "ne- and coarse-grained metrics. This approach provides
a more holistic view of performance issues, enabling more
#exible analysis and e!ective optimizations.

3 Overview

D!!"C#$%!&% is designed to achieve multiple objectives,
including providing a holistic view that spans high- and
low-level contexts, enabling cross-framework pro"ling, and
supporting fast or even automated performance analysis.
Each of these objectives presents unique challenges: (1) High-
and low-level contexts are obtained through di!erent meth-
ods, as Python is interpreted while C++ is compiled, and
framework-speci"c information cannot be obtained simply
by examining either C/C++ or Python code alone. (2) Di!er-
ent frameworks are implemented in vastly di!erent ways,
making direct instrumentation of their source code to cap-
ture information both unstable and unmaintainable. (3) For
complex deep learning workloads, the pro"ling database will
include extensive program context, numerous GPU kernel
invocations, and various metrics, making it challenging to
manually identify performance issues.
To address these challenges, D!!"C#$%!&% is structured

into four primary components, as shown in Figure 2, each
designed to handle distinct aspects of performance pro"ling
for deep learning workloads. The pro!ler is responsible for
collecting, attributing, and aggregating performance metrics.
It gathers performance metrics from Nvidia and AMD GPUs

Profiler

DLMonitor CUPTI / RocTracer
PAPI / Perf Event

callbacks

metricscontext

Performance Analyzer

GUI

database

analyses

Figure 2.Major components of D!!"C#$%!&%.

through the CUPTI [40] and RocTracer [5] APIs, and from
CPUs through Linux system calls, Perf events [36], and the
PAPI API [55]. Once the program context is obtained from
DLM#$’%#(, the pro"ler associates the metrics collected
with the program context and aggregates the metrics within
the same context when necessary. DLM#$’%#( serves as
a “shim” layer between the pro"ler and the deep learning
framework. It allows the pro"ler to intercept framework op-
erations during the execution of deep learning frameworks
and provides a comprehensive context when the pro"ler
calls DLM#$’%#(. Next, the performance analyzer processes
the collected data postmortem, identifying performance bot-
tlenecks and optimization opportunities. Finally, the GUI

presents the analyzed data in an intuitive format, compatible
with Visual Studio Code [37], to facilitate interpretation and
inspection of performance issues.

4 Design and Implementation

This section is organized into "ve subsections: four dedicated
to the aforementioned modules of D!!"C#$%!&%, and a "fth
that discusses how D!!"C#$%!&%’s modular design facili-
tates updates as pro"ling APIs evolve, while also explaining
its support for diverse GPU generations and features.

4.1 DLM#$’%#(

DLM#$’%#( is a key component of D!!"C#$%!&%, provid-
ing a uni"ed interface for obtaining call paths and registering
callbacks within deep learning frameworks. Pro"lers interact
with deep learning frameworks by invoking DLM#$’%#(’s
APIs. The core APIs include:

• dlmonitor_init: InitializesDLM#$’%#(’s shared library,
libdlmonitor.so, which is typically loaded at the start
of execution using utilities like LD_PRELOAD.

• dlmonitor_callback_register: Registers the callback
speci"ed by pro"lers to intercept operations in a speci"c
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C/C++

Root

GPU API

Root

GPU Kernel Function

Python

C/C++

DL Operator

GPU API

dlmonitor_callback_register 

(a) w/o DLMonitor (b) w/ DLMonitor

Figure 3. Comparison between call paths w/ and w/o
DLM#$’%#(.

domain, such as deep learning frameworks and GPU run-
time.

• dlmonitor_finalize: Disables DLM#$’%#( monitoring
and releases all interceptions.

• dlmonitor_callpath_get: Constructs and returns a
multi-layer call path to the pro"ler.

In Figure 3, we illustrate how D!!"C#$%!&% provides
multi-layer insights that di!erentiate it from comparable
tools like Nvidia Nsight and perf/eBPF. Figure 3 (a) shows the
limited call path visibility provided by traditional pro"lers,
which only capture C/C++ frames (native call path) without
contextual information about Python code, deep learning
framework operations, or GPU kernel execution details. In
contrast, Figure 3 (b) demonstrates D!!"C#$%!&%’s compre-
hensive call path construction through DLM#$’%#(, which
seamlessly integrates frames from all critical layers: high-
level Python code, framework operators, native C/C++ func-
tions, GPU kernel invocations, and even execution metrics
within GPU kernels. This multi-layer visibility enables D!!"
C#$%!&% to establish precise correlations between high-level
operations and low-level performance bottlenecks while sup-
porting runtime metric aggregation across the entire soft-
ware stack. By maintaining these cross-layer relationships,
D!!"C#$%!&% can attribute performance issues to speci"c
framework operators or Python functions—a capability that
remains beyond the reach of hardware-focused tools like
Nvidia Nsight or system-level pro"lers like perf/eBPF. In the
following, we describe implementation details about how
DLM#$’%#( intercepts operations and constructs call paths.

Intercepting Framework Operations. DLM#$’%#(

intercepts operations in PyTorch and JAX, al-
lowing pro"lers to register callbacks using the
dlmonitor_callback_register function before and
after each operation. Here, the domain provided to the func-
tion is DLMONITOR_FRAMEWORK. Interception points include
individual deep learning operators (e.g., torch.matmul),
the start and end of compute graph compilation, and

tensor memory allocation/deallocation. At these points,
pro"lers can access information such as operators in-
puts and outputs, and retrieve the full call path via the
dlmonitor_callpath_get function.

DLM#$’%#( employs di!erent mechanisms to support
PyTorch and JAX, ensuring compatibility with frameworks
installed via pipwheelswithout source codemodi!cations. For
PyTorch, it leverages PyTorch’s aten::addGlobalCallback
interface, which allows for invoking customizable call-
backs at various points. Unlike PyTorch, implementing
DLM#$’%#( for JAX presents two challenges. First, JAX does
not inherently support registering callbacks before and after
each deep learning operator. Second, while PyTorch’s eager
mode is widely used, where each operator is executed indi-
vidually, JAX compiles operators into computation graphs
with fused operations before execution. Once compiled, the
runtime call path of each operator di!ers from its call path
in the original code where it was compiled from. To address
these challenges, we implemented a lightweight binary in-
strumentation utility that allows JAX to provide pro"ling
information comparable to that of PyTorch. Speci"cally, to
address the "rst challenge, we utilize binary instrumentation
to intercept JAX’s compilation function for passes of compu-
tation graphs and insert callbacks before and after each JAX
operator after the very last pass. For the second challenge,
we record the mappings between fused operators to original
ones (Figure 4) in the operator fusion pass. The call path of
each original operator is recorded during the compilation
phase, while the call path of the fused operator is recorded
at runtime. In the GUI, we display all possible original call
paths associated with the runtime call path of each fused
operator.

1 2 3 4 1&3 2&4

Actual 
call 
paths

Runtime
call
paths

Just-in-time compilation

Captured during the compilation phase

Figure 4. DLM#$’%#( intercepts JAX’s compilation phase
to map fused operators to original ones.

Intercepting GPU APIs. In addition to intercepting
framework operations, DLM#$’%#( can intercept GPU
APIs, such as kernel launches, memory copies, and
memory allocation/free operations. To enable it, pro-
"lers indicate the domain as DLMONITOR_GPU to the
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dlmonitor_callback_register function. Pro"lers that
register callbacks for GPU APIs can capture not only ar-
guments and results about lower-level APIs, but can ob-
tain frames between the low-level APIs and framework op-
erations. DLM#$’%#( registers callbacks using CUPTI for
Nvidia GPUs and RocTracer for AMD GPUs. To extend
DLM#$’%#( for hardware that does not have a vendor-
provided callback mechanism, users can de"ne the function
signature of the driver function and its in a con"guration "le.
DLM#$’%#( will register custom callbacks using LD_AUDIT
for all functions recorded in the con"guration "le.

Call Path Integration. One key innovation of
DLM#$’%#( is its ability to assemble a uni"ed call path
that spans from high-level Python code to low-level
GPU kernel execution. At each interception point, if
dlmonitor_callpath_get is called, DLM#$’%#( retrieves
call paths from multiple sources. The Python call path
is obtained using CPython’s PyFrame-related APIs. The
“native” call path, which includes C/C++ function symbols,
is captured using libunwind [38]. The framework call path
is maintained via a shadow stack in each CPU thread.
DLM#$’%#( updates the stack for operators as they are
entered and exited, along with their corresponding memory
locations. dlmonitor_callpath_get also allows users to
choose which speci"c call path source to integrate or ignore
to reduce overhead.

Next, DLM#$’%#( integrates these three call paths into a
single comprehensive call path. It traverses the native call
path in a bottom-up direction, matching the address of each
framewith the recorded addresses of deep learning operators.
If a match is found, DLM#$’%#( inserts the operator name
under the caller frame. If a frame’s address falls within the
libpython.so address space (recorded using LD_AUDIT), all
frames above it are replaced with the Python call path. If
we are at a GPU kernel launch callback, we read parse the
function object (e.g., CUfunction) to obtain the kernel name
and insert it to the bottom of the call path.

Optimizations. We have implemented optimizations
to provide more insights and reduce the overhead of
DLM#$’%#(.
Forward and backward operator association. In PyTorch,

when training is enabled, the backward method initiates
backward propagation from the leaf operators to the root
of the computation graph. New CPU threads, called back-

ward threads, are created for each GPU device to handle this
process. As a result, the native call path of an operator ob-
tained from a backward thread loses the original context
of the forward operator, with no Python source code avail-
able. This issue is particularly problematic for GPU kernels
without meaningful names, such as the elementwise ker-
nel in PyTorch, as it becomes di$cult to trace which source
code triggered these calls. To address this, we record each
forward operator’s call path and sequence ID. In PyTorch,

all backward operators associated with a forward operator
share the same sequence ID. Using the sequence ID, the back-
ward thread looks up the forward CPU thread, fetches the
Python and framework call path of the corresponding for-
ward operator, and integrates it with the native call path of
the backward operator obtained from the backward thread
itself.
Call path caching. Unwinding call paths from multiple

sources is expensive, particularly when GPU APIs are fre-
quently invoked in deep learning workloads. To mitigate
this overhead, we leverage the observation that multiple
GPU kernels launched within the same deep learning opera-
tor typically share identical Python and operator call paths.
Based on this insight, we implement a caching mechanism
that stores both the Python call path and the deep learn-
ing operator information in a thread-local variable upon the
operator’s "rst invocation.

To accommodate varying performance requirements, we
support two operational modes with di!erent overhead:

1. Lightweight Mode: This mode produces a simpli"ed
call path that includes Python context while avoiding
expensive native unwinding. Since native call path
collection is disabled in this mode, we concatenate the
shadow call path, GPU API, and GPU kernel function
with the cached Python call path from the thread-local
variable, bypassing the costly native stack unwinding
process entirely.

2. Comprehensive Mode: This mode generates a com-
plete cross-language call path that captures both
Python and C++ execution contexts. We utilize libun-
wind’s unw_step to retrieve native frames incremen-
tally, constructing the native call path in a bottom-up
fashion until we reach the cached deep learning oper-
ator. We then combine this native segment with the
previously cached Python call path to form a compre-
hensive execution trace.

4.2 Pro!ler

In this section, we describe how D!!"C#$%!&%’s pro"ler col-
lects GPU and CPU metrics and attributes them to a calling
context tree as shown in Figure 5.

Calling Context Tree. The calling context tree is con-
structed by inserting call paths obtained from DLM#$’%#(

and collapsing frames that refer to the same locations. For
C/C++, GPU API, and GPU kernel frames, two frames are
considered the same if they share the same library path and
program counter (PC). For Python frames, they are compared
by "le path and line number, while framework-based frames
are checked by operator names. Each node in the calling con-
text tree maintains a list of metrics, which are aggregated by
sum, minimum, average, and standard deviation for metrics
of the same type. Once a metric has been updated at the
bottom of a call path, it is propagated to the root node of the
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Insert Call Path

Propagate Metrics

metric_type0 metric_type1 metric_type2

Aggregate Metrics

Figure 5. Operations for building a calling context tree and
adding performance metrics.

calling context tree, updating the metric along the entire call
path.

GPUMetrics. D!!"C#$%!&% can collect both coarse- and
"ne-grained metrics on Nvidia and AMD GPUs. Example
coarse-grained metrics include time, parallelism, and shared
memory usage, and "ne-grained metrics include instruction
samples of GPU kernels. It "rst registers callbacks for GPU
APIs using DLM#$’%#(, then speci"es the metrics to pro-
"le by calling CUPTI or RocTracer APIs. At each callback,
the pro"ler emits a unique correlation ID, retrieves the call
path, and associates the correlation ID with the call path.
GPU metrics are gathered asynchronously without blocking
GPU API calls from the CPU. When the GPU bu!er storing
metrics is full, D!!"C#$%!&% #ushes the metrics, using the
correlation ID to link and aggregate them with the corre-
sponding call path. Note that if "ne-grained metrics, such
as instruction samples, are collected, we will extend the call
path by inserting the PC of each instruction collected.

CPUMetrics. D!!"C#$%!&% can pro"le GPUmetrics and
CPU metrics in the same run using Linux system calls or
CPU measurement substrates. For example, D!!"C#$%!&%
invokes the sigaction system call to registers a signal call-
back for CPU_TIME and REAL_TIME events. Once a sample is
triggered, it will get the current CPU or REAL time, subtract
the previous timestamp from it, and use the result as the in-
terval between two samples. Next,D!!"C#$%!&%will obtain
the current call path by calling dlmonitor_callpath_get

and associate the interval with the call path. The pro"ler can
also register Linux perf events or invoke PAPI API to obtain
metrics from hardware counters.

4.3 Performance Analyzer

The performance analyzer of D!!"C#$%!&% provides a com-
prehensive framework for analyzing the pro"le results and
identifying potential performance issues in deep learning
workloads. It initializes the analysis environment by map-
ping GPU/CPU instructions back to the source code using
the DWARF information. We have designed a #exible Python

interface allows analysis from three key dimensions, typi-
cally executed through a work#ow of call path search,metrics

analysis, and visualization. The process starts with 1 Pro-

gram Structure Analysis, which traverses calling contexts
and matches call paths given patterns. This is followed by
2 Model Analysis and 3 Operator Analysis, where perfor-
mance metrics are queried for semantic nodes (such as train-
ing, inference, loss functions, and individual operators) and
custom "lters are applied to detect potential issues. Finally,
the detected problems are #agged with warning messages
and reported in the GUI.

Example Analyses. Beyond custom analysis created by
users, D!!"C#$%!&% implements a set of example analyses
to detect common performance issues using the analysis API.
Below we demonstrate some of the example analyses:

1 Hotspot Identi!cation

This analysis identi"es the nodes that spend more time than
a given threshold and returns their call paths.

1 total_time = call_tree.root.time

2 for n in call_tree.kernels:

3 if n.time / total_time > hotspot_threshold:

4 flag_hotspot(n)

2 Kernel Fusion Analysis

This analysis detects potential ine$ciencies caused by the
launch of many small kernels by identifying frames that
contain a large number of kernels with short GPU execution
times.

1 for n in bfs(call_tree.nodes):

2 if n.gpu_time / n.count < gpu_threshold:

3 flag_issue(n, !Small"GPU"kernels!)

3 Forward/Backward Operator Analysis

This analysis identi"es deep learning operators whose back-
ward pass takes signi"cantly longer than the forward pass,
potentially indicating optimization opportunities because
backward phase shouldn’t take signi"cantly longer than its
forward counterpart.

1 for n in call_tree.operators:

2 if n.backward.time / n.forward.time > 2:

3 flag_issue(n, !Backward"abnormality!)

4 Fine-grained Stall Analysis

This analysis identi"es "ne-grained stall reasons within
hotspot GPU kernels. Stall reasons for each GPU instruc-
tion can be collected using the instruction sampling APIs
available on Nvidia and AMD GPUs.

1 hotspots = hotspot_analysis(call_tree)

2 stalls = []

3 for n in hotspots:

4 for c in n.children:

5 if c.stalls > stall_threshold:

6 stalls.append(c)

7 stall_reasons = topk(stalls)

8 flag_issue(n, !Kernel"is"mainly"stalled"by"{

stall_reasons}!)
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5 CPU Latency Analysis

This analysis traverses the calling context tree in the top-
down manner to identify frames whose CPU time is signif-
icantly higher than GPU time, indicating potential imbal-
anced workload or synchronization issues.

1 for n in bfs(call_tree.nodes):

2 if n.cpu_time / n.gpu_time > cpu_threshold:

3 flag_issue(n, !CPU"time"abnormality!)

4.4 GUI

D!!"C#$%!&% integrates a lightweight GUI built on the VS-
Code API, supporting VSCode and other compatible IDEs
such as VSCodium [2] and Eclipse Theia [1]. It features inter-
active #ame graphs [23] with both top-down and bottom-up
views for visualizing calling context trees, and highlights
performance hotspots identi"ed by the performance ana-
lyzer. Users can click on frames to inspect detailed metrics
and navigate directly to relevant source code, streamlining
the performance debugging process.

4.5 API and Hardware Adaptability

D!!"C#$%!&%’s modular architecture enables e$cient adap-
tation to evolving frameworks and hardware through clear
separation of component dependencies. Referring to the com-
ponent division shown in Figure 2, DLM#$’%#( component
only requires updates when framework APIs change, while
the Pro"ler component is updated only when hardware pro-
"ling interfaces evolve. Meanwhile, the Performance Ana-
lyzer and GUI remain framework and hardware-agnostic,
operating solely on abstracted performance data. This tar-
geted update approach minimizes maintenance overhead as
deep learning frameworks like PyTorch and JAX frequently
modify their internal structures.

D!!"C#$%!&% achieves robust cross-generation hardware
support through abstracted pro"ling interfaces that leverage
common APIs across GPU generations (CUPTI for Nvidia,
RocTracer for AMD). The Pro"ler’s abstraction layer maps
vendor-speci"c metrics to a uni"ed internal representation,
automatically adapting to hardware capabilities at runtime.
Additionally,D!!"C#$%!&% supports extension mechanisms
including con"guration-based hardware support through
LD_AUDIT, a plugin architecture for new metric collection
mechanisms, and framework-agnostic analysis patterns. This
modular design ensures D!!"C#$%!&% can evolve alongside
the rapidly changing landscape of deep learning frameworks
and hardware accelerators while maintaining long-term via-
bility.

5 Evaluation

Platforms. We evaluated D!!"C#$%!&%’s overhead on
two platforms: one with an AMD EPYC 7543 CPU, 256 GB
RAM, and an NVIDIA A100 SXM GPU (80 GB, 108 SMs,
156 TF32 TFLOP/s, 2 TB/s bandwidth), and the other with

the same CPU, 2048 GB RAM, and an AMD MI250 GPU
(64 GB, 208 Compute Units, 362.1 FP16 TFLOP/s, 3.2 TB/s
bandwidth).

Workloads. We used D!!"C#$%!&% to pro"le the ML-
Commons Algorithm E$ciency benchmark [16], imple-
mented in both PyTorch [6] and JAX [11]. We evaluated
the eager mode of PyTorch and the JIT mode of JAX. We run
each model for 100 iterations using di!erent pro"ling tools.

The following workloads and datasets were used.

• Conformer [25] with the LibriSpeech [44] dataset.
• DLRM-small [39] with the Criteo 1TB [15] dataset.
• U-Net [48] with the fastMRI [57] dataset.
• GNN [7] with the OGBG-MOLPCBA [28] dataset.
• ResNet [26] with the ImageNet [17] dataset.
• Vision Transformer [18] with the ImageNet dataset.
• Transformer-Big [54] with the WMT[10] dataset.
• Llama 3 [19] inference with a sample prompt from
huggingface o$cial example.

• Gemma [52] with the same prompt as Llama 3.
• nanoGPT [34] with the same prompt as Llama 3.

Results. We measured the end-to-end running time of
each workload under three circumstances: without pro"ler
enabled, D!!"C#$%!&% with Python and framework call
paths obtained from DLM#$’%#(, and D!!"C#$%!&% with
Python, deep learing framework, and native C/C++ call paths.
Then we divide the running time of D!!"C#$%!&% enabled
by the running time without D!!"C#$%!&% enabled to cal-
culate the overhead, as shown in Figure 6.

We measured the end-to-end running time of each work-
load under four circumstances: without pro"ler enabled, with
framework pro"ler (PyTorch pro"ler or JAX pro"ler) enabled,
D!!"C#$%!&% operating in Lightweight Mode (collecting
only Python and framework call paths), and D!!"C#$%!&%

operating in Comprehensive Mode (collecting Python, deep
learning framework, and native C/C++ call paths). Then we
divide the running time of D!!"C#$%!&% or framework pro-
"ler enabled by the running time without pro"ler enabled
to calculate the overhead, as shown in Figure 6. In the "g-
ure, "Framework Pro"ler" refers to the PyTorch pro"ler in
PyTorch workload tests and the JAX pro"ler in JAX work-
load tests, "DeepContext" corresponds to our tool running
in Lightweight Mode, and "DeepContext Native" represents
our tool operating in Comprehensive Mode.
The median running time overhead of D!!"C#$%!&% is

1.12→ and 1.50→ for PyTorch on Nvidia and AMD GPUs, re-
spectively. For JAX, its median overhead is 1.33→ and 1.28→
on Nvidia and AMDGPUs, respectively. When the C/C++ na-
tive call path is not collected, we observed median overheads
of 1.50→ and 1.90→ for PyTorch, and 1.60→ and 1.46→ for JAX,
on Nvidia and AMD GPUs, respectively. The overhead with
native call path is higher than the variant without the na-
tive call path due to the additional overhead in unwinding
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(a) Time overhead of PyTorch workloads using di!erent pro"lers on Nvidia and AMD GPUs.

(b) Time overhead of JAX workloads using di!erent pro"lers on Nvidia and AMD GPUs.

∞ ∞

(c) Memory overhead of PyTorch workloads using di!erent pro"lers on Nvidia and AMD GPUs.

(d)Memory overhead of JAX workloads using di!erent pro"lers on Nvidia and AMD GPUs.

Figure 6. Comparison of time and memory overheads (normalized to baseline without pro"ling) across various workloads
using D!!"C#$%!&%, the PyTorch pro"ler, and the JAX pro"ler.

C/C++ call paths and concatenating them with Python and
framework call paths.
The median running time overhead of D!!"C#$%!&% in

Lightweight Mode is 1.12→ and 1.50→ for PyTorch on Nvidia
and AMD GPUs, respectively. For JAX, its median over-
head in Lightweight Mode is 1.33→ and 1.28→ on Nvidia
and AMD GPUs, respectively. When operating in Compre-
hensive Mode, we observed median overheads of 1.50→ and
1.90→ for PyTorch, and 1.60→ and 1.46→ for JAX, on Nvidia
and AMD GPUs, respectively.

In comparison, PyTorch pro"ler incurs a median overhead
of 1.06→ and 1.01→ on Nvidia and AMD GPUs, respectively.
JAX pro"ler incurs a median overhead of 1.17→ and 1.10→
on Nvidia and AMD GPUs, respectively. Without native call
path collection, the overhead of D!!"C#$%!&% is compara-
ble to that of framework pro"lers. We do observe a much
higher time overhead from pro"ling Llama3 and Gemma-7B
using PyTorch. The overhead is caused by two factors: our
frame uni"cation system, which identi"es the same "le path
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Table 2. Summary of case studies.

Deep Learning Model Dataset Platform Analysis Client Optimization Method Speedup

DLRM-small Criteo 1TB Nvidia 3 Forward/Backward Operator Analysis
replace aten::index

with aten::index_select
1.66→

GNN OGBG-MOLPCBA Nvidia 3 Forward/Backward Operator Analysis
replace aten::index

with aten::index_select
1.07→

UNet fastMRI Nvidia 1 Hotspot Identi"cation
Avoid channel_first to

channel_last conversion
1.28→

UNet fastMRI Nvidia 5 CPU Latency Analysis
Match worker_num

with #CPU cores
1.15→

Transformer-Big WMT Nvidia 2 Kernel Fusion Analysis
Fuse small kernels

using torch.compile
1.06→

Llama3 Sample Prompt Nvidia 4 Fine-grained Stall Analysis
Use fast data type

conversion instructions
1.25→

UNet fastMRI AMD & Nvidia 1 Hotspot Identi"cation Use pinned memory N/A

DLRM-small

UNet

Criteo 1TB

fastMRI

Nvidia-JAX

Nvidia-PyTorch
2 Kernel Fusion Analysis

Fuse small kernels

using torch.compile

1.11→

1.02→

and line number, and our metrics aggregation and propaga-
tion mechanism along the call paths, introduces additional
overhead. These two factors are especially signi"cant with
such workloads launch many small kernels.

The median memory overhead of D!!"C#$%!&% is 1.00→-
2.44→, compared with that of 1.29→-27.28→ and 1.27→-6.98→
of PyTorch and JAX pro"lers, respectively. Note that the
memory overhead of the framework pro"lers will increase
with the increase in the number of iterations. Also, the Py-
Torch pro"ler encountered out-of-memory issues when ex-
porting the pro"ling database to disk, failing to provide any
insights for optimization. D!!"C#$%!&% incurs signi"cant
lower memory overhead compared to these tools because it
aggregates metrics at runtime and thus is more feasible for
long-running workloads.

6 Insights obtained by D!!"C#$%!&%

In this section, we present seven performance optimization
cases conducted using additional insights obtained from
D!!"C#$%!&%, which were not discoverable through vendor-
speci"c pro"ling tools alone. By comparing D!!"C#$%!&%’s
cross-layer analysis capabilities with industry-standard tools
like Nvidia Nsight Systems, Nsight Compute, and AMD
rocprof—each selected as the most capable tool for its respec-
tive case—we demonstrate howD!!"C#$%!&%’s uni"ed view
of Python code, framework operations, and hardware execu-
tion reveals critical optimization opportunities that remain
hidden when using conventional pro"lers. These cases span
diverse workloads including DLRM [39], U-Net [48], Trans-
former [54], GNN [7], and Llama3 [19] models across both
Nvidia and AMD platforms, resulting in performance im-
provements of 6-40%, as summarized in Table 2. For each case,

we highlight the speci"c advantage of D!!"C#$%!&%’s multi-
layer approach over the most relevant vendor tool, focus-
ing on the comparison that best illustrates D!!"C#$%!&%’s
added value.

6.1 Forward/backward Operator Analysis

Figure 7. Forward-Backward association view of the DLRM-
small workload.

We pro"led the DLRM-small workload using the Criteo
1TB dataset on the A100 platform. In D!!"C#$%!&%’s bot-
tom up view, we noticed that the hotspot is on the
indexing_backward_kernel kernel (30.5s), which takes
39.6% of the total GPU kernel time. Using the D!!"

C#$%!&%’s framework call path, which associates the
forward call path with the corresponding backward ker-
nels, we found that this GPU kernel is triggered by
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the backward computation of aten::index called by
embedding_table[idx_lookup], as illustrated in Figure 7.
It should be noted that while the backward computa-

tions of aten::index take 39.9% of the total time, the for-
ward computation takes only 0.8% of the total time. This
discrepancy is caused by the deterministic nature [24] of
aten::index, which serializes GPU threads accessing the
same memory location and is unnecessary in this workload
if determinism is not required. To optimize the code, we
substituted aten::index with a non-deterministic opera-
tor aten::index_select, which uses atomic operations in
the backward phase to avoid serialization and reduced the

total GPU time from 73.2s to 44.0s. We also observed
the same problem in the GNN workload; applying the same
optimization reduced the total GPU time from 3.97s to

3.71s.

ComparisonwithNsight Systems. AlthoughNsight Sys-
tems can capture the indexing_backward_kernel as a GPU
hotspot, it does not automatically correlate backward ker-
nels with their corresponding forward operators in a uni"ed
top-down or bottom-up hierarchy. Consequently, users must
manually traverse event traces to identify the invocation
context of the corresponding forward operator aten::index
(with DL framework expertise) to make optimizations. In
contrast, D!!"C#$%!&% integrates framework call paths,
providing a direct link between the backward kernel and its
forward invocation site, facilitating the determination of the
feasibility of non-deterministic optimization and streamlin-
ing the modi"cation of the source code.

6.2 Hotspot Identi!cation with Call Path

When pro"ling U-Net using the fastMRI dataset on the A100
platform, we observed that the cudnn::nchwToNhwcKernel
kernel takes 15.4% of the GPU time. Using D!!"C#$%!&%’s

Figure 8. The bottom-up view of U-Net.

framework and Python call paths, we identi"ed every Py-
Torch operator that invokes the conversion. In addition, with
the help of native call paths, we also identi"ed that the in-
put tensor’s memory format is converted from PyTorch’s
default channels_first layout [53] to the channels_last
layout—a layout that is more e$cient for CUDNN—and then
reverted back to channels_first after the computations,
introducing excessive overhead. To address memory format

Figure 9. Top-down view of Transformer-Big.

conversion issues, we optimized the code by storing input
tensors with channels_last layout before computations,
and refactored LayerNorm and InstanceNorm layers to store
weights in the channels_last layout to avoid conversion.
This optimization reduced the end-to-end time of 100 it-

erations from 54s to 42s.

Comparison with Nsight Systems. While
Nsight Systems can display CUDA kernels (such as
cudnn::nchwToNhwcKernel) in its trace timeline, it does
not associate them with PyTorch operators that invoke
these kernels. As a result, users have to manually locate
where these conversion kernels are triggered in the timeline
and correlate them with PyTorch operators based on the
kernels invoked before and after, as well as the events that
happened on the CPU, demanding considerable manual
e!ort and deep DL expertise. In contrast, D!!"C#$%!&%
associates each kernel with its PyTorch and native C/C++
call path in a uni"ed call path to provide insights about
where and why layout conversion happens, expediting the
diagnosis of low-level performance issues.

6.3 Kernel Fusion Analysis

UsingD!!"C#$%!&%, we pro"led the Transformer-Big work-
load on the A100 platform. D!!"C#$%!&% can gather multi-
ple metrics in a single run, such as the number of invocations,
the number of warps and blocks, as well as the number of
shared memory and registers, in addition to the GPU time.
These metrics are attributed to the corresponding frames in
the call paths to assist performance analysis.

For instance, from the top-down view in Figure 9, we ob-
served that loss_fn takes 7.36s, which is 23.9% of total time.
Under this frame, there are three di!erent kernels invoked:
including softmax, copy, and nll_loss, each with the same
number of invocations. The kernel fusion analysis suggests
an opportunity for optimization by combining small kernels
to reduce overall time. Further analysis expanding the call
paths also reveals that the softmax kernel has relatively low
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register usage, which implies that fusing this kernel will not
cause signi"cant register overhead. Based on the suggestion
and observation, we manually fused these small kernels into
a single and more e$cient kernel. After optimization, the
total GPU time is decreased from 30.5s to 23.9s.

Comparison with Nsight Systems. When pro"ling the
Transformer-Big workload using Nsight Systems, small ker-
nels like softmax or copy may appear as fragmented events
in the trace view. Without explicit NVTX annotations [42]
around loss_fn, it is labor-intensive to cluster these kernels
and identify a fusion opportunity. In contrast,D!!"C#$%!&%
not only #ags these sub-kernels under the same Python call
path with its automated kernel fusion analysis but also re-
ports their resource usage collectively, making it evident that
fusion can be bene"cial and does not exceed register limits.

6.4 CPU Latency Analysis

We enabled both CPU and GPU metrics to pro"le the U-Net
workload. The CPU latency analysis highlighted that the call
path to the data_selection function takes 69% of the CPU
time with 16 threads running concurrently, while the GPU
time of the same frame is only 1.3 seconds. Further investi-
gation shows that the "rst iteration of loading data from the
disk to the memory takes 10 seconds, and the GPU remains
idle. By expanding the call paths of data_selection, we
noted that an ine$cient setting of parallel threads has been
invoked. Our allocated node only has 6 physical CPU cores,
but the data loader is hard coded with 16 threads to load
the data, causing signi"cant scheduling overhead. After we
reduced the thread number to 8, we reduced the end-to-end
time of 100 iterations by 7s, from 54s to 47s.

ComparisonwithNsight Systems. AlthoughNsight Sys-
tems o!ers CPU pro"ling features, correlating CPU events
directly with GPU idle times typically requires inspection
across multiple traces and manual alignment. D!!"C#$%!&%
automatically integrates both CPU and GPU metrics within
their respective contexts, enabling users to immediately iden-
tify where CPU ine$ciencies cause GPU idle periods.

6.5 AMD vs Nvidia

We pro"led the U-Net workload on both AMD and Nvidia
GPUs. From the top-down view shown in Figure 10, we
can see di!erences between these two platforms. Fig-
ure 10a shows that on Nvidia GPUs, the performance
hotspot is on the convolution operator aten::conv2d; on
the other hand, Figure 10b shows that on AMD GPUs,
the performance hotspot lies on the instance norm op-
erator aten::instance_norm. In order to "nd out the
cause of performance degradation on AMD GPU, we
checked the low-level call paths of aten::instance_norm

provided by D!!"C#$%!&% and found that the imple-
mentation of aten::instance_norm for AMD GPUs pro-
vided by PyTorch reused the same kernel template—
batch_norm_backward_cuda_template—as that for Nvidia
GPUs [12]. However, through further investigation, we ob-
served that performance can vary drastically when using
di!erent PyTorch versions (i.e., 2.7.0 and 2.6.0) and ROCm
versions (i.e., 6.3, 6.2, and 6.0). Performance regressions were
observed, where using newer versions of software can yield
up to 18.29→ slowdown on this kernel compared to older
versions. While D!!"C#$%!&% can detect that this kernel
su!ers from signi"cant memory stalls, it does not provide
su$cient visibility into the exact underlying cause, which
could involve page faults or other system-level issues. Using
pinned memory can o!er a workaround to achieve perfor-
mance comparable to Nvidia GPUs. We also employed other
tools, including rocprof and PyTorch pro"ler, but they did
not o!er additional clarity into the performance discrepancy
as well. We have reported this issue to AMD for further
investigation.

Comparison with rocprof. Nsight Systems is primarily
optimized for Nvidia GPUs, whereas its counterpart, rocprof,
lacks an equivalent visualization view. This discrepancy
makes it challenging to compare performance across dif-
ferent GPUs. Furthermore, while rocprof can collect basic
CPU and GPU events, it lacks call path correlation with
Python and C/C++ native frames. D!!"C#$%!&% provides
consistent multi-layer pro"ling across both AMD and Nvidia
backends, enabling an apples-to-apples comparison of oper-
ator hotspots such as instance_norm.

(a) Flame Graph of Nvidia GPU. Hotspot is on operator

aten::conv2d, which is as expected.

(b) Flame Graph of AMD GPU. Hotspot is on operator

aten::instance_norm, which is abnormal.

Figure 10. Performance comparison on AMD and Nvidia.

6.6 JAX vs PyTorch

We compared the performance of JAX and PyTorch across
two datasets/models: DLRM-small and U-Net. Our results
show that JAX signi"cantly outperforms PyTorch in all tasks,
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achieving performance improvements exceeding 50%. By
comparing the number of kernel operations, we observed
that the JAX version consistently requires fewer operations
than its PyTorch counterpart. This substantial performance
gap is primarily attributed to the advantages of JAX’s XLA
compiler, which e!ectively fuses operators to reduce redun-
dant memory access and overlap compute and memory in-
structions. To narrow this performance gap, we can use
torch.compile to optimize some workloads, and we ob-

served a 1.11→ speedup and a 1.02→ speedup in DLRM-

small and UNet, respectively. However, we observed that
it cannot successfully compile all PyTorch modules, yields
slowdowns in cases such as GNN and ResNet, and may
cause signi"cant autotuning overhead, especially with the
max-autotune mode.

Comparison with Nsight Systems. While Nsight Sys-
tems can reveal that JAX and PyTorch versions execute di!er-
ent kernels with varying counts, it provides no mechanism
to correlate these di!erences with high-level framework op-
erations or optimization strategies. Users must manually
analyze kernel patterns to hypothesize potential optimiza-
tion opportunities, requiring specialized knowledge of both
frameworks. In contrast, D!!"C#$%!&%’s automated analy-
sis compares average kernel execution times and identi"es
patterns indicative of suboptimal kernel fusion in the Py-
Torch implementation. This cross-framework analysis capa-
bility enables D!!"C#$%!&% to automatically recommend
speci"c optimization approaches for PyTorch workloads
based on observed patterns in JAX’s execution, e!ectively
bridging the semantic gap between di!erent framework im-
plementations.

6.7 Fine-grained Stall Analysis

We pro"led the Llama3 workload running low-precision
including float16 and float8 using "ne-grained instruc-
tion sampling. On both AMD and Nvidia GPUs, we have
identi"ed time spent on the data conversion operators (i.e.,
torch.to) in the LlamaRMSNorm module [20], due to the
fact that the variance calculation has to be done in float32

for numeric stability [51]. The "ne-grained stall analysis
identi"es non-trivial constant memory misses due to the
loading of constants for each CTA. Since the input is small,
there is a relatively high overhead in reading the constant
memory compared to loading the data itself. Additionally,
we observed math dependency-related stalls caused by non-
vectorized data conversion instructions from/to float32.
To optimize the kernel, we can (1) ensure that each block
loads the minimum number of bytes required to use vec-
torized data conversion instructions, and (2) fuse the con-
version operator with other operators to ensure that the
constant memory overhead is minimized. We adopted the
former to enable vectorized data conversions between #oat32

and #oat16/#oat8 and achieved non-trivial speedups. For ex-
ample, the conversion from "oat8 to "oat32 is 3.47→

faster with each thread loading and converting four

"oat8 elements simultaneously, with the LlamaRMSNorm

module improved by 1.25→. On Nvidia Ada or later archi-
tectures, we can further adopt cvt with e5m2x2 [43] to "rst
convert multiple #oat8 elements using a single instruction
without workarounds such as byte permutation.

Comparison with Nsight Compute (NCU). Both NCU
and D!!"C#$%!&% can collect instruction samples, but NCU
is approximately 100→1 slower than D!!"C#$%!&% for sev-
eral reasons. First, NCU synchronizes the CPU and GPU after
each GPU kernel instance, whereas D!!"C#$%!&% avoids
synchronization and parses binary information o%ine. Ad-
ditionally, NCU often applies kernel replay to collect addi-
tional metrics along with instruction samples. The pro"l-
ing view in NCU displays each kernel instance separately
without aggregating metrics, making it di$cult to identify
performance hotspots in source code. In contrast, the con-
text view in D!!"C#$%!&% clearly reveals that all kernels
in the LlamaRMSNorm kernel are a!ected by data conversion,
leading to an increased memory and compute overhead.

7 Limitations and Future Work

While D!!"C#$%!&% o!ers rich pro"ling for deep-learning
workloads, its primary limitation is the overhead incurred
when unwinding call paths for workloads with many
small kernels. We will mitigate this by adopting call-path
caching techniques [60]. In the future, we also plan to
extend D!!"C#$%!&% to PyTorch workloads that employ
torch.compile, leveraging the JAX-style tracing already in
place to capture operator call paths.

8 Conclusions

D!!"C#$%!&% addresses a critical gap in performance pro-
"ling for deep learning workloads in heterogeneous com-
puting environments, where the interaction between CPUs,
GPUs, and deep learning frameworks is inherently complex.
D!!"C#$%!&% ful"lls this need by providing a multi-level,
automated analysis that bridges the di!erent layers of the
software and hardware stack. Our detailed case studies and
evaluations show that D!!"C#$%!&% improves the ability to
identify and resolve performance bottlenecks in deep learn-
ing work#ows.
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A Artifact Appendix

A.1 Abstract

D!!"C#$%!&% is a cross-framework, context-aware pro"ler
that correlates execution contexts from high-level Python
code, deep-learning frameworks, underlying C/C++ libraries,
and GPU kernels, delivering both coarse- and "ne-grained
performance metrics to developers and researchers. Version
v1 of the artifact (49.2 MB, DOI 10.5281/zenodo.15589616)
packages the pro"ler together with example traces, the
browser-based GUI, and the automated analyzer, and is
released under the MIT License. DeepContext supports
PyTorch, JAX, and other CUDA/HIP-enabled frameworks
across Nvidia and AMDGPUs, as well as x86 and ARMCPUs,
allowing users to pinpoint multi-layer hotspots and receive
optimization suggestions directly in the interface. Through
representative case studies, the artifact demonstrates how
uni"ed context correlation and automatic insight generation
accelerate the diagnosis and tuning of complex training and
inference workloads, making DeepContext a practical tool
for performance engineers tasked with optimizing hetero-
geneous deep-learning pipelines that span diverse compute
environments.

A.2 Artifact check-list (meta-information)

• DOI: h!ps://doi.org/10.5281/zenodo.15589616

• Version: v2.0

• Archive size: 49.3 MB

• License: MIT License2

A.3 Dependencies

Con!g 1: x86 + NVIDIA AMD EPYC 7543 (32c/64t, Zen 3)
with 256 GB DDR4 and an NVIDIA A100 80 GB GPU.

Con!g 2: Arm + NVIDIA Arm Neoverse-V2 (64 cores)
with 480 GB LPDDR5 and an NVIDIA GH200 (Grace
Hopper) 96 GB GPU.

2h!ps://opensource.org/license/mit
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Con!g 3: x86 + AMD AMD EPYC 7643 (48c/96t, Zen 3)
with 2 TB DDR4 and an AMD Instinct MI250 accelera-
tor (128 GB HBM2e).

All experiments reported in the paper were conducted on
at least one of the con"gurations listed above; the pro-
"ler’s instrumentation code is ISA-agnostic and requires
only Python ↓ 3.10 and ROCm 6.0+ or CUDA 11.8+ on the host.

A.4 Getting the Artifact

Retrieve with:

1 wget https :// zenodo.org/record /15589616/ files/

DeepContext.zip

2 unzip DeepContext.zip

3 # README.md in the root describes directory

layout

A.5 Reuse Policy

This artifact is released under the MIT License.
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