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Faunal habitat selection, or the disproportionate use of available resources, is closely linked to habitat 
composition and configuration across a seascape. However, the drivers of habitat selection operate 
across multiple scales and require a hierarchical approach to study. This study combines acoustic 
telemetry, field survey data, remote sensing, and machine learning to investigate the multi-scale 
(seascape and patch) habitat selection of spotted seatrout (Cynoscion nebulosus) in Florida Bay, 
Everglades National Park, USA. Spotted seatrout responded to both scales, as there were three 
patch-scale (Halodule cover, standard deviation of submerged aquatic vegetation (SAV) cover, and SAV 
species richness) and one seascape-scale (patch density) predictor in the top four. However, responses 
were scale-specific, exhibiting logistic responses to seascape-level variables and optimal (specific-
range) responses to patch-level characteristics. This study highlights the importance of investigating 
habitat selection across multiple scales as climate change alters not only species ranges, but local 
seascapes as well.
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Faunal habitat selection, or the disproportionate use of available conditions or resources due to perceived risks 
and rewards1, is a vital ecological process, expected to operate at multiple levels of spatial organization2,3. At the 
broadest level, populations of organisms select their ecological range (!rst-order selection) based on species-
speci!c metabolic constraints as well as the availability and amount of essential habitat needed to survive2. 
Within this ecological range, individuals select their home range (second-order selection) based on habitat 
requirements, as well as other density-dependent ecological processes such as competition2,4,5. Lastly, third-
order habitat selection of an individual refers to the use of various habitat patches, and particular features of 
those patches, within their home range (e.g., central place foraging, the use of core vs. edges and corridors2,6–8). 
"ird-order habitat selection operates over multiple spatial and temporal scales dependent upon the state of the 
organism, as well as life history requirements.

"ough scale is o#en cited as a central theme in ecology9, research focusing on multi-scale habitat selection 
has been lacking and forms a considerable knowledge gap. For example, McGarigal et al.10 found that of 859 
movement ecology studies (both terrestrial and aquatic) published between 2009 and 2014, only 20% examined 
habitat selection across multiple scales. In their review, the authors con!rmed the importance of scale in habitat 
selection but cautioned researchers about the di$erence between ‘level’ and ‘scale’. "ey put forth that many 
studies attempting to measure habitat selection over multiple scales do not use the correct framework or do 
not optimize the variables; however, they identi!ed certain studies that appropriately utilize the multi-scale 
framework. One example is Leblond et al.11, who used GPS positions of woodland caribou (Rangifer tarandus 
caribou) to investigate landscape and local habitat selection across seasons. "is study stresses that not addressing 
the landscape context within habitat selection studies will lead to biased inferences due to how landscapes 
constrain the choices available to the organisms.

In marine systems, third-order habitat selection is studied through the lens of seascape ecology, or the 
study of patch con!guration and composition of seagrasses, coral reefs, and other marine ecosystems12,13. In 
these seascapes, third-order habitat selection can be conceptualized as occurring within two primary spatial 
contexts14,15: the patch scale and the surrounding spatially heterogeneous mosaic (herea#er, the seascape 
scale12,16). "e patch scale refers to a discrete, relatively homogeneous unit of habitat17 typically evaluated at !ne 
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spatial extents (e.g., 0.1–10 m2) and can be characterized by biotic and abiotic structural features (e.g., seagrass 
density, rugosity, species richness14,17,18). In contrast, the seascape scale is the broader matrix of habitats within 
which patches are embedded. "is seascape scale is usually measured using con!gurational metrics such as 
patch size, shape, connectivity, and other aspects of spatial arrangement19–21.

"e patch-matrix structure of marine systems is known to govern multiple ecological processes16 and is 
expected to strongly in%uence multi-scale habitat selection as animals move through seascapes tracking 
resources, risks, and conditions22,23. For example, prior studies have linked marine faunal recruitment, density, 
movement, and assemblage structure to within-patch compositional attributes, such as the density of submerged 
aquatic vegetation (SAV24–26), canopy height27,28, and vegetation species identity29–32. At the seascape scale, 
previous research has highlighted the importance of seascape con!guration, including patch size33–35, edge 
characteristics34,36–38, and spatial proximity to adjacent habitats39–41. However, few studies have attempted to 
examine habitat selection at multiple scales of spatial organization. An exception is Pittman et al.20, who show 
that faunal density was positively related with seagrass cover at both patch and seascape scales, but the relation 
was linear at the seascape scale and showed a threshold at the patch scale (a sharp decline below 20% seagrass 
cover). In lieu of multi-scale studies, reviews that compare single scale studies show that seascape-faunal 
interactions are distinct at the patch vs. seascape scales. For instance, Yeager et al.42 found that fragmentation has 
a positive e$ect on faunal biomass at the seascape scale but no e$ect at the patch scale, and Yarnell et al.43 showed 
that edge e$ects at the patch scale were more in%uential on !sh biomass than fragmentation at the seascape scale.

Residential species inhabiting shallow coastal habitats, such as seagrass meadows, provide an ideal opportunity 
to map and investigate the contextual nature of multi-scale habitat selection. One such species is spotted seatrout 
(Cynoscion nebulosus; herea#er seatrout), a coastal mesoconsumer that exhibits a strong a&nity for seagrass 
habitats and relatively small home ranges44,45. "ese traits, coupled with their high site !delity46,47, make seatrout 
particularly well-suited to further evaluate how habitat selection varies across the patch and seascape scale. 
In this study, we examined single level, multi-scale habitat selection10 in seatrout using Resource Selection 
Functions (RSFs) derived from random forest (RF) models applied to passive acoustic telemetry data48 and a 
suite of !eld-based and remotely sensed habitat metrics. By single level, multi-scale habitat selection, following 
McGarigal et al.10, we refer to applying a single modeling approach to a hierarchically-structured habitat. We 
hypothesize that (1) seatrout habitat selection is related to both patch and seascape scale characteristics but will 
respond more to patch scale variables due to the importance of edge e$ects43 and foraging strategy (ambush 
predators49); and (2) seatrout habitat selection is stronger in areas with high spatial heterogeneity (e.g., greater 
diversity of SAV species and higher patchiness50,51).

Methods
Study site: Florida Bay, Everglades National Park (ENP)
Florida Bay, the largest estuary in Florida (2200 km2), lies at the southern end of the Florida peninsula within 
Everglades National Park (ENP; Fig.'1) and supports a highly valuable recreational !shery that contributed $439 
million and over 4100 jobs to the local economy in 2015–201652. "e bay consists of shallow basins, mud banks, 
mangrove islands, and tidal channels, with seagrass—primarily !alassia testudinum (turtle grass; herea#er 
!alassia)—dominating up to 95% of the benthos53. However, anthropogenic water management practices, 
including upstream channelization and impoundment, have reduced freshwater in%ows and intensi!ed Florida 
Bay’s naturally high water residence times, leading to periods of hypersalinity, prolonged anoxia, and recurrent 
algal blooms53–58. "ese conditions have made the northcentral portion of the bay particularly vulnerable to 
large-scale seagrass die-o$s, with major events recorded in 1987–1991 and again in 201559–61. Although the 
bay recovered by 2010 a#er the !rst event, the more recent die-o$ has le# the northcentral region in a state of 
recovery. "is state of recovery is characterized by pioneer species such as Halodule wrightii (herea#er Halodule) 
and calcareous green algae replacing the bare benthos prior to transitioning back toward climax communities 
dominated by !alassia61–63. Rankin Basin in northcentral Florida Bay was selected as the focal site for this 
study because it was heavily impacted by the 2015 die-o$, is undergoing active recovery, serves as a key !shing 
location, and has long-term seagrass monitoring (Fig.'1).

Study species: spotted seatrout
Spotted seatrout is a popular sport!sh throughout all of its range, from Massachusetts to Florida and throughout 
the Gulf of Mexico45,49. In fact, they are the top saltwater recreational !shery, with 54 million !sh caught 
each year64. In southwest Florida, seatrout are a top 4 targeted !sh species in Everglades National Park, with 
approximately 4.19 million !sh caught and released alive and 457,000 harvested65–67. Seatrout are estuary-
dependent species, spending their entire life within a single estuarine system, resulting in each estuary in Florida 
harboring a unique subpopulation45,68,69. However, they are highly mobile within their natal estuary due to 
foraging and spawning needs46,47,50,70.

Within these estuaries, seatrout have been shown to be reliant on seagrass throughout their life cycle, 
feeding on seagrass-associated species throughout their ontogeny44,71,72. Previous studies have primarily 
used catch data to examine seatrout habitat associations45; however, recent studies have investigated seatrout 
distribution, movement and habitat use using acoustic telemetry (e.g., examining temperature e$ects45,50 and 
spawning activity46,70,73,74. For example, Moulton et al.46 used !ne-scale acoustic telemetry to investigate habitat 
partitioning between seatrout and another estuarine !sh, Red Drum (Sciaenops ocellatus). Seatrout used deeper 
water than Red Drum and forage over seagrass during the day. Unknowns remain, however, on habitat selection 
by seatrout, particularly in relation to the e$ects of seagrass die-o$ events.
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Mapping habitat variables
Habitat variables were mapped at the patch and seascape scale to characterize the structural features likely to form 
seatrout habitat. Patch scale variables were collected in the !eld and included percent cover of total SAV, percent 
cover of !alassia and Halodule, standard deviation of percent cover, and number of SAV plant species. "ese 
variables were mapped annually (n = 3: 2020–2022) using a series of kriging models75 predicted at 75'm to match 
the average 70% detection range of the acoustic array. "e kriging interpolation maps were evaluated based on 
cross-validation and semivariogram comparison with the best-!t model selected using lowest root-mean square 
error, resulting in the selection of the ordinary kriging maps. Mapping was performed in the Geostatistical 
Wizard extension of ArcGIS Pro. "e data informing the kriging came from two sources. "e !rst included SAV 
surveys conducted around each receiver, which measured percent cover, standard deviation of percent cover, 
and SAV species richness. "e second source was data provided by the Fisheries Habitat Assessment Program 
(FHAP) of the Florida Fish and Wildlife Conservation Commission (FWC), which consisted of percent cover 
of !alassia and Halodule63(see Supplemental Methods for detailed descriptions of both approaches). Standard 
errors of the total SAV cover maps ranged between 8.94 and 12.4% cover, standard deviation of total SAV cover 
maps ranged between 3.92 and 5.79% cover, number of species maps ranged between 0.26 and 0.46 species, 
!alassia cover maps ranged between 4.12 and 5.4% cover, and Halodule cover maps ranged between 3.29 and 
6.43% cover (Table S1). Because our study was conducted during SAV recovery, ranges of seagrass cover are at 

Fig. 1. Map of acoustic receiver array in Rankin Basin, Florida Bay, Everglades National Park (ENP). In the 
insert, green shading represents ENP, blue shading Florida Bay, and the red box represents the area covered 
by the main map. Light blue on the main map represents Rankin Basin. Acoustic receiver locations (a mix of 
Innovasea VR2W and VR2Tx) are indicated by dark blue dots on the main map.
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the low end (max !alassia cover = 33%, max Halodule cover = 20%; Fig. S1). "us, our study measures selection 
within limited ranges of SAV cover. Future studies should investigate higher cover ranges and selection in areas 
with denser SAV.

Seascape scale variables were quanti!ed by mapping SAV using aerial imagery collected by ENP in 2021'and 
calculating spatial pattern metrics on the resulting SAV map. A binary classi!cation scheme was used to represent 
the total cover of SAV consisting of dense SAV (> 25% cover) and sparse SAV/bare sediment (0–25% cover) due 
to a spectrally signi!cant threshold at 25% cover76–81. "e binary class SAV map was created using a RF classi!er 
trained with data obtained through photointerpretation and had an overall accuracy of 97.2% (Figs. 2, S2, S3). 
Eight spatial pattern metrics (Percentage of Landscape, Edge Density, Patch Density, Division, Mean Radius of 
Gyration, Area-eighted Mean Perimeter-to-area Ratio, Mean Shape, and Mean Patch Size) were then calculated 
on the dense SAV class using the landscapemetrics package in R82. However, only four metrics were retained for 
the !nal RSF model due to correlation between variables as well as the accuracy of the RSF model. "ese metrics 
consisted of: Percentage of Landscape (PLAND) which quanti!es the amount of dense SAV within an area, 
Edge Density (ED) which measures the amount of edge within an area, Patch Density (PD) which quanti!es the 
amount of patches within an area, and Division (DIV) which measures the probability that an adjacent pixel is 
part of the same patch (Table 1). "ese four spatial pattern metrics were chosen because they represent a range 
of seascape measurements and have been used in previous papers measuring seascape complexity (see15,81). 
General Additive Models (GAMs) were then run using the mgcv package in R83 to determine relationships 
between habitat variables.

Acoustic telemetry
We used acoustic telemetry to track the habitat selection of seatrout in Rankin Basin using a gridded array of 29 
omnidirectional receivers (models VR2W and VR2Tx; Innovasea) from 2020 to 2022 (Fig.'1). A grid design was 
chosen because it facilitates the relatively !ne-scale study of space use, home range estimation of !sh, and habitat 
selection within the array84,85. Extensive range testing determined that the detection range of acoustic receivers 
deployed at a depth of 1'm within this system was 75'm (see supplemental methods for details on deployment 
and range testing). Seatrout (n = 151) were caught throughout the array deployment area by hook-and-line with 
arti!cial lures. Upon capture, !sh were measured and those > 300'mm total length were tagged with Innovasea 
V9-2L tags (2 settings: low power with random delay of 60-90's, n = 127; high power with a random delay of 20-

Fig. 2. Work%ow of the !eld and analytical methods used in this study. Seatrout were acoustically tagged and 
released in Rankin Basin. SAV surveys were conducted at each receiver each year, consisting of 20 quadrat 
surveys. SAV survey data as well as data from FHAP and aerial imagery were used to map habitat variables. 
COAs were calculated from acoustic detections in 60-min time bins then grouped by individual, daily period, 
and season to randomly distribute pseudo-absence points in a 1:1 ratio with the COAs. Habitat data were 
extracted from the habitat maps at each COA and pseudo-absence point then used to train a random forest 
(RF) model using a 70% training—30% testing data split. Predictor importance was determined using the 
decrease in accuracy method, while marginal e$ects were investigated with partial dependency plots.
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40's, n = 24). Fish deemed large enough to accept a tag were weighed and tagged using a protocol approved by 
the FIU Institutional Animal Care and Use Committee (IACUC-18–062) in accordance with guidelines set forth 
by the American Veterinary Medical Association to reduce mortality and pain (Fig.'2).

Raw acoustic telemetry data consisting of a time stamp, receiver ID, and tag ID were loaded into R and !ltered 
to only include individuals tagged in this study. Detection data were then !ltered to remove false detections (one 
detection of a single individual across the array in a 2-h period86) and deceased individuals (individuals that were 
recorded constantly by one receiver for 24'h, n = 1). Short-term centers of activity (COAs) were then calculated 
to estimate spatial locations of !sh detected away from exact receiver locations87. "is method provides an 
average position of a !sh based on the weighted means of the number of detections on each receiver over a 
given amount of time87. Using the VTRACK package in R88, COAs were calculated using a 60-min time bin (the 
minimum time interval used by48) and individuals with less than 50 COAs over their detection history were 
removed. Pseudo-absence points were created by grouping the COAs by individual, diel period (night, dawn, 
day, dusk; Table S2) and season (dry, early wet, wet, early dry; Table S2), summing the number of COAs in each 
group, and then randomly placing pseudo-absence points throughout the acoustic array. Pseudo-absence points 
were added until the ratio of COAs to pseudo-absence points was 1:1, which is the suggested ratio for machine 
learning models89 (Fig.'2).

Table 1. Predictor variables utilized to predict the probability of spotted seatrout presence in the random 
forest model.
Level indicates at what spatial scale the predictors were quanti!ed (green = patch, blue = seascape). Source 
indicates how the data for mapping originated (i.e., SAV surveys in light green and FHAP in darker green for 
patch scale). Value ranges show the range of values represented in our data.

 

Scientific Reports |        (2025) 15:43443 5| https://doi.org/10.1038/s41598-025-27322-0

www.nature.com/scientificreports/

http://www.nature.com/scientificreports


Habitat selection: resource selection functions
Relative habitat selection of seatrout was predicted using RSFs. RSFs determine habitat selection by using 
spatiotemporal records of animal occurrence to evaluate relationships between space use and habitat 
characteristics relative to the available habitat90,91. "is method operates under a use/availability framework, 
where space use is associated with a positive presence (such as a COA), which is then compared to a random 
sampling of background points (pseudo-absences) across the available environmental conditions48. RSFs are 
viable to study habitat selection over the correlation of individual presence and habitat variables because all 
the available habitat is considered in the modeling process, resulting in the investigation of selection. However, 
this framework does not allow for the calculation of habitat preference, as only experiments can investigate 
preference per se92,93. All analyses were conducted in R version 4.2.294.

Habitat variable data for all COAs and pseudo-absence points were extracted from the habitat maps. For 
patch scale variables, COAs and pseudo-absence points were grouped by year, and habitat variable values 
were extracted at each point from the interpolated habitat rasters based on year. Seascape scale variables were 
quanti!ed within a 75'm radius of every COA and pseudo-absence point (Fig.'2). RF models95 were then used 
to apply RSFs to investigate relative habitat selection of seatrout using the ranger package96 and executed in 
the mlr package in R97. "e RF model was trained using 500 trees (subset with replacement) with 70% of the 
data. "e remaining 30% of the data were used for model validation. To increase the accuracy of RF models, 
hyperparameter optimization was performed to determine the ideal number of predictors within each tree 
(mtry), the fraction of observations that should be used to train each tree (sample.fraction), and the number 
of observations the terminal node of each tree should have (min.node.size48). "e hyperparameter tuning was 
performed using the tuneParams() function in the mlr package (Fig.'2).

Accuracy of the RF model was determined by using the trained model to predict across the 30% validation 
dataset, resulting in an overall accuracy of the RF model of 98% (Fig. S4). To identify the most important 
habitat variables driving seatrout habitat selection, predictor importance was calculated using the permutation 
importance method in the iml package in R98. "is method assesses the increase in the prediction error of the 
model when each variable is removed95. Partial dependency plots were then constructed for model predictors to 
determine the marginal e$ect of the covariates on the predicted outcome (presence/absence of seatrout) using 
the pdp package in R99. "ese plots illustrate how each variable impacts the probability of presence across the 
range of its values. "e RF model was then used to investigate the interaction between predictors (Fig.'2).

Results
Acoustic telemetry data summary
Out of 151 tagged seatrout, 58 individuals had at least 50 60-min COAs calculated and thus were retained for 
analysis. "e longest duration of tracking of an individual !sh was 534'days, while the shortest tracked duration 
was 4'days (Table S3). A total of 338,294 acoustic detections of seatrout were used to create 21,971 COAs a#er 
pre-processing the acoustic data and !ltering for the minimum number of COAs (Fig. S5). Of these, 4,264 COAs 
were calculated for 2020, 5,722 for 2021, and 11,985 for 2022. An average of 406 COAs were calculated per 
individual seatrout (range: 51–3,438).

Predictor importance
Habitat selection was in%uenced by both patch and surrounding seascape-scale characteristics based on our 
model results, supporting our hypothesis that both scales of habitat would in%uence seatrout habitat selection 
(hypothesis 1). "e most important predictor of seatrout habitat selection within Rankin Basin was the total 
cover of Halodule (a patch-scale variable; Fig.'3). "e second most important predictor was patch density (a 
seascape-scale variable). Two other patch-scale variables were among the top four predictors: standard deviation 
of total SAV cover and number of SAV species. "e least important variable was year (Fig.'3).

Marginal effects of the top 4 predictors
Partial dependency plots were used to investigate the relative selection strength of the top four predictors (when 
other predictors were held constant). Here a higher marginal e$ect (() indicated a higher relative selection 
(Fig.'4). "e general selection strength patterns di$ered between patch and seascape-scale variables. Patch-scale 
selection displayed an optimal pattern whereas seascape-scale selection exhibited a logistic pattern in which the 
probability of selection eventually plateaued. At the patch scale, the probability of seatrout selection increased 
with increasing Halodule cover until it reached a maximum at 5.5% total cover. Selection then decreased with 
higher levels of Halodule cover (up to 20%, Fig.'4a). For patch density, ( values increased with increasing patch 
density up to 2,750 patches per hectare, where probability of seatrout selection was high and remained relatively 
stable up to patch density values > 9,000 patches per hectare (Fig.'4b). Relative selection for standard deviation of 
total SAV cover exhibited a bimodal relationship, with higher relative selection at both the lowest and the highest 
values (< 10 and > 25 SD units; Fig.'4c). "e probability of seatrout selection was trimodal when considering 
the number of SAV species, with higher values at 1.5 and 2.75, and with values above 3.5 having the highest 
probability of presence, whereas values of 2.2 resulted in the lowest probability of presence (Fig.' 4d). "ese 
results support our hypothesis that seatrout select for areas of high spatial heterogeneity (hypothesis 2). Other 
partial dependency plots are presented in Fig. S6.

Interaction between predictors
Interactions among the top three predictors (Halodule cover, patch density, and standard deviation of total cover) 
were investigated by utilizing the RF model to predict across the range of values of the patch-scale variables (0–
25 for Halodule cover and 0–30 for standard deviation of total cover), while varying the seascape-scale variable 
(patch density; Fig.'5). Relative habitat selection for seatrout was highest for lower values of Halodule cover and a 
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lower standard deviation of total cover in patchy SAV habitats. In contrast, when the seascape was a continuous 
bed (patch density = 1), seatrout selected for higher levels of Halodule cover and higher standard deviation of 
total cover (Fig.'5).

Discussion
Habitat selection for highly mobile marine species is a multi-scale process that requires the consideration of 
both seascape (broad-scale) and patch (!ne-scale) habitat variables10,100. Combining remote sensing, acoustic 
telemetry, and machine learning, our study investigated what drives seatrout habitat selection at the patch and 
seascape scale in an area recovering from a large-scale disturbance (i.e., a 2015 seagrass die-o$). Based on 21,971 
COAs calculated from 338,294 acoustic detections over a 3-year period, we found that seatrout third-order 
habitat selection (e.g., patch selection for foraging) in Florida Bay is in%uenced by habitat characteristics varying 
at multiple spatial scales. Of the top four predictors of seatrout habitat selection in SAV meadows, three were 
patch (Halodule cover, standard deviation of SAV cover, and SAV species richness) and one was seascape scale 
(patch density). At the patch scale, seatrout exhibited an optimal response, illustrating a speci!c range of habitat 
values in%uencing habitat selection "e most important predictor of seatrout habitat selection at the patch scale 
was the total cover of Halodule within a SAV patch, with seatrout being most likely to select areas containing 
5.5% cover. Values above and below that value resulted in a lower selection probability, with a minimum selection 
at the highest level of Halodule cover (20%). At the seascape scale, seatrout exhibited a logistic response to patch 
density, where seatrout selected SAV areas with a minimum level of complexity (i.e., above 3,000 patches per 
hectare). Furthermore, seatrout were most likely to select patches of consistently low Halodule cover with the 
only exception being when the habitat was not fragmented, and then selection was for continuous meadows of 
high and variable Halodule cover.

Scale is a crucial aspect of ecology, as individuals experience the environment across a range of scales based 
on their perception of the landscape4,9. Our study found that seatrout make decisions on habitat selection 

Fig. 3. Relative predictor importance within the random forest model. Values were calculated using the mean 
decrease in accuracy method. Predictors are color coded by scale (green = patch, blue = seascape), and shading 
indicates importance.
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utilizing information from two scales, which has been observed across di$erent levels of terrestrial mobile 
organisms. For example, Rather et al.101 found that tigers in India avoided areas dominated by Sal trees at the 
broad scale and utilized areas where the dominant slope was to the south at the !ne scale. In a nature reserve in 
China, Ma et al.102 found that cranes selected habitat variables at di$erent scales depending on the time of day. 
In seascape ecology, studies investigating multi-scale drivers of faunal abundance and biomass have highlighted 
both seascape and patch scale dynamics as critical factors in%uencing habitat selection. For example, Pittman et 
al.20 found a linear relationship between faunal density and seagrass cover at the seascape scale but a threshold 
relationship at 20% seagrass cover at the patch scale. However, multi-scale habitat selection studies on mobile 
marine fauna using movement are lacking13.

Habitat selection at the seascape scale
All seascape scale predictors exhibited a logistic response, where the relationship either starts out with a positive 
or negative trend but levels out at a certain value (see Figs. 5b, S3). Of these relationships, the most important to 
seatrout habitat selection was seascape patchiness. Seatrout selected for patchier seascapes, with their selection 
probability increasing linearly as continuous habitats fragmented into patches, peaking at a maximum patch 
density of 3000 patches per hectare. Beyond this value, seatrout selection probability remained high and 
stable. Logistic relationships in animal-seascape relationships are relatively common, having been found for 
habitat connectivity103,104, distance from a key habitat (nursery41, shelf edge105, reef106, land48), and amount 
of habitat42. For instance, Gri&n et al.48 found that lemon shark habitat selection in St. Croix had a negative 
logistic relationship with distance from shore while Yeager et al.42 found that !sh diversity had a positive logistic 
relationship with the amount of dense seagrass in the seascape.

"e greater habitat selection with higher patch density may be due to the bene!ts of edge habitat in seascapes, 
which is also supported by the higher relative habitat selection at higher standard deviations in total cover. In 
seagrass ecosystems, edge habitat has been found to increase secondary production, leading to a higher abundance 
of prey items for seatrout37,107. Total !sh density and foraging e&ciency were also found to increase along patch 
edges43. Patch edges may also bene!t seatrout due to their foraging strategy. Seatrout are ambush predators and 

Fig. 4. Partial dependency plots of the top 4 predictors. "e marginal e$ect represents the relative selection 
strength for each given predictor when all other predictors are held constant. Higher ( values indicate a higher 
relative selection. Color coded by level (green = patch, blue = seascape).
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therefore can utilize patch edges to sit and wait for prey items to exit the safety of SAV cover49. Seatrout in Texas, 
USA, utilized seagrass habitat during the day and bare sediment at night, which is hypothesized as a mechanism 
to reduce predation risk from piscivores such as Bottlenose Dolphins46 (Tursiops truncates). Due to the presence 
of dolphins in Florida Bay, seatrout may be utilizing areas with a certain level of patchiness to take advantage of 
the matrix of bare sediment for nocturnal foraging. While temporal analysis was not performed in this study, 
future investigation of these data will include temporal drivers of habitat selection and space use to better tease 
out these e$ects.

Habitat selection at the patch scale
While logistic responses were observed at the seascape scale, they were rare for the patch-scale variables. All but 
one (cover of !alassia) patch- scale variables considered in our analysis showed an optimal response. Optimal 
responses result from a species selecting for one or more ‘optimum’ values across a continuous environmental 
gradient108,109. "ese optima vary across species, and can be in%uenced by various factors such as metabolism 
(e.g., temperature110), predation risk (e.g., water column turbidity in planktivorous !shes111, and foraging 
e&ciency (e.g., short vs. long foraging trips by nesting seabirds112). In seagrass systems, optimal relationships 
between within-patch variables and fauna have been previously reported. For example, Belgrad et al.113 found 
that peak pin!sh abundance was associated with high !alassia cover and low dri# biomass. In our study, 
seatrout selected for a single optimum Halodule cover, but for multiple optima for standard deviation of cover 
and number of species.

Cover of Halodule was the single most important predictor of seatrout habitat selection of in Rankin Basin. 
Seatrout exhibited a maximum relative habitat selection in areas where Halodule covered approximately 5% 
of the benthos. In seatrout, previous work has shown a preference for seagrass habitat relative to oyster and 
saltmarsh habitats46 and for seagrass when spawning70 (vs. open water habitat), but no previous work has 
determined preference of seagrass species nor density. Halodule has been found to be an important habitat for 
primary and secondary consumers as well as preferred habitat of pink shrimp (Farfantepenaeus duorarum), a 
common diet item for seatrout32,114,115. "us, the presence of any Halodule may increase prey availability within 
the SAV patch. Furthermore, the sparse cover of Halodule selected for by seatrout is also indicative of multi-
species SAV beds. We found that the maximum number of SAV species occurred throughout our study system 
when Halodule cover was 5% (Fig. S7). Mixed seagrass beds may increase faunal density and diversity due to 

Fig. 5. Stacked plot visualizing the interaction between the top three predictors in the random forest model. 
Patch level variables Halodule cover and standard deviation of cover are represented by the x- and y-axes. 
Seascape variable patch density is represented by the z-axis. Darker values represent higher relative habitat 
selection.
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species-speci!c relationships with certain SAV species (e.g., Pin!sh prefer !alassia over Halodule116,117, Blue 
crabs prefer Halodule over !alassia and Syringodium "liforme32). "erefore, higher SAV diversity may increase 
faunal diversity by facilitating many species to inhabit the same seagrass patch.

Interaction of scales
Seatrout in this study utilized decision-making at multiple scales to select for habitat variables, leading to 
interactions across scales that support foraging theory. When investigating how the interaction of the top 
three predictors (Halodule cover, standard deviation of cover, and patch density) impacted habitat selection, 
we found two maximal habitat preferences depending on the seascape structure. When patch density was 
equal to one (representing one continuous dense SAV patch), seatrout selected for areas categorized by high 
standard deviation of cover and a range of Halodule cover. However, seatrout selected for areas categorized by 
low Halodule cover and standard deviation of cover once patch density was increased. "is pattern illustrates a 
conservation of foraging strategy across seascape complexity, wherein seatrout select for habitat edges to increase 
foraging e&ciency43. Overall, seatrout preferred higher patch densities because edges are apparent throughout 
the seascape. However, when patches, and therefore edges, are not present (one continuous meadow), the higher 
standard deviation of cover might create “pseudo-edges” (canopy openness) where SAV densities vary across the 
seascape while staying dense (> 25% cover). "erefore, seatrout might use these “pseudo-edges” as a replacement 
to patch edges to ambush prey. Future work should compare the energy costs and !tness bene!ts across patchy 
and continuous habitats to determine the di$erence between using real edges and “pseudo-edges” for foraging.

Conclusion
Our study found that a seagrass-associated mesoconsumer exhibited di$erent habitat selection trends across 
hierarchical scales of spatial organization. Seatrout utilized the seascape scale to !nd a minimum number of 
patches (logistic response) and then selected for speci!c ranges of patch scale characteristics such as Halodule 
cover (optimal response). "is is the !rst study to look at multi-scale habitat selection using movement in a 
seascape and emphasizes that the response of selection is di$erent across scales. We encourage future studies to 
examine the shapes of these relationships to provide more insight into habitat preference of individual species. 
"is is especially crucial for conserving species into the future, as climate change will not only cause species 
range shi#s but shi#s in local habitats as well. "erefore, to fully understand the impacts of climate change on 
organisms, we need to consider how habitat selection is occurring at multiple scales.

Data availability
Data and code will be made available upon request to the corresponding author (JR, jrodeman@!u.edu).
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