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Key Points:

Two large lakes in Utah yield leaf wax precipitation isotope reconstructions spanning
more than two glacial-interglacial cycles.

Precipitation isotope reconstructions align with most regional records and indicate
coherent, large-scale regional hydroclimate changes.

Thermodynamic processes best explain coherent changes in precipitation isotopes across

the southwestern U.S.
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Abstract

The growth and decay of the Laurentide ice sheet altered the hydrological cycle over
southwestern North America. While it is well-documented that the last glacial was wetter and
had isotopically lighter precipitation, much less information is available for prior glacials.
Increased proxy coverage is needed to test climate models’ ability to reconstruct these changes
and to assess their predictive power for water availability in response to future climate change.
Here, we present parallel precipitation isotope records spanning the last two glacial cycles from
two large, proximal lakes in Utah, USA: Great Salt Lake and Bear Lake. We use plant wax n-
alkane 8D as a proxy for precipitation 6D (8Dpr.cip) and find coherent glacial-interglacial
fluctuations in dDprecip, With a ~30%o D-depletion during glacial maxima relative to interglacials.
We find similar dDpy..ip values between the Holocene and Eemian, but at the lower-pCO, MIS 7
interglacial, D-enrichment is only weakly recorded at Great Salt Lake and absent at higher
elevation Bear Lake. Comparison to regional proxy archives finds large-scale coherence in
regional hydroclimate change over the last two glacial cycles is best explained by
thermodynamic processes, with increased rainout efficiency, isotopic fractionation, and snow in
a colder atmosphere. Comparison of proxies to climate model experiments showed models
considerably underestimate glacial lowering of precipitation isotopic values, but overestimate
inland Rayleigh distillation. New and assembled proxy reconstructions provide greater temporal
and spatial coverage as targets for model skill in capturing hydroclimate variations across the

past two glacial cycles.

Plain Language Summary

Lakes preserve sedimentary histories of climate near where people live. We studied climate
histories from two large lakes, Great Salt Lake and Bear Lake in Utah, USA. Drill-cores from
these two lakes have sediments that span the last 240,000 years, covering two glacial cycles.
These cores collected in 2000 provide rare archives of long-term climate history preserved in
continental settings. This dual-deep-drilled record of two neighboring lakes is globally unique,
allowing us to compare the record contained within Great Salt Lake that has historically
expanded into a much larger lake, the remnants of which are visible as the Bonneville salt flats,
with a record from Bear Lake, a fresher lake at higher elevation. We analyze wax molecules

from plant leaves that blew into the lakes and were preserved in lake sediments. These molecules

2
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contain signals of past rainfall patterns across two large climate swings, with synchronous
changes in rainfall recorded by the two lakes. We compare these rainfall records with several
other lake and cave records in the region that also show similar patterns, providing confidence in
regional changes. Studying how mid-continental rainfall patterns changed in the past helps us

understand the response of rainfall to climate change.

Keywords: plant wax; hydroclimate; last glacial; last interglacial; MIS 7; stable isotopes
1. Introduction

Proxy records from southwestern North America suggest a much wetter climate in the last glacial
period, particularly during the glacial termination, relative to today. Deep, expansive lakes such
as Lake Lahontan and Lake Bonneville occupied large portions of the Great Basin across Nevada
and Utah, USA (Broecker and Kaufman, 1965; Oviatt et al., 1992; Reheis, 1999). Farther south,
lakes also experienced pluvial highstands during the last two glacial terminations including at
Owens Lake, Lake Manly, Searles Lake, and Lake Elsinore (Benson et al., 1996; Kirby et al.,
2013; Lowenstein et al., 2024; Menking et al., 1997; Peaple et al., 2022) and speleothems, like
those from Devils Hole, recorded elevated water tables (Wendt et al., 2018). Many proxy
archives capture evidence for a regionally expansive glacial pluvial (e.g., Lowenstein et al.,
2024; Reheis et al., 2014), and many others record the isotopic composition of precipitation
(Asmerom et al., 2010; Feakins et al., 2019; Lachniet et al., 2014; Oster et al., 2009; Peaple et
al., 2022; Winograd et al., 1992).

Precipitation isotopic records are powerful, complex tracers of hydroclimate that incorporate
several processes, the combination of which generally result in lower values in glacial intervals.
Early work by Dansgaard (1964) identified temperature as a major control of precipitation
isotopic signatures in mid- to high latitudes. Equilibrium fractionation at colder condensation
temperatures along with proportionally greater condensation into the solid phase rather than
liquid phase (i.e., snow rather than rain) both lead to a depletion in heavy isotopes ('*O and D).
Changes in the amount of integrated upstream rainout (Rayleigh distillation), also influence
precipitation isotopic composition. Greater rainout lowers isotopic values, which is expected in
colder climate states because of the greater cooling of land relative to oceans and as a colder

atmosphere can hold less moisture by the Clausius-Clapeyron relation. Storm track changes
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further modify precipitation isotopes through shifts in moisture sources and rainout pathways
(distance inland and topography). Laurentide ice sheet-driven southward shift and strengthening
of the midlatitude jet during the Last Glacial Maximum (LGM) (Fu, 2023; Oster et al., 2015),
and more intense atmospheric river activity during the glacial termination, specifically Heinrich
Stadial 1 (McGee et al., 2018; Oster et al., 2023), have all been suggested to explain glacial
pluvials in the southwestern U.S. Greater moisture has also been attributed to a combination of
thermodynamic and dynamic mechanisms, including more efficient moisture removal from the
atmosphere (Tabor et al., 2021) or greater moisture advection into the region (Morrill et al.,

2018) as a result of steeper land-sea temperature gradients.

To better understand the hydroclimate over glacial-interglacial cycles, continental precipitation
isotope reconstructions are invaluable, yet regional records fully encompassing multiple glacial
cycles are limited to a few speleothem (Lachniet, 2016; Moseley et al., 2016) and lacustrine
records (Peaple et al., 2022). Here, we generate and compare two new hydroclimate
reconstructions spanning two full glacial cycles from Great Salt Lake and Bear Lake. By
analyzing records from these two proximal but distinct lake systems, we have a unique
opportunity to compare the records against each other and ascertain reproducibility, eliminating
concerns over complications from lake basin differences. The two records expand on spatial
patterns of precipitation in the region as they are located at the boundary of the modern
precipitation dipole (between 40°N and 42°N) where the wet/dry direction of past and future
precipitation change is less certain (Wise, 2010).

1.1. Study location: lake basins, catchment and vegetation

Great Salt Lake and Bear Lake are two mid-latitude lakes located 120 km apart in the
northeastern-most region of the Great Basin in the western United States (Figure 1a). Despite
their proximity, the lakes differ markedly; Great Salt Lake is a hypersaline terminal lake and
Bear Lake is a smaller, brackish to freshwater lake. They were at times connected by the Bear
River, with Great Salt Lake serving as the terminus of the Bear River drainage (Kaufman et al.,
2009) (Figure 1c). Bear Lake has alternated between open and closed basin conditions due to its
shifting connectivity to the Bear River (Kaufman et al., 2009), and previous studies have shown

that both lakes expanded and contracted in response to glacial-interglacial climate variability
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(Balch et al., 2005; Kaufman et al., 2009; Laabs and Kaufman, 2003; Oviatt et al., 1999). Several
deep lake cycles are evident at Great Salt Lake over the last 700 kyr, notably the “Lake
Bonneville” highstand during the last glacial termination (Oviatt et al., 2015; Oviatt et al., 1999)
(Figure 1b).

Great Salt Lake is located at 1,280 masl with a surface area of 4,100 km?, maximum depth of 10
m, and a catchment area of 56,000 km? (Davis et al., 2022). The lake has three main river
inflows—Bear River, Weber River, and Jordan River—with the majority coming from the Bear
River (Davis et al., 2022). Around the lake, the vegetation is characterized as arid shrubland
dominated by greasewood (Sarcobatus, ~1,300 m) with sagebrush (Artemisia) dominating above
1300 m (Davis, 1998). Between ~1900 and ~2,300 m, a mixed woodland-shrubland zone
includes pine, juniper, and sagebrush, while fir and spruce forests occur on mountain slopes

>2300 m.

Bear Lake is a montane lake situated at 1,805 masl with a surface area of 280 km?, maximum
depth of 63 m, and a catchment area of 1,300 km” (Kaufman et al., 2009). The Bear Lake
catchment elevation range extends from 1,805 m to 3,800 m with distinct altitudinal vegetation
zones. While much of the lake margin today is used for agricultural land or is urbanized, natural
vegetation consists of sagebrush and desert shrubland in the lowlands around the lake (Jimenez-
Moreno et al., 2007). Above the lowlands are forests of ponderosa pines, Rocky Mountain pifion
and aspen, Utah juniper, and Douglas-fir (<2,500 m) followed by lodgepole pine (2,400-3,200
m). The upper slopes of the Uinta Mountains (>3,200 m) have subalpine Engelmann spruce and

fir, and alpine tundra (Jackson et al., 2005).
1.2. Regional climate

The region surrounding both Great Salt Lake and Bear Lake experiences warm, dry summers and
cool, wet winters, with the higher elevation Bear Lake being relatively colder and wetter
(National Centers for Environmental Information, 2020a, b) (Figure 2). Most precipitation falls
in winter and spring between November and April. We converted precipitation accumulations
into snow water equivalent (SWE) based on the snow-to-liquid ratio (SLR) of 13 for the Wasatch
Range (Veals et al., 2025), with snow amounting to 20%—-30% of the annual precipitation. At
Salt Lake City (UT) southeast of Great Salt Lake, monthly temperatures range from 0°C to 27°C

5
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(National Centers for Environmental Information, 2020b) and monthly 8Dyy.ip ranges from -
140%o to -40%o0 (Waterisotopes Database, 2025b) (Figure 2a). At Laketown (UT) south of Bear
Lake, temperatures range from -5°C to 20°C (National Centers for Environmental Information,
2020a) and monthly 8Dyy.cip ranges from -160%o to -50%o (Waterisotopes Database, 2025a)
(Figure 2b). NOAA HYSPLIT4 DJF and JJA 72-hr back trajectories of air masses at ~500 hPa
indicate nearly all trajectories to the lakes are westerlies (archived trajectories for Dec 2019-Aug
2024; Rolph et al., 2017; Stein et al., 2015) (Figure S1). DJF trajectories feature westerlies and
northerlies that originate from the mid to high latitude North Pacific, while JJA trajectories
feature westerlies that originate from the mid to subtropical latitude North Pacific. These
trajectories are in line with Friedman et al. (2002a) which found from 1991 to 1993, 87% of all
precipitation to Cedar City (UT; 37.69°N, 113.08°W, 1,780 masl), 350 km southwest of Salt

Lake City, was sourced from the Pacific Ocean.

2. Materials and methods

2.1. Lake sediment cores

As part of the Global Lakes Drilling Program (GLAD), sediment cores were collected from both
lakes in 2000, with the deepest cores exceeding 120 m below lake floor (mblf) (Kelts et al.,
2000). Both drilling locations reached sediments from marine isotope stage (MIS) 7, covering
two full glacial cycles (Balch et al., 2005; Colman et al., 2006). These cores offer a unique
opportunity to reconstruct hydroclimate over multiple glacial cycles, providing valuable
information on glacial-interglacial climate beyond the last glacial limit of many lacustrine

records.

At Great Salt Lake, five parallel cores, GLAD1-GSL00-4A, -4E, -4B, -4C, and -4D (arranged in
order of depth; hereafter GLAD1-GSL00-4), were drilled, reaching a maximum penetration
depth of 121 m (Palacios-Fest et al., 2000). The core site (41.13°N, 112.56°W) is 9.4 m deep and
near the center of the lake. Most of the core consists of carbonate mud with two prominent
evaporite crusts at depths of 11-14 m and 68—71 m. The upper crust is composed of thenardite
(NazS0Oy4) underlain by ~1 m of dark sapropelic muds. The lower crust is halite (NaCl) underlain
by ~4 m of dark-colored muds (Palacios-Fest et al., 2000). The two evaporite crusts likely

formed during large a lake level drop following two recent deep lake cycles timed approximately
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to the ends of the last two glacial periods (Balch et al., 2005). Balch et al. (2005) generated a
core age model using radiocarbon-dated charcoal (n = 5) and one trichome sample,
biostratigraphic correlations (n = 2), tephra dates (n = 2), and carbonate and evaporite uranium-
series dates (n = 10). Age for the lower 100 m of the core was estimated from uranium-series
dates at only three unique depths. The sparse number of samples in this section (n = 7) along
with substantial age uncertainties (up to 20 kyr) prompted efforts to obtain more samples for
uranium-series measurements in the lower portion of the core. This study uses a revised age
model made with the R package Bacon (Blaauw and Christen, 2011), incorporating dates from
Balch et al. (2005) and updated with 11 new samples dated by uranium-series (So et al., 2026)
(Figure S2). The main changes between the Balch et al. (2005) and the updated GLAD1-GSL00-
4 age models (So et al., 2026) are improved constraints around glacial termination 2 (T2) as well
as a new bottom core age estimate of 235 ka. In addition, we note that compound specific
radiocarbon dating on n-alkanes at a single depth in the Holocene has indicated that the pre-
aging of plant waxes prior to deposition in the core may be on the order of 2 kyr (Bowen et al.,
2019), which is unlikely to be significant for regional climate comparisons in these records

spanning 235 ka.

At Bear Lake, two parallel cores, GLADI1-BL00-1D and -1E (hereafter GLAD1-BLO00-1 for
brevity), were drilled, reaching a maximum penetration depth of 120 m. The core site (41.95°N,
111.31°W) is 54.8 m deep, just west of the lake’s depocenter, originally chosen to avoid mass
wasting associated with faulting along the eastern margin (Kaufman et al., 2009). The cores
consist mostly of carbonate-rich muds (Rosenbaum et al., 2000). Colman et al. (2006) generated
a core age model using radiocarbon-dated pollen (n = 27), one magnetic excursion, one
carbonate uranium-series age, and, in the bottom half of the core where no dates were measured,
correlation to the Devils Hole speleothem 8'°0 (8 tie points). For this study, we used all age
measurements of Colman et al. (2006), except the Devils Hole tie points, to generate an updated
age model using the R package Bacon (Blaauw and Christen, 2011), which produced a bottom
core age of 240 ka (Figure S3).

The Bear Lake cores were sampled in May—June 2022 at the Continental Scientific Drilling
(CSD) Facility at the University of Minnesota, Minneapolis. Samples (~20 g) were collected at
~1 m (~2 ka) intervals along the 120 m core, integrating 2 cm of depth (~40 yr), totaling 120
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samples. The Great Salt Lake cores were sampled in Jan 2023 and May 2024 at CSD. Samples
(~20 g) were collected approximately every 2 m (~4 ka) along the 121 m core, integrating 2 cm
of depth (~40 yr), totaling 75 samples. Sediments from both cores were stored in a -20°C freezer

until processing.
2.2. Lipid extraction and separation

Sediment samples were prepared using established procedures for biomarker extraction and
purification as described by Peaple et al. (2022). After freeze-drying then homogenizing with a
mortar and pestle, sediments were processed using Accelerated Solvent Extraction (Dionex ASE
350) with 9:1 DCM: MeOH at 100°C and 1500 psi for one 15-minute extraction cycle, yielding
total lipid extracts (TLE). TLEs were separated over NH;-coated silica gel columns, flash eluting
the neutral fraction with 2:1 DCM:isopropanol and the acid fraction with 4% formic acid in ethyl
ether. The neutral fraction was partitioned over 5% deactivated silica gel columns, flash eluting
n-alkanes with hexanes. For sediments suspected to have been deposited under anoxic
conditions, the alkane fraction was further cleaned using activated copper columns to remove
elemental sulfur. The acid fraction was methylated with 95:5 MeOH:hydrochloric acid at 70°C
for 12 hours using methanol of known isotopic composition. Methylated products—fatty acid
methyl esters (FAMEs)—were separated and dried over anhydrous sodium sulfate columns, and
extracts were purified over 5% deactivated silica gel columns, eluting FAMEs with DCM. For
stable isotope measurements, select alkanes and FAMEs fractions, containing closely eluting
peaks of unsaturated compounds at the target compounds based on their gas chromatograms (see
Text S2), were further cleaned using silver nitrate-coated silica gel columns, eluting sequentially
with hexane to recover the SN1 fraction and DCM to elute the SN2 fraction. In the case of the
alkanes fraction, the SN1 fraction contained the cleaned alkanes, and for the FAMESs, the SN2
fraction contained the cleaned FAMEs.

2.3. n-Alkane hydrogen isotopic analyses

For Bear Lake core sediments, the n-alkane stable hydrogen isotopic compositions were
measured using a Thermo Scientific TRACE 1310 GC (30 m x 0.25 mm column, 0.25 pm
coating, TG-5ms) connected to a Thermo Scientific Delta V Plus isotope ratio mass spectrometer

(IRMS) with a Triplus RSH Sampler, a Conflo IV, and GC Isolink II at the University of
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Arizona. The H;" factor was monitored daily and averaged 2.9 ppm/nA (1o = 0.1 ppm/nA) over
a range of 1-8 V. Each sample run was bracketed with H; reference peaks, two of which were
used for standardization. An external standard containing a mixture of 15 n-alkanes (Ci¢ to Csp)
with 6D values ranging from -9%o to -259%o (A7 mix supplied by A. Schimmelmann, Indiana

University, USA) was used to monitor and correct for machine drift.

For all other samples, n-alkane stable hydrogen isotopic compositions were analyzed using a
Thermo Scientific TRACE 1610 GC (30 m x 0.25 mm column, 0.25 pm coating Rxi®-5ms)
connected to a Thermo Scientific Delta Q IRMS with a Triplus RSH Smart Autosampler, a
Conflo IV, and a GC Isolink II at the University of Southern California. H;" was monitored daily
and averaged 4.3 ppm/nA (16 = 0.4 ppm/nA) over a range of 1-8 V. Each sample run was
bracketed with H; reference peaks, two of which were used for normalization between standard
and sample runs. All 6D values were normalized to the international reference standard Vienna
Standard Mean Ocean Water (VSMOW) using an external standard. The external standard
contains a mixture of 15 n-alkanes (C;¢ to C39) with 8D values ranging from -17%o to -256%o (A6
mix supplied by A. Schimmelmann, Indiana University, USA). The RMS uncertainty (accuracy
and precision) for 6D was 4.8%o (10 = 1.6%0). Measurements were replicated at least twice with

instrument precision of 2.0%o (16 = 1.9%e).

To convert the measured plant wax 6D signal for the Cs; n-alkane into 6Dpr.cip, We applied a
constant fractionation factor eywax/water = -94%o0 £ 21%o0 based on modern surveys of plant wax and
plant water in the region (Feakins and Sessions, 2010). Feakins and Sessions (2010) found the
site average &ywaxwater Nad limited sensitivity to climate across the humidity gradient in modern-
day southern California from forested coastal mountains to interior desert. Given this
observation, the same constant €yax/water Value was used in a previous regional 6Dprecip
reconstruction also based on the C;; n-alkane (Peaple et al., 2022) and we use this same value for
consistency in these interpretations and comparability. We believe this assumption is reasonable
as the plant taxa are similar, although the extent varies. Constraints on past fractionations are
complicated to assess, but during glacial intervals, a descent in biomes may increase the extent of
coniferous forests. However, as North American conifers produce minimal n-alkanes (Diefendorf
etal., 2011), we do not expect the change in conifer proportions to affect our n-alkane 6Dprecip

reconstructions. While we do not expect €yax/water to vary substantially in this setting with
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changes in the vegetation community on glacial-interglacial timescales, we acknowledge
fractionation is always one of the largest unconstrained uncertainties on plant wax proxy
reconstructions of dDpyr.cip. To futher assess local fractionations we sampled modern plants and
analyzed their isotopic composition (Text S1-4). To assess the potential size of fractionation
changes associated with plant community changes, pollen-based apparent fractionation
adjustments can be used (Feakins, 2013). Pollen reconstructions are available for Bear Lake and
Great Salt Lake, but the the latter’s record is low resolution and the dataset was not published
(Davis, 1998). For Bear Lake, vegetation was composed entirely of C; vegetation, and grasses
made up a minor component across glacial-interglacial cycles, making it unlikely for changes in
vegetation composition to significantly influence eyaxwater. We present pollen reconstructions

alongside the constant fractionation dD..ip, reconstructions to assess possible influences.
2.4. Comparisons to speleothem 8'°0

To understand regional precipitation isotopic signals, we compared lacustrine leaf wax 6Dprecip to
cave carbonate §'°0. We convert carbonate 8'°O (%o VPDB) to drip water 5'°O (% VSMOW)
by accounting for temperature-dependent fractionation of carbonate precipitation (Wackerbarth

et al., 2010):

1.03086(5*80 qicite+1000)
18 — calcite
s Odripwater = 2780 — 1000 (1)

—= = -0.00289
e(T+273.15)2

where T is the temperature in °C of the cave site at the time of carbonate precipitation. The
temperature used for each cave site was based on isotope-enabled Community Earth System
Model Version 1.3 (iCESM1.3) output for the pre-industrial (for Holocene calculations) and for
the LGM. For the Leviathan composite site, the simulated LGM-pre-industrial temperature
difference was about 10°C (Zhu et al., 2017). For Devils Hole, cave temperatures were constant
at 33.7°C due to hydrothermal influence and not thought to be responsive to air temperatures
(Kluge et al., 2014). Thus, we did not apply a temperature-dependent fractionation correction to

this site.

8180dripwater for both the Holocene and LGM were calculated using the averaged Holocene and
LGM 8]8Ocalcite values. The resulting SISOdripwater values were then converted to dDgripwater based
on the Global Meteoric Water Line:

10
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SD =8 X 8180 + 10 2)

We assume 8D gripwater reflects dDpyrecip, and compare the calculated 6Dagripwater from all cave sites to
the calculated 8Dyccip from lacustrine plant wax records. However, we note that groundwater,
cave dripwater, and plant water uptake all tend to be biased to winter recharge both based on the
winter-dominance of precipitation in this region and the tendency of summer precipitation to

evaporate rather than infiltrate (Friedman et al., 2002b).

3. Results and Discussion

3.1. Plant-based records of glacial-interglacial climate cycles

We found a large glacial-interglacial signal in calculated 0D p.ip at Great Salt Lake (Figure 3b)
and Bear Lake (Figure 3¢) with high values during interglacials and low values during glacials,
correlating well with global atmospheric CO, and benthic foraminiferal '°0 (Ahn et al., 2017;
Bereiter et al., 2015). The dDpecip range at both Utah lake archives is similar in amplitude
(~30%o0) and absolute values (-155 to -125%o). We compare these two new 240-kyr records from
Utah to a 200-kyr record from Searles Lake (CA) (Peaple et al., 2022), also based on Cs; n-
alkane-reconstructed dDpyrecip (Figure 3d). Though Great Salt Lake, Bear Lake, and Searles Lake
all record broadly similar glacial-interglacial patterns of 6Dprecip, there are some differences in
the detail and variability within the records that we do not attempt to pursue given differences in
sampling resolution and age control. We note the deglacial 6Dyp..ip increase at Searles is larger at
~50%o (Figure 3d) with greater D-enrichment at the Eemian interglacial (i.e., last interglacial),
though the Holocene portion of the record is limited by the desiccation of this hypersaline,
evaporative basin (Peaple et al., 2022). In contrast, at both Great Salt Lake and Bear Lake,
absolute values for precipitation isotopes are lower (being further inland) and the amplitude of
glacial-interglacial variability is smaller at ~30%o (Figure 3b-c). Unlike Searles Lake, the Great
Salt Lake record continues through the full Holocene as the saline water body persisted after a
period of partial desiccation prior to the Holocene transition. Though these lakes have complex
basin histories and are separated by 120 km (Great Salt Lake to Bear Lake) and 800 km (Great
Salt Lake/Bear Lake to Searles Lake), all three record a consistent pattern of high 6Dpyecip values
during interglacials and low values during glacials, showing that this is a large-scale feature of

the sub-continental scale hydroclimate in precipitation isotopic composition.

11
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High dD,..ip values also correspond to water stress as indicated by pollen records. Dry taxa
pollen include Amaranthaceae, Ambrosia, and Sarcobatus at Great Salt Lake (Davis, 1977),
Ambrosia and Sarcobatus at Bear Lake (Jimenez-Moreno et al., 2007), and Amaranthaceae and
Asteraceae at Searles Lake (Peaple et al., 2022). At all three lakes, the greatest proportions of dry
taxa occurred during D-enriched interglacials while the lowest proportions occurred during D-
depleted glacials, indicating transitions between glacial pluvials and interglacial aridity with a
classic ‘saw-tooth’ shaped pattern to each of the pollen records, although there are some
differences in the variability and resolution of the records beyond those broad trends (Figure 3b-
d). In addition to comparisons of wet-dry taxa, the pollen record can also be used to assess the
probability of fractionation changes affecting plant wax 3D as the plant community shifts (e.g.,
changes in grass proportions) (Feakins, 2013). We explored this using the high-resolution Bear
Lake downcore pollen record and modern plant wax 6D measurements, and found that allowing
Ewax/water t0 Vary according to shifting pollen compositions would not influence the observed

glacial-interglacial trends in the Cs; alkane-reconstructed 6Dprecip (Text S10).

Like shifting vegetation compositions, shifting climate states may also affect the apparent
fractionation. Increased dry taxa during interglacials (decreased during glacials) may correspond
to increased (decreased) evapotranspiration and decreased (increased) fractionation. While the
modern interglacial fractionation value was regionally determined across a humidity gradient
(Feakins and Sessions, 2010), it may need adjustment during the wetter conditions of glacial
pluvials, with increased apparent fractionation and a corresponding upward correction in the
calculated dDyy.cip Which could act to reduce the magnitude of the glacial-interglacial variability,

but this would then conflict with regional cave records (see section 3.2).

Across both new 6Dpccip records in this study from lakes in Utah, the Late Holocene values are
broadly consistent with modern expectations. Late Holocene 8Dyyecip averaged -126%o (16 = 5%o;
n =2) for Great Salt Lake and -131%o (16 = 2%o0; n = 6) for Bear Lake. These averages are
similar to modern Bear Lake catchment stream water 6D of -123%o (16 = 9%0) (Custado et al.,
2025), and Nov-Apr 6Dprecip values of -120%o (16 = 31%o) reported at Salt Lake City
(Waterisotopes Database, 2024). Coherent signals in both lakes over the two glacial cycles imply
a common precipitation isotopic composition or a common wax sourcing most likely achieved

by regional aeolian transport of plant wax inputs into both lakes (Nelson et al., 2017). Fluvial
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inputs would be unlikely to explain similar signals as the two lake basins and their fluvial
catchments differ greatly today, and fluvial connectivity changed markedly across each lakes
glacial-interglacial history (Kaufman et al., 2009; Oviatt et al., 1999). However, while Bear Lake
ODprecip quickly dropped to ~ -135%o after recording maximum values of ~ -120%eo early in the
Holocene and Eemian, Great Salt Lake 8Dpcip remained consistent throughout the interglacial,
suggesting differences in local inputs during interglacials. Perhaps background aeolian signals
remained constant at Great Salt Lake while changes in river connectivity and basin closure led to
inflow changes at Bear Lake as primary inflows switched between the Bear River during the
glacial maxima and local streams during the interglacials when the Bear River was disconnected
(Kaufman et al., 2009). Comparison to prior work by Peaple et al., (2022) on Searles Lake
further south finds Searles Lake 6Dprecip also reached peak values of ~85%o early in the Eemian
but remained high only briefly (~4 kyr) before steadily dropping to ~100%o by the end of the

Eemian.

Both Utah lakes showed an increase in 8Dpyrecip 0f ~30%0 during the last two glacial terminations,
T1 and T2. Comparing the two glacial intervals, the last glacial was 10%o0 more D-enriched at
Great Salt Lake and 4%o0 more D-enriched at Bear Lake compared to the penultimate glacial
(Figure 3b,¢). This may be related to the nature of the forcing as the penultimate glacial (MIS 6)
pCO, values drop at the beginning of the glacial, whereas they lower more gradually in the last
glacial (MIS 5d-2; Figure 3a). At both lakes, millennial scale variability within glacials was
~20%o (two-thirds the deglacial transition), but sampling resolution (~4 ky at Great Salt Lake, ~2
ky at Bear Lake) and age model uncertainty (up to 4 ky at Great Salt Lake, up to 7 ky at Bear
Lake; Figure S3, S4) preclude detailed investigations of these features. Searles Lake had
uniformly higher 8Dyrecip (up to ~40%o) than the two Utah lakes (Peaple et al., 2022), reflecting
less distillation due to reduced distance from the coast and potentially more evaporation during
raindrop descent in the lowland setting, particularly in a drier interglacial atmosphere. Searles
Lake showed a steady ~20%o decrease in 6Dprcip Over both glacial intervals and reached its
lowest value during the penultimate glacial maximum. We also note both terminations have
nearly two times larger glacial-interglacial amplitude at Searles Lake, potentially capturing

greater details in variability compared to the Utah lakes.
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The largest discrepancy between the two Utah lakes occurs during the penultimate interglacial,
MIS 7 (~192-245 ka), a time period not recovered at Searles Lake further south. Globally, peak
interglacial conditions occurred during MIS 7e (~245-234 ka) a time period not fully recovered
at either Utah lake, followed by a brief return to glacial-like conditions in MIS 7d (~234-220
ka), and continuation of interglacial conditions from MIS 7c¢ to 7a (~220-192 ka). Great Salt
Lake recorded D-enriched signals during MIS 7c-a, but 0D pyecip values were 5-10%o lower than
the two later interglacials (Figure 3b). Bear Lake 0Dpyccip values during MIS 7c-a were in the
range of the succeeding glacial interval with no apparent D-enrichment (Figure 3¢). Updated age
models for both lakes indicate both cores recovered a complete history through MIS 7d, and
likely terminate at the base of 7d or within MIS 7e, and thus may miss the peak interglacial
conditions of MIS 7e as the cores end at 236.3 + 6.7 ka for Great Salt Lake and 238.4+11.7 ka
for Bear Lake (26 age uncertainties; Figures S2, S3), thus we do not believe dating error to be
the cause of the discrepancy. Further, Bear Lake pollen records (Figure 3¢) show interglacial
warming/drying during MIS 7d-a, with peak warm/arid taxa at the end of 7a (Jimenez-Moreno et
al., 2007), so this is most likely a divergence in the proxies, with pollen and plant wax oD values
responding differently across MIS 7. The plant wax record is also notably lower resolution
compared to pollen which complicates the comparison. It is difficult to reconcile the lack of
change in 8Dyecip across MIS 7d-a as precipitation should respond more readily to a changing
climate than plant communities, but this may imply different windsheds for the two proxies
along with local glacier/snow retreat being insufficient to register an “interglacial’” response in
the plant waxes at this higher elevation lake, whereas it is seen at GSL. Although there are fewer
terrestrial climate records for the penultimate interglacial, MIS 7 was indeed a weaker
interglacial (i.e., colder) than the Holocene and Eemian, with ~30 ppm lower atmospheric pCO,

(Bereiter et al., 2015) and ~0.3%o higher benthic foraminiferal 3'80 (Ahn et al., 2017).
3.2. Lake and cave comparisons

We further compare the lacustrine plant wax 6Dpr..ip records (Figure 4a) with speleothem calcite
8'%0 from several caves across the southwestern U.S. (Figure 4b). A composite timeseries
obtained from Leviathan, Lehman, and Pinnacle Caves (NV) by Lachniet (2016) found a
deglacial '*O-enrichment of 5%o at T1 and 3%o at T2, though the two terminations were recorded

at Leviathan and Lehman Caves respectively (Figure 4b). Interestingly, a larger 80-enrichment
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(5%0) was recorded at 110 ka, exceeding that of the preceding T2, a feature not seen at any other
site featured here (Figure 4). Speleothem calcite from Devils Hole (NV) shows a deglacial '*O-
enrichment of only 2%o (Figure 4b), much lower than the Leviathan composite and likely due to
Devils Hole’s large aquifer integration (Winograd and Thordarson, 1975). Though at a lower
resolution, select Devils Hole speleothems extended into MIS 7 and revealed a lower deglacial

80-enrichment of 1%o compared to the later interglacials.

After conversion into 6Dprcip €quivalency (see section 2.4), the Leviathan composite glacial-
interglacial variability was ~30—-50%o, similar to the three lake sites, while the continuous portion
of the Devils Hole record was ~10-20%o, less than the lake sites. During MIS 7 at Devils Hole,
the '"*0-enrichment was about half that of the Eemian, which would be ~10%o in 6D. This
minimal '*O-enriched at Devils Hole in MIS 7 is similar to the Great Salt Lake D-enrichment in
MIS 7, suggesting this attenuated signal during the penultimate interglacial is a regional

phenomenon.

We evaluate agreement between reconstructions of precipitation isotopes using correlation
methods that account for serial correlation (Ebisuzaki, 1997) (Figure S18). Correlation analyses
indicate the highest R values were obtained when comparing regional records using the same
plant wax oD proxy at Great Salt Lake and Searles Lake (R = 0.66, p << 0.05), along with
comparing both lakes to Devils Hole 8'°0 (R = 0.71, p << 0.05 and R = 0.80, p << 0.05
respectively; Moseley et al., 2016). Though weaker, correlations were also found between plant
wax records at Bear Lake and the more distal Searles Lake (R = 0.58, p << 0.05) and between
Bear Lake and Devils Hole (R = 0.49, p < 0.05). The Leviathan record is uniquely variable,
containing high and low frequencies, and thus, all comparisons to Leviathan 8'*0 had R < 0.35
and had p > 0.05. Higher R values between the three lakes and Devils Hole likely stem from the
prominent glacial-interglacial pattern in their isotopic values, in contrast to the Leviathan
composite where orbital variability is more prominent. Lachniet (2016) attributed this to the
speleothems’ locations in the unsaturated zone, thus having fast response times to climatically
driven changes in §'*O of infiltrating water. Leviathan is also notable in having not only a
prominent Eemian peak, but a secondary peak with greater 80-enrichment at 100 ka not seen in
other records. The 100-ka peak in 8'*0 was preceded by an extreme low at 110 ka which
Lachniet (2016) attributed to a cold, high latitude moisture source that coincided with a
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prominent minimum in northern hemisphere summer insolation. This 110 ka §'*0 drop was 2%o
lower than during the penultimate glacial maximum, a feature unique to the Leviathan composite
and likely not reflective of regional precipitation isotope trends. We also note that the Leviathan
composite switches from Lehman to Leviathan Cave at 105 ka, and spatial adjustments in
precipitation 3'°0 between the two caves may have contributed to the magnitude of '*O-
enrichment for the 110-100 ka feature. While lake records have lower resolutions, each should be

sufficient to register the 110-100-ka transition if present regionally, as should Devils Hole.

In addition to the long records introduced previously, shorter-duration lake and cave proxy
archives distributed across the southwestern U.S. similarly show a deglacial enrichment in the
heavier isotope during T1 (Asmerom et al., 2010; Feakins et al., 2019; Wagner et al., 2010). The
largest offset is seen at the site nearest to the coast—an n-alkanoic acid 8Dyyecip record from Lake
Elsinore (CA) showing a ~60%o deglacial D-enrichment (Feakins et al., 2019). We note that it is
possible the magnitude of D-enrichment may have been amplified by aquatic production of n-
alkanoic acids from D-enriched lake waters in the Holocene. Farther inland to the south, Cave of
the Bells (AZ) and Fort Stanton Cave (NM) both had calculated 3D increases of ~30%o during
T1, although both sites are notably in a different climatic regime strongly influenced by the
summer monsoon (Asmerom et al., 2010; Wagner et al., 2010). While all previous lake and cave
sites lie on a southwest-northeast trending transect across the Great Basin, Cave of the Bells and
Fort Stanton Cave lie over 800 km southeast of this transect and receive some summer
precipitation from the North American Monsoon. Regardless, the amplitude of glacial-
interglacial offset at these sites is remarkably consistent with sites in the transect. One regional
record that is an exception is an alpine fen n-alkane 6Dccip record from Cumbres Bog (CO),
which showed D-depletion rather than D-enrichment from the LGM to the Holocene (Todd et al.,
2025). This divergent record may be influenced by local environmental change, such as drying or
vegetation assemblage shifts, that confounded regional precipitation isotopic signals, or it may
represent a different climate signal altogether as the site is located much further in the
continental interior compared to all previous sites. Despite slight differences in signal amplitudes
and timing, all but one record share the same sign of change between glacials and interglacials
(Figure 5). In the next sections, we discuss the possible thermodynamic and atmospheric

circulation mechanisms that drive this pattern.
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3.3. Drivers of glacial-interglacial cycles in precipitation isotopes

The 30%o glacial D-depletion at the two new records from Utah is coherent with regional
patterns in precipitation isotopic values (Figure 5). Several mechanisms can contribute to this D-
depletion including lower condensation temperatures, a greater proportion of precipitation falling
as snow rather than rain, increased sourcing of moisture from higher latitudes, and/or a change in
prior rainout (Dansgaard, 1964). Here, we consider each mechanism and quantify their likely

contributions.

The precipitation isotope response to temperature has been widely documented and may play a
large role in glacial-interglacial precipitation isotopic signals (Mechanism 1). In Salt Lake City,
monthly 6Dpcip increases with temperature at a rate of 4%o/°C (Global Network of Isotopes in
Precipitation, 2022), similar to initial observations by Dansgaard (1964) in the North Atlantic
(Figure S19). Paleothermometry of the Bonneville Basin based on amino acids has suggested a
cooling of 5.5+£3.1°C in MIS 2 relative to the Early Holocene (Kaufman, 2003) while plant
macrofossil assemblages relative to modern communities suggest a median LGM cooling of
~6°C (Harbert and Nixon, 2018). Modeled air temperatures suggest a glacial cooling of 8°—10°C
per Quirk et al. (2018), 7.5+2.6°C per Oster et al. (2015), and ~11°C per iCESM1.3 simulations
(Zhu et al., 2017) relative to pre-industrial (PI). A cooling of 5°—11°C equates to a 20—44%eo
decrease in 6Dpecip based on the modern temperature/dD slope. Temperature is thus capable of
explaining over half to all of the ~30%o glacial D-depletion at Great Salt Lake and Bear Lake. As
cooling greater than 7.5°C would result in a D-depletion greater than 30%o, we expect glacial

cooling to be within the lower range of previous estimates.

In addition, cooler temperatures would likely lead to an increase in the proportion of
precipitation falling as snow, which would further lower 8Dpyrecip (Mechanism 2). Presently,
20%-30% of the annual liquid precipitation is from snow (as SWE) at the two lake sites
(National Centers for Environmental Information, 2020a, b). Annual 6Dpyccip 1S estimated to be -
103%o + 2%o at Great Salt Lake and -112%o + 1%o at Bear Lake (Waterisotopes Database, 2025a,
b). Snow pit measurements from the Wasatch Range have a 6D of -148 £ 15%0 (Waterisotopes
Database, 2017a, b, ¢, d). Using a linear mixing model, we calculate the proportional increase in

SWE needed to account for lower dDy..ip not due to cooling temperatures (Text S11). For a
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minimum cooling of 5°C, Great Salt Lake and Bear Lake require SWE to increase by 17.8% and
19.4% respectively to yield a D-depletion of 10%o, placing an upper bound on the role of
snowfall and allowing temperature and snowfall together to completely explain the observed
signal. In the southwestern US, winter precipitation dominates groundwater recharge (Friedman
et al., 2002b) and also supplies water to the major rivers and streams entering Great Salt Lake
and Bear Lake. As changes in temperature and snow proportion are sufficient to explain the
~30%o glacial D-depletion, this strongly suggests the glacial-interglacial precipitation isotope
records are dominated by large-scale thermodynamics. Our suggestion of a dominant
temperature-dependent isotope effect is consistent with non-isotope enabled Coupled Model
Intercomparison Project phase 5/Paleoclimate Modeling Intercomparison Project phase 3
(CMIP5/PMIP3) experiments by Morrill et al. (2018) who found thermodynamics explained a
greater portion of the glacial pluvial in climate model experiments than did storm track changes,
with increased moisture advection primarily due to the greater land-sea temperature contrast. A
similar conclusion about the importance of thermodynamics (both decreased evaporation and
increased precipitation) was reached for a recent analysis of Lake Bonneville water balance and

climate model comparisons (Mering et al., 2026).

Nevertheless, storm track changes are expected given the presence of the Laurentide ice sheet
(Mechanism 3). With combined effects from thermodynamics and topographic steering, most
climate model simulations suggest increased winter season rainfall during glacial maximum and
deglacial pluvials. Proposed mechanisms include shifts in the latitudinal position, trajectory,
and/or strength of the midlatitude jet (Fu, 2023; Lora et al., 2016; Oster et al., 2015; Wong et al.,
2016). Although some modeling studies linked moisture increase to increases in the quantity,
intensity, or penetration of southwesterly atmospheric rivers, particularly in the deglacial (Lora et
al., 2017; McGee et al., 2018; Oster et al., 2023), another study found that despite greater overall
westerly moisture delivery, atmospheric river activity was reduced during the LGM (Lora et al.,
2023). While the ~30%o glacial D-depletion can be explained by thermodynamics alone, we can
consider how changes in storm tracks may contribute to this D-depletion. Measured values for
modern precipitation at Cedar City (UT) found high latitude, North Pacific moisture sources
have a 6Dprecip 0f -112+37%0 while low latitude, tropical Pacific sources have values of -81 +
37%o (Friedman et al., 2002a). A 32.4% proportional increase in North Pacific storms is needed
to produce a 10%o decrease in 6Dpyecip under minimum cooling estimates of 5°C, with this
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percentage decreasing for a greater degree of cooling (Text S12). We note that storm trajectories
measured at Cedar City would have experienced less prior rainout, leading to higher overall

0Dprecip Values than at Great Salt Lake and Bear Lake in our study which are further inland.

Two southwestern U.S. cave records are located in the summer North American Monsoon
(NAM)-influenced zone: Cave of the Bells (AZ) and Fort Stanton Cave (NM). Wagner et al.
(2010) and Asmerom et al. (2010) attributed the caves’ LGM '*O-depletion to an increase in
winter season Pacific storms and a weakening influence of NAM during colder glacials. This is
consistent with D-depletion in the Gulf of California plant wax 8D record of Bhattacharya et al.
(2018), as entrainment of dry, cold air during a colder climate weakens summer rainfall
(Bhattacharya et al., 2017). Though a glacial reduction in summer rainfall is likely, we highlight
here how the influence of cooling alone on winter season precipitation can explain similar

magnitudes of change in the region.

Changes in the proportional distillation associated with rainout can also cause changes in
precipitation isotopic composition as an air mass moves inland (Mechanism 4). A colder glacial
climate with a steeper land-sea temperature gradient is modelled to yield a greater moisture
advection (Morrill et al., 2018), greater rainout efficiency and D-depletion (Kukla et al., 2019;
Tabor et al., 2021), but under pluvial conditions, this may be partially countered by increased
moisture recycling with greater evapotranspiration in a more vegetated landscape (Kukla et al.,
2019; Mering et al., 2026; Winnick et al., 2014). Thus, we may see an attenuated continental

effect during glacial climates compared to the Holocene.
3.4. Proxy-model comparison

To further explore mechanisms, we compare the assembled proxy records with isotope-enabled
climate model outputs using iICESM1.3 (Zhu et al., 2017). We first evaluate model performance
in capturing PI and LGM conditions. At Great Salt Lake and Bear Lake, we find PI simulated
temperatures generally matched well with modern measurements in both absolute values and
seasonal patterns (Figure S21a,b). PI simulated precipitation amount had similar absolute
values, but not seasonal patterns as precipitation peaked in late spring rather than winter, causing
spring precipitation to be up to 60 mm higher than modern (Figure S21c,d). PI simulated

monthly 6Dpyecip had a similar annual average to modern measurements (-110%o to -100%o), but a
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much lower seasonal amplitude (~30%o) than modern (~100 %o) (Figure S21e,f). Looking at the
whole southwestern U.S., we find LGM simulated precipitation was higher than PI only along
the coast, but drier for the majority of the Great Basin including at the two Utah lakes in conflict
with observations (Figure S22¢). The model experiments did not successfully simulate the LGM
pluvial established by numerous proxy records. Clear geomorphological evidence for the
presence of expanded LGM pluvial lakes, including Searles Lake, Lake Bonneville, and Lake
Lahontan, imply wetter conditions, and by their evaporative flux would have contributed
moisture to the atmosphere inland (Mering et al., 2026). The lack of high-resolution topography,
including absence of the Sierra Nevada, in the model may also have contributed to insufficient
precipitation amounts as moisture moved inland (Mering et al., 2026). Future representation of
pluvial lakes in the boundary conditions for LGM simulations along with more detailed
topography may help to improve representation of the pluvial conditions and reduce the

continental effect that presently dominates the inland isotopic gradient (Figure 6b).

Model simulations in their current formulation were also unable to capture an accurate spatial
gradient in D-depletion. LGM simulated 6Dpyccip sharply declines inland due to distillation,
whereas the gradient in proxies is much flatter, presumably sustained by moisture recycling, a
feedback absent in the too-dry model simulations that would be supplemented if large inland
lakes were prescribed (Figure 6b). The modelled glacial-interglacial difference in 6Dpyecip
contrasts with that of the proxies as well (Figure 6¢). Models predict the glacial-interglacial
difference in 8Dyyecip to increase in amplitude farther inland, because the model is dominated by
increased Rayleigh distillation efficiency in a colder atmosphere (Figure 6¢). Proxies, however,
showed the largest glacial-interglacial offset nearer to the coast, including Lake Elsinore, Searles
Lake, and the Leviathan composite, likely dominated by the temperature effect (Mechanisms 1
and 2), with the offset decreasing further inland, consistent with more moisture recycling in a

pluvial climate.

In addition to iCESM1.3, we also considered its derivative the isotope-enabled Transient Climate
Experiment (iTraCE) for the last deglacial (He et al., 2021; Zhu et al., 2017), and we examined
the LGM data assimilation (IgmDA) (Tierney et al., 2020) and the LGM Reanalysis (LGMR)
(Osman et al., 2021). Similar to iCESM1.3 simulations, all model and data assimilation products

consistently had smaller LGM-PI 8D offsets than proxy records at the same site, and these
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offsets also generally increased when moving inland (Figure 7). Devils Hole is an exception due
to its hydrothermal influence, which climate models and data assimilation products do not
account for. As none of these models prescribe large pluvial lakes nor have detailed topography,
the similarity in their simulated 8D offsets can be expected. Therefore, we find these climate
model experiments are currently unable to reliably inform mechanisms for precipitation isotopes
in the glacial pluvial because they do not simulate a regionally expansive pluvial climate state.
With the availability of proxy evidence from sites outside the Great Basin, it is possible the
addition of large lakes to the model may not completely explain spatial patterns in proxy 6Dprecip,
and may thus require the prescription of higher resolution topography in addition to pluvial
lakes. All models and data assimilation products referenced here have a 2° resolution in the land
and atmosphere. In the model, elevation steadily increases moving from the coast inland towards
the Rocky Mountains, and key sub-grid scale topographic barriers and features in the
southwestern US, including the Sierra Nevada and the Great Basin, are absent. The lack of
blocking topography underestimates orographic rainout and inland rainshadow effects in the PI
simulations and overestimates temperature and continental Rayleigh distillation effects in the
LGM. In addition, the lack of large glacial pluvial lakes underestimates continental moisture
recycling that would counteract the continental effect (Mering et al., 2026). Misrepresentation of
rainfall amount and distribution will also lead to inaccurately simulated dDprecip. We hope that
highlighting this LGM discrepancy, in the context of greater confidence from increased proxy
data density can motivate efforts to improve representation of pluvial conditions, in particular by
representing the known extent of paleolakes and more detailed topography in the boundary
conditions, as well as to motivate time transient simulations for the penultimate glacial

termination.

We acknowledge that for cave carbonates, our simplified conversion of carbonate 8'%0 into drip
water 0D considering only temperature-dependent fractionation discounted other influencing
factors such as water modification during soil infiltration, cave relative humidity, cave pCO,,
amongst others. Tabor et al. (2021) extended beyond the iICESM 8180precip output by simulating
speleothem 8'°0 using proxy forward models to account for cave environmental factors. They
reported greater agreement between their simulated and measured speleothem §'*0 compared to
the proxy-model comparisons here, which suggests cave processes amplified the LGM-PI signal.
However, here we show that amplitudes in cave carbonate 8'*0, when converted into 8D space
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considering a factor of eight and air temperature effects (with the exclusion of Devils Hole which
is geothermally heated), are consistent with amplitudes in plant wax 8D. Thus, rather than cave
processes amplifying the LGM-PI signal, it is the model that is suppressing this signal, causing
simulated LGM-PI offsets to be smaller than that of proxy archives. Proxy offsets show much
larger relative depletions in heavy isotopes across the region that is not simulated by models, and
we attribute this to inaccurately simulated pluvial rainfall amounts counteracting distillation

isotopic effects.
4. Conclusions

We reconstruct precipitation isotopes over the last two glacial cycles, using plant waxes archived
in Great Salt Lake and Bear Lake sediments, in Utah, USA. The dual lake record isolates
concerns about lake basin differences, complexity in age models, local plant types, catchment
connectivity, and limnological conditions. We find both lakes present a largely coherent record
of precipitation isotopes, suggesting coeval shifts in regional precipitation patterns and/or shared
aeolian sourcing of leaf waxes regardless of catchment differences. Climate signals appear
synchronous to the extent of dating confidence, with additional U-Th dates for Great Salt Lake
and an updated Bayesian age model for Bear Lake. In particular, these long-spanning records
permit a comparison of the last three interglacials, revealing MIS 7 to be considerably weaker
than the latter two. Our two new records, in combination with previously published regional lake
and cave archives, all show coherent trends in precipitation isotopes, a robust signal of a large-
scale regional hydroclimate state over the last glacial cycle and likely the last two cycles. Given
the large-scale regional coherency, thermodynamics alone could explain most, if not all, of the
glacial depletion in heavy isotopes in precipitation isotopes without invoking changes in
atmospheric dynamics. Comparison to climate model outputs and data assimilation products
reveal that, while models predict limited D-depletion, proxies yielded much larger amplitudes of
depletion, with model-proxy differences decreasing towards the continental interior. This
fundamental difference between proxies and models suggests further model refinement, such as
with prescription of large pluvial lakes during glacial maxima along with higher resolution
topography on the land surface, is needed for accurate precipitation isotope simulations. Our new
Utah lake records, resolving two pluvials at two glacial terminations, present additional proxy

information for model refinement of not only deglacial T1, but also the much less studied T2.
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This addition of two precipitation isotopic reconstructions of T2, when such reconstructions are
already sparse, now place them as promising comparisons to a time transient T2 climate model

simulation.
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Figure Captions

Figure 1. Maps showing locations of a) Great Salt Lake and Bear Lake (yellow stars) alongside

western U.S. sites with paleoclimate records referenced (green dots) and mentioned (gray dots)
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in this study and the Great Basin boundary (white), b) present-day extent of Great Salt Lake and
Bear Lake (dark blue) and their peak lake level extent during the Last Glacial Maximum to
deglacial (light blue), and c) the drill sites for the sediment cores used in this study at Great Salt
Lake (GLAD1-GSL00-4) and Bear Lake (GLAD1-BL00-1).

Figure 2. Monthly precipitation amounts (blue bars), temperatures (red lines), and precipitation
oD estimates (black lines) for a) Salt Lake City, UT (southeast of Great Salt Lake), and b)
Laketown, UT (south of Bear Lake). Precipitation amounts, with snow converted to snow water
equivalent (SWE), and temperatures are averaged for 1991-2020 (National Centers for
Environmental Information, 2020a, b). Precipitation oD is interpolated from the Waterisotopes

Database (2025a, 2025b).

Figure 3. Glacial-interglacial climate variability shown in a) atmospheric pCO; from the EPICA
Dome C ice core (green; Bereiter et al., 2015) and stacked benthic foraminiferal 80 (brown;
Ahn et al., 2017); and 6Dprecip from b) Great Salt Lake (gray; this study), ¢) Bear Lake (black;
this study), and d) Searles Lake (purple; Peaple et al., 2022). Pollen percentages for dry taxa are
shown for b) Great Salt Lake (Davis, 1998), ¢) Bear Lake (Jimenez-Moreno et al., 2007), and d)
Searles Lake (Peaple et al., 2022). Shading shows interglacials (pink), glacial terminations
(yellow), and glacial maxima (blue). Great Salt Lake experienced two intervals of partial
desiccation (salts) preceded by two intervals of lake highstand and areal expansion (Bonneville

and Little Valley, see Balch et al. (2005)). Searles Lake desiccated completely near the core top.

Figure 4. Comparison of precipitation isotope timeseries from a) Great Salt Lake (gray; this
study), Bear Lake (black; this study), and Searles Lake (purple; Peaple et al., 2022), with b)
speleothem calcite 8'°O from the Leviathan, Lehman, and Pinnacle Cave composite (blue;
Lachniet, 2016) and Devils Hole sampled at different depths within the cave (red; Wendt et al.,
2025). See Figure 1a for the locations of all sites.

Figure 5. Comparison of average glacial (blue) and interglacial (red) precipitation 8D (for leaf
waxes) and drip water 0D (for cave carbonate) in regional proxy records. Sites are ordered by
distance from the coast. Cave of the Bells and Fort Stanton, as they are in a different climate
regime strongly affected by the summer monsoon, are placed on a separate set of lines (see text).

Devils Hole and Cumbres Bog are also left off the line, the former due to its hydrothermal
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influence and the latter due to different climate signal (see text). For sites with both the full T1
and T2, the left, large symbol is T1 and right, small symbol is T2. Error bars show 1 of the 6D

values averaged over that time period.

Figure 6. Comparison of proxy records (symbols) to iCESM1.3-modeled 6Dprecip (base map)
during a) the pre-industrial (PI) compared to proxies, averaged across their Holocene extent, b)
the Last Glacial Maximum (LGM), and c) the difference between the LGM and P1. Symbols
differentiate proxy types (triangle = n-alkane 6D, square = n-alkanoic acid 6D, circle = cave
carbonate 5'*0) all presented as precipitation or drip water 8D equivalent. For references to

individual proxy sites, see Figure 5.

Figure 7. Comparison of LGM-PI precipitation/drip water dD differences between proxy data
(black bars) and climate model outputs/data assimilation products (colored bars). Sites are

ordered by distance from the coast.
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