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Abstract

The democratization of machine learning systems has made
the process of fine-tuning accessible to practitioners, lead-
ing to a wide range of open-source models fine-tuned on
specialized tasks and datasets. Recent work has proposed to
merge such models to combine their functionalities. How-
ever, prior approaches are usually restricted to models that
are fine-tuned from the same base model. Furthermore,
the final merged model is typically required to be of the
same size as the original models. In this work, we pro-
pose a new two-step algorithm to merge models—termed
PLeaS—which relaxes these constraints. First, leverag-
ing the Permutation symmetries inherent in the two mod-
els, PLeas partially matches nodes in each layer by max-
imizing alignment. Next, PLeaS computes the weights of
the merged model as a layer-wise Least Squares solution
to minimize the approximation error between the features
of the merged model and the permuted features of the orig-
inal models. PLeas$ allows a practitioner to merge two
models sharing the same architecture into a single perfor-
mant model of a desired size, even when the two original
models are fine-tuned from different base models. We also
demonstrate how our method can be extended to address a
challenging scenario where no data is available from the
fine-tuning domains. We demonstrate our method to merge
ResNet and ViT models trained with shared and different la-
bel spaces, and show improvement over the state-of-the-art
merging methods of up to 15 percentage points for the same
target compute while merging models trained on Domain-
Net and fine-grained classification tasks'.

1. Introduction

With the widespread democratization of machine learn-
ing, there has been a rapid increase in the availability of
open-source models trained by the community on specific
tasks and datasets. Such specialized models exhibit unique
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strengths and weaknesses. For example, Code Llama [25]
(fine-tuned from Llama-2) is specialized for coding, while
Vicuiia 1.3 [3] (fine-tuned from Llama-1) is specialized for
chat. They have the same architecture but are fine-tuned
starting from different pre-trained models: Llama-1 and
Llama-2. Such diversity in the combination of pre-training
data and fine-tuning tasks will only increase as decentral-
ized marketplaces for models become increasingly more
common, e.g., [24], providing practitioners with more op-
tions.

This presents an opportunity to combine such specialized
models in order to create a single general-purpose model
that can handle multiple tasks. Traditional approaches
for combining trained models, such as ensembling [7] or
domain-specific mixture-of-experts (e.g. [13]), take a step
towards this goal. However, these methods need to store all
the component models at inference time, leading to an in-
creased memory footprint. Practitioners with limited mem-
ory capacity cannot use such approaches with high and fixed
memory costs, especially when combining large models,
deploying to resource-constrained environments, or for ap-
plications demanding a memory-performance trade-off.

To this end, recent works [12, 33, 35, 36] have proposed
new algorithms tackling this problem of model merging.
However, their scope is limited to merging models fine-
tuned from the same pretrained model. Further, some re-
cent works [28] also need access to the training data used
to fine-tune the component models, which limits their appli-
cability in situations where such data is not available due to,
for example, privacy or legal reasons [5]. In this paper, we
address the problem of merging models (sharing the same
architecture) trained on different datasets starting from dif-
ferent initializations. This is motivated by prior work (e.g.,
[10, 28, 34]), which we compare with in Section 5 for merg-
ing ResNet and ViT models. To address the above limita-
tions of prior work in this space, we present PLeaS—an
algorithm which adaptively merges models for different in-
ference compute budgets, and can work without using the
fine-tuning data of the component models.

PLeas (short for Permutations and Least Squares) is a
two-stage algorithm which works with models having the
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Figure 1. PLeas is a two-step algorithm for merging models: The first step (left) finds layer-wise Permutations to match features across
models to compute combined features Z;. Features which are similar are merged, while those which are dis-similar are kept separate. The
number of features to be merged depends on the target compute budget, and can be different for each layer. The second step of PLeaSsS
(right) aims to find weights of the merged model which can map the combined features of layer : (ie., Z,-) to those of layer z + 1 (i.e.,
Z\i+l) appropriately by solving layer-wise Least Squares problems for each layer.

same architecture. The first step consists of matching fea-
tures across the models. We harness the idea of permuta-
tion invariance in neural networks to find an appropriate
pairing of features. Inspired by the Git Re-Basin [1] al-
gorithm, which is designed for merging two models that
are trained on the same data, we introduce a matching al-
gorithm that finds permutations between similar features
across models, while keeping dissimilar features separate in
the final merged model. This is critical when merging mod-
els trained on widely different tasks, since it prevents in-
terference between features while still merging overlapping
features. This also gives PLeas fine-grained control over
the width of each layer of the merged model, improving
performance over prior work such as Ziplt! [28]. PLeas
can hence flexibly trade-off inference memory/compute and
performance according to the deployment requirements.

It has been observed that permutation matching alone
suffers from significant performance loss when merging
vastly different models, e.g. those trained on disparate data
[34]. We hypothesize that while permuted features are
powerful when ensembled, simply averaging the permuted
weights degrades the features of the merged model. This re-
sults in the observed decline in performance. Hence, in the
second step of PLeas, we solve a layer-wise Least Squares
problem, so that each layer of the merged model mimics
the permuted ensemble of features from the corresponding
layer of the original models. This produces better represen-

tations and superior down-stream performance.

Apart from the target compute budget, PLeas is hyper-
parameter free, making it easy for practitioners to use. A
schematic of PLeas is depicted in Fig. 1.

We empirically demonstrate that PLeas can outperform
prior work in the challenging setting of merging differ-
ently initialized models which have been trained on differ-
ent datasets. We merge ResNet and ViT models fine-tuned
on different datasets in Secs. 5.2, 5.3 and 5.5, and find that
PLea$s improves upon the state-of-the-art up to 15% with
the same merged model size. Our empirical results are on
subsets of DomainNet, and on fine-grained classification
tasks. PLeaS can also approach the performance of en-
semble methods with significantly lower FLOPs (Sec. 5.5).

The proposed approach can be seamlessly extended to
the scenario where data from the fine-tuning domains is un-
available. We call this variant PLeaS—free. This vari-
ant uses data from publicly available datasets (like Ima-
geNet) to merge models. We demonstrate in Sec. 5.4 that
PLeaS—-free is competitive with PLeas, which uses the
actual data from the training domains of the component
models. This is highly encouraging, as it demonstrates
the applicability of PLeaS—free in scenarios where data
from the training domains is unavailable due to privacy or
commercial reasons.

In summary, our contributions are the following:
* We generalize Git Re-Basin [ 1] to support partial merging
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of corresponding layers of two models (Sec. 4.1). This
gives practitioners the freedom to choose the size of the fi-
nal merged model as per resources available at inference.
Investigating this tradeoff is one of the goals in this work,
e.g., Fig. 3.

Motivated by the success of ensemble methods, we pro-
pose to assign weights to the merged model’s parameters
by solving a least squares problem attempting to mimic
ensemble methods at each layer (Sec. 4.2). Ablation
study for this step is in Fig. 3.

On a test-bed of multiple datasets, we showcase that
PLeaS outperforms recent merging methods up to 15
percentage points (Sec. 5) at the same model size. Fur-
ther, PLeas approaches the ensemble accuracy while us-
ing 40% fewer parameters. Finally, even with no data
from the training domains, PLeaS—-free remains com-
petitive with PLeas (Fig. 4).

2. Related works

There has been growing interest in merging models with
minimal data and compute overhead. Here, we focus on
methods which merge models with the same architecture.

Merging models fine-tuned from the same initializa-
tion. Several methods aim to merge models in the weight
space. Ilharco et al. [12] simply add up task vectors, the
weight differences of fine-tuned models from the pretrained
model, and demonstrate a strong baseline for merging fine-
tuned models. Other approaches edit the task vectors based
on magnitude of the weights [33, 37] to resolve interference
while merging. Some methods aim to find layer-wise [2, 36]
or parameter-wise [19] coefficients for merging different
task vectors. However, methods that work with task vec-
tors assume that the base pretrained model is shared across
the fine-tuned models, and hence they cannot be easily ex-
tended to settings where models are fine-tuned from differ-
ent starting points. A different line of work [14] proposes
layer wise distillation, aiming to minimize the sum of the
£, distances between the activations of the merged model
and the original models. However, naively applying this
to vastly different models leads to degraded performance,
as we show in Sec. 5. Further, these methods do not pro-
vide a way to control the size of the merged model. Al-
though not designed for this scenario of merging fine-tunes
of a common pre-trained model, PLeas still allows us to
achieve significant performance gains when the merged net-
work is slightly larger than the original model (e.g. by 20%)
as demonstrated in Tab. 2.

Merging from two different initializations. We con-
sider a less restrictive setting, where the models being
merged can have different initializations. This has been
studied in the literature, and existing works propose weight
or activation matching algorithms for this task. Git Re-
Basin [1] proposes an algorithm to compute permutation
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matrices to match the weights of the hidden layers of two
or more neural networks. Yamada et al. [34] investigate the
usage of permutations to merge models trained on differ-
ent datasets, however, their study is limited to wide ResNet
models on MNIST and CIFAR datasets. These permuta-
tion symmetries have also been studied in [4, 20, 27, 34].
A recent work — MuDSC [32] leverages permutation sym-
metries both in weight space and activation space to merge
models better, however, we show that PLea$S outperforms
this work empirically. Another recent work — Ziplt! [28],
tackles a similar problem of merging models fine-tuned on
different datasets from different initializations. This work
also supports merging models partially by “zipping” some
layers of the component models. While this can provide a
knob for controlling the size-performance trade-off of the
merged model, the empirical performance of their proposed
scheme can be improved upon, as we show in Sec. 5.3. On
the other hand, our work describes a merging formulation
which is more expressive and allows for partial merges with
expanded layers to minimize feature interference. Finally,
[10] also proposes a method to merge networks layer-wise
in a progressive manner, which involves light-weight re-
training. However, their method requires domain labeled
data at both training and inference time, while we only re-
quire unlabeled data and also propose a method using no
data from the train domain at all.

Other merging paradigms. Other model merging ap-
proaches include mixture of experts [26, 29], selecting ex-
perts using test data [18], and sparse expert ensembles [9].
These come with larger compute or memory over-heads,
both at inference and training time.

3. Preliminaries

Notation. For simplicity, we describe our method for two
L-layered MLPs. However, it can be readily extended to
convolutional and residual networks, as we demonstrate in
our experiments. Let 04 = {W W3t ... Wi},0F =
{(WB . WE ... WB} be the parameters of two MLPs
A, B having the same architecture. We omit the layer-
wise bias here for simplicity. Let 27,22 denote the in-
put activations to the 7™ layer of each network respectively,
and d; denote the dimension of z;*, 2B, We also define
ZAZB e R4:%" to be the activations of a batch of n in-
puts. Note that 23 = 2f = z,and 2z}, = y*, 27, = 7.
Finally, let {WM :i € {1,2,---, L}} be the weights of the
merged model. We allow the merged model to have varying
widths (which can be different from the widths of the base
model), depending on the inference resources available.
Background on Git Re-Basin. Our method is inspired
by Git Re-Basin [1], which aims to find permutation matri-
cesm = {P;,P,,---, Py} to permute the weights of model
B. The merged model is formed by permuting and averag-
ing the weights, i.e., WM = (1/2)(WA + RWEPT ).



Ainsworth et al. [1] propose to estimate the permutation
matrices by directly optimizing the average similarity be-
tween the permuted weights of model B and the original
weights of model A. This weight matching greedily finds a
solution to the following sum of bilinear assignment prob-

lems,
L

> WA PWPPLY),
i=1

arg max
m={PH,

where P is defined to be the identity matrix. This has an
advantage of not requiring any data to solve the optimiza-
tion, but an optimal solution is computationally intractable.
Instead, when some samples are available to the optimizer,
Ainsworth et al. [1] propose a computationally efficient al-
ternative called activation matching, which solves the fol-
lowing optimization problem:

P, € argmin ||Z{* — PZP|% .
PESd,.

Here, Sy, refers to the set of permutation matrices of size
d; x d;. Computing the activations Z’s require samples
from the data. However, this optimization can be efficiently
solved separately for each layer.

4. Method: PLea$sS

We call our approach to model merging PLeaS. We har-
ness permutation symmetries to match features between
two models, inspired by Git Re-Basin [1]. We extend this
method to allow for partial merging of models, where each
layer can have a different number of merged neurons.

We then compute the weights of the final merged model
by solving layer wise least squares problems to ensure that
activations of the merged model resemble the permuted ac-
tivations of the original models.

4.1. Extending Git Re-Basin to partial merging

Note that in Git Re-Basin, two models are averaged (after
permuting one model) and hence the dimension of the pa-
rameters of the merged model is the same as the correspond-
ing parameters of the base models. However, when the net-
works A, B are trained on different datasets, not all features
might be compatible across models. These features may in-
terfere destructively if merged, leading to degraded perfor-
mance. Further, these incompatible features may need to be
retained in the merged model in order to make accurate pre-
dictions on both tasks. Merging all nodes in every layer dis-
counts this possibility, leading to performance degradation,
as we show in Fig. 4b. To this end, we aim to merge fea-
tures which are similar across the two models, while keep-
ing those which are very different as separate features in the
merged model. We hence propose a framework for partially
merging model features by leveraging permutations.
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Figure 2. Partial merging with permutations: We show the con-
struction of the 7 x 6 weight matrix W™ from two weights of size
5 % 4 in the first step of PLe aS. The merged inputs are copied and
unpermuted to approximate the original inputs. Then we apply
both weight matrices separately. Finally, we pair up the merged
outputs and average the pairs. Since all operations used are linear,
we can fuse them to construct W™ using a single linear layer.

Given a permutation matrix P;, we select k; indices from
[di] for which the distance between the features of model
A and the permuted features of model B for layer i is the
smallest. These k; features are merged, while other features
are retained separately in the final model. In particular, we
find a subset J; satisfying

Ji € ||Z.j;:z' - (P,;Zﬁ);“% .

arg min

{J:7C ]| T|=ki}
This is simple to implement: retain the indices with the
smallest k; distances between the (permuted) activations.
For weight matching, we can retain the indices with the
largest similarity between the (permuted) weights for each
layer. The size of W is then increased to (2d; — k;) x
(2d;11—kiy1) inexchange for improved performance This
partial merging scheme is illustrated in Fig. 2. One goal of
this paper is to investigate this trade-off between size and
the performance of the merged model.

Note that the ratio k;/d; can be chosen independently
for each layer. In Appendix A.3, we propose a scheme to
find a configuration of these ratios subject to a target com-
pute/memory budget B; this optimizes a proxy of the down-
stream performance without using any validation data from
the target domain, and is used in all our experiments. The
permutation matrices P; are computed using the activation
matching strategy from Git Re-Basin. In Sec. 5.4 and the
Appendix, we compare this with using the weight matching
strategy, which we call PLeaS-Weight .

We would like to emphasize that our partial merging for-
mulation is different from Ziplt! [28], since we can assign
any amount of compute between 1x and 2x (relative to



the original layer’s compute) to each layer independently.
ZiplIt! on the other hand, assigns exactly 1x compute to a
prefix of layers and 2 to the rest. In Sec. 5.3, we show that
this flexibility in our formulation leads to better empirical
performance.

4.2. Permuted least squares

Suppose, for example, that the target merged model has the
same architecture and size as each of the base models. Once
the permutations, P;, have been computed, we propose opti-
mizing the weight matrices of the merged model by solving
the following least-squares problem:

WM € argmin||(Z2 + PZP)W — (24, + P Z5)IP,

W ey
independently for each layer ¢ € [L]. This is motivated by
the impressive performance of the ensemble method (e.g.,
[34] and Sec. 5), which retains two separate models and
only averages the (permuted) activations at the last layer
(pre-softmax): Zpy1 = zf,, + 2p,;. We aim to have
our merged model approximate such activations. We in-
ductively assume that the first ¢ — 1 layers are properly
merged. Hence, the ensemble of the permuted features (of
the i™ layer) of the component models can be well approx-
imated by the activations at the input of the i layer of
the merged model. We denote the ensembled features by
Zi = (ZA + P,ZB) € R%X". The goal of the above op-
timization is to match the ensembled activation of the next
layer, Z; 11 = (Z4& 1 + PiyaZE ), with a linear transform
of the input ensemble: Z;W. We empirically validate this
choice to use a permuted ensemble of features to optimize
the weights of the merged model in Tab. 4 in Appendix B.1,
where we compare with alternatives to Eq. (1).

This second step of PLeas is similar to feature distil-
lation. However, the key novelty arises from averaging the
permuted features for transferring knowledge from multi-
ple models. This is critical for accurate prediction. To show
this, we compare PLea$S against RegMean [14], which op-
timizes an objective similar to Eq. (1) without the permuta-
tions and averaging, i.e. this method merges models by min-
imizing || ZAW — ZA |2+ || ZEW — ZE |2 As we show
in Sec. 5, RegMean performs poorly compared to PLeas.
Apart from the inference computation budget for the final
model, PLeas is completely hyperparameter free.

Note that the second step of PLeas is fully compatible
with the partial merging of Sec. 4.1 as well: we can directly
set the values of WM corresponding to the unmerged fea-
tures to be the respective values of W and W2

While the objective in Eq. (1) can be minimized in closed
form using Ordinary Least Squares (OLS), we practically
implement it using gradient descent for ease of use with
convolution layers. Given that the objective is convex if
computed layer-wise, the weight matrices WM converge
in relatively few (less than 100) steps of gradient descent.
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Further, we solve this optimization independently for each
layer, so it can be efficiently parallelized.

4.3. Data requirements of PL.eas

PLeas has two steps — the first step finds permutations to
match features using weight or activation matching and the
second step computes weight matrices to mimic the ensem-
ble of the merged features more closely. In order to compute
these features, one could use the data from the training do-
mains, however, this may not be feasible for privacy or com-
mercial reasons. Hence, we propose an alternative scheme—
dubbed PLeaS—free—which uses a general vision dataset,
like ImageNet, to compute the activations of the component
models. These activations are then used to merge domain
specific models without requiring any data from the train-
ing domains. In Sec. 5.4, we show that PLeaS—free suf-
fers a minimal performance penalty compared to PLeas,
suggesting wider applicability in low/no data settings.

5. Experiments

We show the effectiveness of our method in merging models

fine-tuned on different datasets with different initializations.

‘We investigate the following research questions:

1. How does PLea$S compare with prior work in merging
models to produce a model of the same size (Sec. 5.2)7

2. What is the trade-off between size of the merged model
and its performance for PLea$S (Sec. 5.3)?

3. How does PLeas perform if one does not have access to
the training data of the models being merged (Sec. 5.4)?

4. How does PLeas perform while merging models fine-
tuned from the same initial model (Sec. 5.5), or different
models trained on the same data (Appendix B.2)?

5. What is the impact of varying the objective in Eq. (1) on
the performance of PLeas (Appendix B.1)?

5.1. Experimental Setup

To obtain models for merging, we fine-tune ImageNet pre-
trained ResNet models on other smaller datasets. We merge
models trained (from different initializations) on different
data domains in a pair-wise fashion, and compute the accu-
racy of the merged model on both the data domains. For
each domain, we average the accuracy across all such pairs.

5.1.1. Datasets

Since we are dealing with classification models, we con-
sider two sets of datasets (with shared and different label
spaces) for training and merging models.

Datasets with a shared label space. We fine-tune Im-
ageNet pre-trained ResNet-50 models on four different do-
mains of the DomainNet [23] dataset: Clipart, Infograph,
Painting and Real. These datasets share a label space with
345 classes and comprise of images in various styles.



Same Label Space

Different Label Spaces

Method FLOPs Memory

Clip Info Paint Real Avg CUB Pets Dogs NABird Avg
MoE* 1.1 2.1x 69.1 36.1 657 780 622 81.1 927 831 758 83.2
Ensemble* 2x 2x 63.6 303 610 747 574 805 928 821 76.1 82.9
Simple Avg [12] 1x 1x 1.2 08 1.9 2.1 1.5 7.1 192 92 4.7 10.1
RegMean [14] 1x 1x 16.6 5.8 10.1 15.8 12.1 425 451 202 37.1 36.2
Ziplt! [28] 1x 1x 269 122 27.1 374 259 675 836 600 563 66.9
Git Re-Basin [1] 1x 1x 182 7.8 188 265 178 662 802 626 594 67.1
MuDSC [32] 1x 1x 340 143 295 451 307 701 825 632 582 68.5
PLeaSs (Ours) 1x 1x 41.7 169 408 551 38.6 752 850 69.6 69.7 74.9

Table 1. Merging pairs of models trained on different datasets: For each pair of datasets, we merge models and compute the final
accuracy on the pair. To compute the final accuracy for a dataset, we average the accuracies across the pairs that the dataset is a part of.
‘We report the accuracies of the merged models for the Same Label Space setting, and a linear probe accuracy on the representations of the
merged model for the Different Label Space setting. * Note that here the merged models (bottom six) have the same size as the original,

but the MoE and ensemble have a size twice the original.

Datasets with different label spaces. We fine-tune
models on CUB [31], NABirds [30], Oxford-IIIT Pets [21]
and Stanford Dogs [16] datasets, and merge them up to the
penultimate layer. Since the label spaces of these datasets
are different, we aim to evaluate the representations of the
penultimate layer of these merged models by training a lin-
ear probe on top of the representations. We average the
results in the same manner as for DomainNet, and report
the performance of different methods in Tab. 1. In Ap-
pendix B.4, we follow the setting of [28], using task specific
heads from the original models to compute the accuracy of
the merged model, which requires knowing the domain of
each test data point.

5.1.2. Baselines

We compare our method against prior works including
Git Re-Basin [1], Simple Averaging [12], RegMean [14],
ZipIt! [28] and MuDSC [32]. Note that RegMean has sim-
ilar data and compute requirements as PLeas, and Ziplt!
also supports partial merging of models like PLeas. We
also consider two practical upper bounds — training a
router model based Mixture of Experts model (MoE), and
ensembling the predictions (or activations) of the original
models. The former requires storing both models and run-
ning one of them at inference in addition to the overhead
of the router, hence having 1.1x FLOPs and 2.1x mem-
ory requirements, while the latter requires running both the
models in parallel, and hence has 2x FLOPs and memory
requirements. We find that the performance of the ensemble
and MoE models is close to the best performance of a single
model on its training dataset.

For each task, we also report results for Permutations,
which is the model obtained by weight averaging the com-
ponent models after applying the permutations obtained
from the first step of PLeas. Following the recommen-
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dation of REPAIR [15], we recompute the batch-norm pa-
rameters of the model after merging for all methods. We
run each merging experiment for three different seeds, and
across two different initial models. We find that inter-run
variation in performance is low, with the standard deviation
usually being less than 1%. We report disaggregated results
along with these standard deviations in Appendix B.3.

5.2. Merging for the same size

In Tab. 1, we report the domain-wise performance for
merged models at 1x size of the original model for dif-
ferent methods. On DomainNet, we observe that PLea$sS
outperforms the previous state-of-the-art method, MuDSC
by over 8% on average. Similarly, On datasets with differ-
ent labels spaces, PLea$s is better than MuDSC by almost
6.5% on average. Further, PLeas vastly outperforms Reg-
Mean, a method which which performs Least Squares with-
out permutations and has a similar computation overhead
as PLea8. This indicates that permuting the features be-
fore performing Least Squares is a crucial step which helps
PLea$S produce better models. Finally, These results also
show the utility of the second step of PLea s, as it boosts the
performance over Git Re-Basin by a large amount, nearly
doubling the accuracy on DomainNet.

5.3. Exploring the model size-accuracy tradeoff

We seek to demonstrate the effect of partial merging on the
performance of the merged models. To do this, we merge
models pairwise as above, and report the average of the per-
formance of these merged models on their respective com-
ponent domains for different sized ResNet models in Fig. 3.

We find that PLea$ consistently outperforms Ziplt! at
various compute/memory budgets and for all model scales.
The gains are particularly striking for lower memory bud-
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Figure 3. Memory-Performance trade-off for merged models: We merge pairs of models fine-tuned on different datasets, and compute
the average performance across all four datasets for two settings: datasets with a shared label space (top) and datasets with different label
spaces (bottom). Plotting average accuracy against the final merged model size, we find that PLe a S dominates the state-of-the-art methods.

gets, where PLeas outperforms Ziplt! by up to 10% for
ResNet-50 ( Fig. 3b). The power of partial merging is also
observed from these results, as one can see that increas-
ing the flops by just 20% leads to massive improvements
in the accuracies in the shared label settings. These results
also provide evidence of the effectiveness of our partial per-
mutation scheme — permutations can outperform Ziplt! at
intermediate model budgets by up to 6% (e.g. for ResNet-
101 with shared label spaces in Fig. 3¢). We posit that this
is because we can assign a non-uniform width multiplier
across the layers of the merged model, which is important
for larger models and those which are trained on disparate
domains. As expected, the performance gap closes as the
relative size of the merged models increases.

5.4. Does PLeas need data from the training do-
mains?

To investigate the data requirements of our method, we
compare the performance of PLeas and PLeaS-free
when merging ResNet-50 models. We also compare the
effect of using weight matching to find the permutations
for PLeas, and we term this variant as PLeaS-Weight.
Note that this variant uses data only for the Least Squares
step. The performance-model size tradeoff is reported in

—8— PLea3 —8— PleaSWeight -k PLeaSfree  --k- PLeaS-Weight-free
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Figure 4. Investigating the data requirement of PLeas: We run
PLeasS and PLeaS-Weight using data from the actual domains
or ImageNet (indicated by the suffix free) for both the Shared
label space (Fig. 4a) and Different label spaces (Fig. 4b) settings
for ResNet-50. We plot the average accuracy across all datasets
against the relative size of the output model. We find minimal
performance drops for PLeaS—free .

Figs. 4a and 4b for shared and different label spaces.

We find that PLeaS-free retains a similar perfor-
mance when using ImageNet instead of the actual domain
data for merging models on DomainNet, achieving a drop
of less than 1% in accuracy at 1x model size. There is al-
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Method Size Clipart Infograph Painting Real
Simple Avg 1.0 582 28.9 55.7 70.2
RegMean 1.0 589 29.0 57.4 71.8
MuDSC 1.0 578 55.8 55.1 67.6
Plea$s 1.0 59.6 29.5 58.0 72.0
Plea$s 1.2 642 31.9 61.8 75.9
Ensemble 20 o644 32.0 62.0 76.1

Table 2. Merging models fine-tuned from the same initializa-
tion: We merge pairs of models fine-tuned from the same base
model and compute the average accuracy across all pairs of do-
mains for each dataset in the Shared Label Setting. We find that
PLeas can approach the performance of the ensemble while hav-
ing a 1.2x sized merged model.

most no drop at higher sizes of the merged model. Notably,
even on the more difficult task of merging models with dif-
ferent label spaces, using ImageNet data for computing acti-
vations can perform competitively to using the actual data:
linear probing on the representations from PLeaS—free
performs within 2% of the PLeas at 1.2x model size, and
the gap is less than 4% at 1x model size. This result is
particularly encouraging, since it extends the practical ap-
plicability of PLeaS—free to scenarios where data from
the training domains may not be available. Note that while
we must use data from the actual domains for linear prob-
ing, i.e. to assess the quality of the representations, we do
not use it for actually merging the models. We also find that
PLeaS-Weight performs similarly to PLeas$ in the both
the shared and different label space settings for ResNet-
50. Further, PLeaS-Weight is less affected when Im-
ageNet data is used, since the permutations computed by
PLeaS-Weight do not depend on the data.

5.5. Merging models with the same initialization

In Tab 2, we evaluate the performance of our method for
merging ResNet-50 models fine-tuned from the same start-
ing model. We compare against simple average (Task Vec-
tors), MuDSC, and RegMean and find that the performance
is similar across methods, with PLea$ being slightly bet-
ter than the baselines. In fact, task vectors is an effective
baseline here. However, we note that 20% extra parameters
in the merged model can lead to closing the gap between
the ensemble and the merged model produced by PLeas,
demonstrating the need for flexible merging methods.

5.5.1. Merging ViTs

In Tab. 3, we present results of merging CLIP style ViT
models. In accordance with prior work [32], we merge
models starting from the same initialization. We consider
two settings — the different label space setting described in
Sec. 5.1 and CIFARS50+50 from [28, 32]. In the latter, the
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CIFAR-50+50 Other Datasets
Method

Joint Avg NABirds CUB Pets Dogs
Simple Avg 726 845 1.8 659 B86.1 604
RegMean 727 847 1.7 66.2 B85.1 585
MuDSC 728 849 8.0 66.1 86.1 60.6
PLeaSs 733 851 83 66.7 86.5 61.6

Table 3. Merging ViT models: We merge pairs of ViT models
fine-tuned from the same initialization and report the performance.
PLeaS can outperform baselines across datasets.

100 labels from CIFAR-100 are partitioned into 2 sets of 50
labels each, and a ViT is trained on each of these sets (using
a CLIP-like loss). More details on the setup are described in
Appendix A. The accuracy of the merged model is reported
on both these partitions separately by considering only 50
classes at a time (denoted by Avg in the table), as well as on
the Joint CIFAR-100 dataset (by considering all 100 classes
together). Note that since we use CLIP-like models, we can
use the language head directly for classification despite dif-
ferent label spaces. For the other datasets, we follow the
protocol from Sec. 5.1.

We observe that PLeas boosts the performance slightly
over the baselines. For example, it increases perfor-
mance by 0.7% on CIFAR-100 over Task Vectors. PLeaS
also out-performs MuDSC by around 0.6% on the larger
datasets. While these gains are small, they are non-trivial
and are more than the boost reported by the previous state-
of-the-art method (MuDSC). We believe this presents an
exciting opportunity to further study the symmetries and in-
variances in transformers in order to merge them better.

6. Limitations

The scope of this study is limited to merging models with
the same architecture, and applying PLea$S to merge dif-
ferent architectures could be an interesting future direction.
Since PLeas is a two-stage algorithm, its running time is
greater than some existing works [12, 14, 28]. However,
since the second step can be computed in parallel for all
layers, as discussed in Appendix A.1.

7. Conclusion

In this work, we present PLeas, an algorithm to merge
models trained on different datasets starting from differ-
ent initializations. We demonstrate that PLea$S can effec-
tively produce merged models at different points on the
compute-performance trade-off curve. We also propose
PLeaS-free, a variant which can merge models without
needing any data from the training domains of the compo-
nent models, and empirically validate that its performance
is comparable to running PLea$ with data, which widens
its applicability to data-scarce regimes.
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