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Abstract
Radium is a useful tracer of sediment-derived materials, improving our understanding of the geochemical

cycling of elements at ocean boundaries. We have developed an autonomous in situ sampler to collect time
series samples of radium isotopes on mooring deployments. Samplers were deployed for 2 yr in the Arctic
Ocean, a region particularly hard to access outside of the summer season, and collected monthly samples to cre-
ate the first annual time series of radium-228 and radium-226 in the Arctic. Results from the Laptev Slope show
increased radium-228 and radium-228/radium-226 ratios in spring/summer, concomitant with increased mete-
oric water and brine influence. Together, these tracers indicate seasonal periods of increased influence of shelf-
and river-derived materials, findings which would not be possible to discern from summertime shipboard sur-
veys alone. The development of this in situ sampler has therefore expanded our capability to use radium as a
tracer to discern temporal changes in the geochemistry of remote areas of the ocean.

Radium isotopes have become well-established tracers of a
range of oceanic processes that involve input of materials from
ocean boundaries such as coastal aquifers (e.g., Moore 1996;
Garcia-Orellana et al. 2021), continental shelf sediments
(e.g., Rutgers van der Loeff et al. 1995; Charette et al. 2016;
Sanial et al. 2018), and hydrothermal vents (e.g., Kadko and
Moore 1988; Kipp et al. 2018b). This has been enabled by
their continual production via the decay of thorium isotopes
in marine sediments, where they are soluble and available for
release into the ocean water column. Thus, ocean sediments
from coastal embayments to the deep ocean are major sources
of Ra to the marine environment. Because of their mostly con-
servative behavior in seawater, Ra isotopes can serve as proxies

for other, more reactive sediment-derived inputs, in particular
those with biogeochemical significance such as inorganic
nutrients (Cai et al. 2015; Tamborski et al. 2018), carbon (Burt
et al. 2016), and trace metals such as iron (Fe) (Charette
et al. 2007; Hong et al. 2018; Hsieh et al. 2021).

In the Arctic Ocean, radium has been established as a partic-
ularly valuable tracer of changing ocean conditions (e.g., Li
et al. 2017; Vieira et al. 2018; Kipp et al. 2023). This is due to
this ocean basin’s high proportion of shelf area and river dis-
charge, combined with warming conditions that have led to
reduced sea ice cover that can increase sediment-water interac-
tions over shallow shelves due to wind and waves (Kipp
et al. 2018a). Despite this, the Arctic is still largely ice-covered
for half of the year (Roach and Meier 2024), making it difficult
to access via oceanographic sampling platforms. This highlights
the need for remote sample collection technologies necessary
to separate interannual (climate-driven) changes from potential
seasonal variability in biogeochemical tracers such as radium.

Motivated by this need, we developed the moored radium in
situ sampler (MoRIS)—a mooring-deployable system designed to
autonomously collect radium isotopes in remote environments.
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The system was created to enable year-round collection of Ra
isotopes—bridging the gap between research cruises, including
during seasons that are largely inaccessible to research vessels.
Here, we describe the development of MoRIS and the collection
of the first seasonal radium time series in the Arctic Ocean.

Materials and procedures
Sampler design

Moored radium in situ sampler was designed through a partner-
ship with McLane Research Laboratories, Inc., and is a modified
version of their particle and phytoplankton sampler (PPS) (Fig. 1).
The PPS is designed to collect 24 individual samples on a user-
defined time interval, using a pump that pulls water through a
multi-port valve. The original PPS filters water over a 47 mm GF/F
filter at rates of 50–125 mL min!1, and has a maximum deploy-
ment time of 14 months (volume and flow rate dependent) based
on a power supply of 24 D cell alkaline batteries. Our modifica-
tions to this design included (1) swapping the 24 GF/F filter
holders for 24 100 PVC housings containing 15 g of manganese
oxide (MnO2)-coated acrylic fiber, (2) adding quick disconnect tub-
ing preceding the Ra sample housings to collect a " 20 mL water
sample, (3) adding another 24 D cell battery pack (48 batteries
total) to extend the deployment lifetime to 2 yr and allow for
higher flow rates, and (4) placing the system on a larger frame to
accommodate the added battery pack and new filter housings.

Radium is a dissolved cation that is scavenged by MnO2,
thus pumping seawater through the housing packed with

MnO2-coated acrylic fiber quantitatively removes Ra from the
water and collects it on the fiber (Moore and Reid 1973).
MoRIS was programmed to run at a flow rate of 250 mL min!1

to minimize backpressure on the pump and to ensure quanti-
tative removal of Ra from the seawater. To remove any
suspended particles that may be pumped through the hous-
ing, a small amount (" 2.5–5 cm ball) of uncoated acrylic fiber
preceded the MnO2-coated fiber in the housing, such that par-
ticles would be filtered out onto the uncoated fiber before
reaching the MnO2 fiber and thus would not be processed
with the dissolved radium sample. As an additional measure
to ensure no particles were trapped in the fiber, samples were
rinsed three times with Ra-free MilliQ water after recovery.
The offload files from each of the systems contains a record of
the flow rate averaged over 5 min intervals, permitting an
evaluation of whether flow rates were significantly reduced
(e.g., due to particles clogging the fibers). Additionally, if flow
rates drop below 100 mL min!1, the pump was programmed
to stop automatically and the sample collection was aborted.

Using traditional counting techniques, open ocean 226Ra
activities (" 8–10 dpm/100 L) can typically be measured on
sample volumes in the range of tens of liters: analysis via
radon emanation and alpha spectrometry can be done on
" 10–25 L samples (Ku and Lin 1976; Charette et al. 2015),
gamma spectrometry requires volumes of 25–50 L (Gonneea
et al. 2008), and analysis via Radium Delayed Coincidence
Counter (RaDeCC) requires volumes ≥100–200 L (Geibert
et al. 2013). Several labs have also developed techniques for
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Fig. 1. (a) Schematic of MoRIS design from McLane Research Laboratories, Inc., and (b) photo of MoRIS during deployment in 2021.
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measuring 226Ra via ICP-MS, which requires only " 100–
1000 mL (Foster et al. 2004; Vieira et al. 2021). 228Ra, however,
requires sample volumes that are larger and more variable
based on location: activities in surface waters near the coast
may be measurable on tens of liters, while deeper open ocean
activities may only be measurable on hundreds of liters.
MoRIS was designed to be deployed on continental slopes in
the Arctic Ocean, where our previous work has shown rela-
tively high 228Ra activities (Kipp et al. 2019, 2023). We there-
fore determined that activities would be measurable on 50 L
samples. The filtration of each 50 L sample at a rate of
250 mL min!1 therefore took approximately 200 min.

In addition to collecting Ra samples, it was also important
to isolate a small water sample (" 20 mL) that could be used
for the analysis of water isotopes (δ18O, δ2H). Along with the
salinity measurements from a MicroCat CTD on the same
mooring, this data permits a deconvolution of the Arctic water
masses present at the time of sampling using a 3-endmember
model and a system of linear equations (Kipp et al. 2023). To
accomplish this, quick-disconnect tubing (Kent Systems Quick
Couplings Shut-off Valves, Collection 1) was used to connect
the PVC housings to the multi-port pump. Fittings were used
that remain closed when the tubing is disconnected. Upon
recovery, this tubing can thus be disconnected and the water
can be drained into sample vials for water isotope analysis on
shore.

To extend the deployment lifetime to 2 yr, an additional
battery pack of 24 D cell alkaline batteries was added in line
with the first battery pack (48 batteries total). The sampler was
programmed to collect a sample every 30.5 d over the course
of the 24-month deployment. The addition of the second bat-
tery pack increased the weight of the sampler such that a
larger frame was used, constructed of 316 stainless steel with
a single attachment point on top and bottom. This brought
the total weight of the system to approximately 450 lbs in air
(" 300 lbs in water).

Testing
When the MoRIS samplers were received, the battery packs

were connected and the empty filter holders (24) were filled
with MnO2-coated acrylic fibers. The sampling system was
primed with filtered local seawater (Vineyard Sound, Woods
Hole, Massachusetts). The sampler was programmed to pump
the same flow rate and volume as the planned deployment in
the Arctic. The exhaust water from the MoRIS sampler was
captured and the volume measured to compare against the
logged filter volumes stored within the sampler; the resulting
volumes agreed within 5%. The next test included program-
ming and deploying the McLane sampler autonomously in a
seawater test tank located in the Coastal Research Laboratory
building on the Quissett campus of the Woods Hole Oceano-
graphic Institution (WHOI). The MoRIS instrument was
hoisted and suspended into the tank overnight, filtering the
same volume/flow rate as the planned deployment. Once

the deployment was complete, the logged file was downloaded
from the instrument to ensure the total volume programmed
was achieved. The instrument was then flushed with Ultra-
pure MilliQ water and the lines were emptied so that there
was no residual water located in the tubing/filter holders. The
outside of the instrument was also washed down with fresh-
water to remove any saltwater. The MnO2-coated fibers were
removed from their holders, rinsed with radium-free fresh
water, and measured on a Radium Delayed Coincidence Coun-
ter (RaDeCC; Moore and Arnold 1996). Radium, naturally pre-
sent in seawater, was measured on the fiber and it was deemed
that the instrument functioned properly and was ready for
deployment.

Deployment
The two MoRIS samplers were deployed on the September–

October 2021 Nansen and Amundsen Basin Observational Sys-
tem (NABOS) cruise on the RV Akademik Tryoshnikov, which
facilitated water sampling and mooring deployments and
recoveries along the Laptev and East Siberian Slopes. Samplers
were primed with brine (salinity > 40) made with table salt to
avoid freezing while sitting on deck during mooring assembly.
The samplers were deployed at moorings MB3 (79.93#N,
142.25#E; Laptev Slope on the Lomonosov Ridge) and MB6
(78.99#N, 173.78#E; East Siberian Slope) (Fig. 2). The moorings
were designed to place MoRIS as close to the surface as possi-
ble, with the aim of capturing seasonal changes in the Trans-
polar Drift and Polar Surface Water, though this was limited
by depth restrictions on the moorings (i.e., major flotation
must not be shallower than 30 m to avoid ice). The target
depth for each sampler was 40 m, and the final estimated
MoRIS deployment depths were 44 and 54.5 m on MB3 and
MB6, respectively. Samplers were recovered on the September–
October 2023 NABOS cruise on the USCGC Healy, which re-
occupied the same locations. These expeditions and MoRIS
deployments were part of the Arctic Radium Isotope Observ-
ing Network (ARION), which aims to utilize radium as a tracer
of climate-driven changes in Arctic Ocean chemistry (Kipp
and Charette 2022).

Before each MoRIS deployment and recovery, a depth pro-
file of 228Ra and 226Ra was collected using water from Niskin
bottles mounted on the CTD rosette to calibrate the time
series. This process is described in detail in Kipp et al. (2023).
Briefly, six Niskin bottles were tripped at four depths (20 m,
40 m, 100 m, 250 m) and combined into " 60–72 L samples
depending on bottle volume (10-L bottles on RV Akademik
Tryoshnikov; 12-L on USCGC Healy). These were filtered
through a PVC housing containing a small amount of
untreated acrylic fiber followed by MnO2-coated fiber (15–
20 g) to extract Ra. Surface water (120–130 L) was collected
using a submersible pump and filtered through 20 g of MnO2-
coated fiber. After collection, fiber samples were rinsed with
Ra-free MilliQ water and stored at room temperature for the
duration of the cruise.
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When the MoRIS samplers were recovered, the water iso-
tope sample tubing from each sample port was disconnected
and water was drained into 20 mL acid-cleaned polyethylene
sample vials. A disposable pipette was used to transfer 2 mL of
each sample into glass vials for water isotope analysis, which
were stored refrigerated with no headspace. Water isotope
samples were analyzed by cavity ring-down spectroscopy at
the University of Wyoming Stable Isotope Facility.

The PVC housings containing the MnO2-coated fiber sam-
ples were disconnected from the outlet tubing, placed in indi-
vidual plastic bags, and stored at room temperature until
transport back to WHOI. On shore, the MnO2-coated fibers
were removed from the housings and squeezed dry over dispos-
able beakers to catch the excess water. Any additional water from
the housings was also added to these beakers. The amount of sea-
water retained was 71 g on average from 48 samples. To test
whether all of the radium was captured on the MnO2 fiber, a
new bundle of MnO2 fiber (2 g) was placed in each of the beakers
and allowed to soak for 24 h, then processed in the same way as
the samples. A random subset of these fibers was analyzed via
gamma spectrometry; because activities were below background
for Ra isotopes, we concluded that radium had been retained on
the original MnO2 fiber.

Methods for quantifying 226Ra and 228Ra on MnO2 fiber are
described in detail in Kipp et al. (2023). Briefly, fibers were
ashed (820#C, 12 h) and sealed in polystyrene tubes with
epoxy to prevent Rn loss. After 3 weeks, activities were mea-
sured by well-type germanium gamma-spectrometry at Rowan
University or WHOI with intercalibration using duplicate sam-
ples and reference materials. Radium-228 was quantified from
the average of 228Ac 338 and 911 keV peaks, and 226Ra from

the 214Pb 352 keV peak. Detector efficiencies were derived
from ashed Mn-fiber spiked with 226Ra (NIST SRM 4967A) and
232Th (thorium nitrate) with daughters in equilibrium pre-
pared identically to samples. Blanks associated with unused
ashed fiber were analyzed and subtracted where applicable.

Assessment
The offload data files from both MoRIS samplers indicated

successful collection of all samples on the 2021–2023 deploy-
ment. The depth profiles measured before and after each
MoRIS deployment provide confidence that the samplers are
accurately measuring 228Ra and 226Ra activities (Figs. 3, 4). The
226Ra activities and 228Ra/226Ra activity ratios measured at
MB3 were similar to the 40 m CTD sample in both 2021 and
2023 (Fig. 3). The 228Ra depth profiles showed more variability
between the years, particularly around 40 m, near the depth
of the sampler. When MB3 was deployed in 2021, the CTD
cast down to 250 m was conducted approximately 3 d before
the mooring was deployed; the mooring deployment was del-
ayed due to weather, and the ship moved off station to sample
elsewhere in the interim. When the ship returned to station to
complete the deployment, an additional 40 m Ra sample was
collected using the CTD rosette (dark red circle on Fig. 3). This
sample provides the best comparison with the sample mea-
sured by MoRIS, which was collected " 34 h later (light red tri-
angle in Fig. 3), and indeed shows good agreement between
the two sample collection methods. The 2023 CTD cast
was conducted " 2 d after the final MoRIS sample was col-
lected (light blue triangle), and 228Ra activities differ by
" 2 dpm/100 L. However, the repeat sampling in 2021 shows
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that the activities of 228Ra at this depth changed by
" 2.7 dpm/100 L over the course of 3 d, so this change is
within the expected natural variability.

The MoRIS deployed at MB6 was moored at a slightly
deeper depth than expected (54 m), so the closest CTD sample
for intercomparison was " 14 m shallower. Nonetheless, sam-
ples collected from MoRIS at MB6 had activities that fall
between the samples measured above and below via the CTD
rosette (Fig. 4). In general, the profiles at this station were very
similar in 2021 and 2023, aside from lower Ra activities and a
lower 228Ra/226Ra ratio at the surface in 2021. This may be
related to the presence of water masses with different origins
and/or pathways over the shelf at the surface in each year.

Here we will present the results of the full time series col-
lected at mooring MB3; the results from MB6 will be the sub-
ject of another forthcoming paper. MB3 was located on the
Lomonosov Ridge, where surface and intermediate waters are
generally steered by bathymetry such that water moves along
the Kara and Laptev Slopes (Coachman and Barnes 1963;
Rudels 2009, 2012). The ADCP mounted on this mooring pro-
vides evidence of eastward-flowing currents (Polyakov
et al. 2025) (Fig. 5). The CTD data from MB3 indicate that
MoRIS (at 44 m) was located within the halocline, rather than
capturing the PSL (Fig. 6).

Radium-226 activities were relatively constant throughout
the 2-yr deployment period, varying between " 6 and
8 dpm/100 L (Fig. 7). The highest activities were observed in

the last sample collected, reaching 8.6 $ 1.1 dpm/100 L.
Radium-228 was more variable, ranging from " 4.5 to
9 dpm/100 L. This is consistent with the shorter half-life of
228Ra compared to 226Ra; this isotope is regenerated more
quickly in shelf sediments and can therefore respond to
changes occurring on shorter timescales. Because of this faster
regeneration rate following removal from sediments, higher
ratios of 228Ra/226Ra tend to indicate a shelf sediment source
(as opposed to a riverine- or fresh groundwater-derived signal,
which is expected to have an activity ratio closer to " 1; Bull-
ock et al. 2022; Charette 2007; Michael et al. 2011). The
observed 228Ra/226Ra activity ratios varied between " 0.6 and
1.2, with the highest ratios observed in November–December
2021, February–May 2022, and May–September 2023.

The δ18O measurements from each sample were matched
with salinity measured on a SBE 37-IM MicroCAT (Seabird Sci-
entific) located directly above MoRIS at 33–34 m, and used in
a 3-endmember mixing model to deconvolve the contribu-
tions of (Atlantic-derived) seawater, meteoric water, and sea
ice melt (for more information on the mixing model, see Kipp
et al. 2023). As expected, the majority of the water at this
depth is derived from Atlantic inflow (Fig. 7). Meteoric water
fractions were typically around 4%, but increased to 5.8% in
May 2022 and reached a maximum of 7.6% in July 2023. The
fraction of sea ice melt was between !2.9% and 3.3%, with
positive values indicating sea ice melt and negative values
indicating ice (and brine) formation. Negative values of sea ice

Fig. 3. Depth profiles at MB3 (lines and circles) and corresponding MoRIS samples (triangles) from 2021 (red) to 2023 (blue). Dark red lines and sym-
bols indicate data collected during a re-occupation of the station " 3 d after the initial CTD cast in 2021 (initial cast in bright red). Although straight line
fits are used to connect samples on the depth profiles, the gradient in Ra activities may not be linear. Samples collected from MoRIS are indicated with an
asterisk in the legend.

5

Kipp et al. Development of in situ radium sampler

 15415856, 0, D
ow

nloaded from
 https://aslopubs.onlinelibrary.w

iley.com
/doi/10.1002/lom

3.70020 by Test, W
iley O

nline Library on [06/01/2026]. See the Term
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline Library for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons License



melt were observed in spring 2022 and summer 2023, coinci-
dent with increased meteoric water values.

Discussion
Observed trends in Arctic Ocean chemistry

The time series data from MB3 shows increased 228Ra activi-
ties and 228Ra/226Ra activity ratios at times when fractions of
sea ice melt were negative and fractions of meteoric water
were highest (gray bars on Fig. 7). Together, these changes
suggest an increased influence of shelf-derived water at MB3
during these time periods: higher 228Ra activities and
228Ra/226Ra activity ratios are indicative of a shelf sediment
source (e.g., van der Rutgers Loeff et al. 2003; Vieira
et al. 2018), negative fractions of sea ice melt indicate brine
formation, which occurs over the shelf during freeze-up, and
meteoric water influences are strongest over the shelf where
river discharge is the most concentrated. These changes begin
around February in both years and gradually increase to a peak
in mid-summer. In 2023 these changes were shifted later in
the summer (beginning to decrease in " July) compared to
2022, when 228Ra, 228Ra/226Ra activity ratios, and meteoric
water fractions had decreased by July.

The Ob, Yenisey, and Lena River freshets typically occur in
the last week of May and the first week of June (The Arctic
Great Rivers Observatory 2025; https://arcticgreatrivers.org/
data), thus increased river discharge cannot explain the
observed increases of meteoric water, which occurred in April–
May 2022 (preceding the freshet) and increased over the

course of the spring in 2023. A change in current direction
could potentially transport more shelf-influenced water across
the slope adjacent to MB3. Alternatively, these changes could
be driven by a change upstream of the mooring. In the case
of an upstream change, we suggest that these periods
of increased shelf influence reflect periods of ice freeze-up and
brine formation over the Kara and Barents Shelves, creating
dense shelf water outflows that can ventilate the upper halo-
cline (e.g., Cavalieri and Martin 1994; Schauer 1995; Janout
et al. 2015). If freeze-up typically begins in October–November
(Fetterer et al. 2017), this requires a transit time of " 6–
10 months along the slope to reach MB3.

The concurrent changes in radium levels and water mass
fractions captured by MoRIS provide evidence of a seasonal
signal in shelf- and river-derived water masses that could not
be captured by summertime shipboard surveys alone. The
development of this in situ sampler has thus improved our
ability to use radium as a tracer of climate-driven changes in
the Arctic. Specifically, this time series has shown that com-
parisons between different years and/or seasons may be
complicated by the timing of intermediate water formation
and shelf outflows, and that it is important to have additional
tracers—such as meteoric water and sea ice melt percentages—
to help identify when these influences are present.

Utility of radium time series sampling
The successful collection of a 2-yr time series from the

MoRIS platform expands our ability to investigate temporal
changes in ocean chemistry, providing a useful complement

Fig. 4. Depth profiles at MB6 (lines and circles) and corresponding MoRIS samples (triangles) from 2021 (red) to 2023 (blue). The 250 m sample col-
lected in 2021 was below detection limits for 228Ra. Although straight line fits are used to connect samples on the depth profiles, the gradient in Ra activ-
ities may not be linear. Samples collected from MoRIS are indicated with an asterisk in the legend.
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to the physical oceanographic data traditionally collected
from moored instruments. Radium isotopes are an excellent
proxy for other sediment-derived elements such as carbon,
nutrients, and trace metals, but unlike these other constitu-
ents, radium samples do not require preservation. Our results

show that the radium activities measured on samples collected
at the beginning of the time series agreed well with activities
measured from CTD casts taken within days of sampler
deployment, illustrating that fiber samples yielded reliable
results despite hold times of up to 2 yr. The radium time series

Fig. 5. Current rose from MB3 for Oct 2021–Sep 2023. Current direction is shown with the orientation of each bar (orientation of rose matches the
map, so north is at the bottom of each rose and east is to the left). The length of the bar indicates the percentage of time that the current was moving in
that direction; solid circles indicate 5% and 10%. Color indicates current speed. Arrows on the map indicate the average current speed and direction for
four different time periods: (1) Jan–May 2022, (2) Sep–Dec 2022, (3) Feb–Jul 2023, and (4) Jul–Sep 2023.
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can thus be used to infer changes in other shelf-derived mate-
rials that would be difficult to directly measure with moored
samplers. This pairing of physical and chemical monitoring is
particularly useful in the Arctic Ocean, where it is important
to separate seasonal changes from longer-term ongoing
climate-driven changes, and year-round sampling is prohibi-
ted by ice coverage. However, there are many potential appli-
cations in the temperate oceans as well; for example
coincident measurements of radium with velocity or tempera-
ture could be used to monitor how increased turbulence or
periods of upwelling influence the levels of sediment-derived

elements. While our research interests motivated a long (2-yr)
deployment, the sample collection timeframe can easily be
modified to take samples on a more frequent basis over a
shorter deployment period (e.g., weekly for 6 months).

Moored radium in situ sampler deployment requires dedi-
cated ship time and a team experienced in mooring opera-
tions, adding research costs beyond those typical for standard
sampling efforts. Compared to traditional sampling methods,

Fig. 7. Time series measurements (Oct 2021–Sep 2023) of 228Ra, 226Ra,
the 228Ra/226Ra ratio, temperature, salinity, and percentages of meteoric
water (MW), seawater (SW), and sea ice melt (SIM) at MB3. Gray bars
indicate periods where 228Ra activities, 228Ra/226Ra ratios, and meteoric
water percentages increased, and sea ice melt percentages decreased.
Temperature and salinity are 1-d moving means.

Fig. 6. Salinity and temperature measured in the top 22–130 m at MB3
mooring location for Oct 2021–Sep 2023. Blue stars on the right vertical
axes indicate the positions of temperature and salinity sensors.
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wherein 228Ra and 226Ra radium samples can be collected rela-
tively quickly using a submersible pump deployed over the
side or via Niskin bottles on the CTD rosette, sampling with
MoRIS therefore represents a larger investment of time and
resources. However, the effort involved (including sampler
procurement and programming and deployment of instru-
mentation) is somewhat similar to the collection of radium
samples via the McLane Large Volume Water Transfer System
(WTS-LV), which has become a common method for measur-
ing all four radium isotopes in the open ocean (Charette
et al. 2015; Henderson et al. 2013). The key distinction is that
MoRIS provides a continuous time series, so any cost–benefit
analysis should consider the expense of multiple cruises that
would otherwise be needed to achieve similar temporal
coverage.

Comments and recommendations
When both MoRIS samplers were inspected after deploy-

ment, there were several locations that were compromised by
corrosion, including a majority of the waterproof bulkhead
connectors and the coated aluminum end caps of the battery
housings. This impairment caused a leak within the housing
in a subsequent short-term deployment. For future deploy-
ments, we have designed a plastic o-ring adapter for the bulk-
head connectors to isolate the dissimilar metals and prevent
areas already affected by corrosion from contacting seawater.
We recommend that future iterations of MoRIS also use high-
quality sacrificial anodes to prevent similar corrosion issues.

By the end of the deployment period, the battery voltage
on both samplers had decreased by approximately 5 V (from
" 37 to 31–32 V). This suggests a loss of 0.004 V per liter of
water pumped. The pump will operate down to 28 V before
returning an error message; thus we estimate that an addi-
tional 32 L could be pumped per sampling event. Our initial
approach of pumping 50 L per sample resulted in activities
that were close to the detection limits of the gamma detector,
producing relatively large error bars. We therefore recom-
mend that larger sample volumes (60–80 L) be pumped on
future deployments in this area. However, if MoRIS is
deployed over a shallower region of the shelf, 50 L may
remain an appropriate volume due to the higher expected
activities and possible concerns about resuspended sedi-
ment clogging the fibers.
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