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ENVIRONMENTAL STUDIES

Multi-ignition fire complexes drive extreme fire years

and impacts

Rebecca C. Scholten'*, Tirtha Banerjee1'2, Yang Chen', Andrea Delgado1, Ajinkya Desai?,
Ziming Ke34, Tianjia Liu®, Douglas C. Morton®’, David A. Peterson®, Qi Tang3,
Sander Veraverbeke®'?, Jishi Zhang3, James T. Randerson'?

Climate change is intensifying fire behavior, with the largest and fastest-spreading fires causing the greatest im-
pacts on people and ecosystems. Yet the mechanisms driving variability and trends in large fires remain poorly
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understood. Using 12-hour satellite-derived fire tracking data from 2012 to 2023, we show that the merging of
separate ignitions into multi-ignition complexes is a key process amplifying fire size and destructive potential
across temperate and boreal ecoregions. Multi-ignition fires account for 31% of the burned area in California and
59% in the Arctic-boreal domain, spread faster and persist longer than single-ignition fires, and disproportionately
contribute to extreme fire years in California, Canada, and Siberia. They also generate stronger atmospheric feed-
backs, produce more pyrocumulonimbus events, and strain firefighting capacity by dispersing suppression re-
sources. Recognizing and accounting for fire-merging dynamics are critical for improving wildfire prediction, risk

assessment, and management.

INTRODUCTION

The past decade has seen increasing wildfire disasters contributing
to economic losses and ecosystem damage (I-7). Climate warming
has been linked to increasing burned areas, especially in forested
regions across global biomes (8-11). The devastating impacts from
wildfires are, however, often caused by extreme fire behavior, spread
rate, and size (12-14), and trends in such fire extremes are poorly
understood. New climate extremes may facilitate fires that escape
initial control (15) or synchronize fire behavior within and across
regions due to persistent large-scale weather patterns (16-19), re-
quiring triaging of fire suppression resources.

Globally, fire sizes follow a log-normal distribution, with the vast
majority of fires remaining small (20-22). Large fire seasons are of-
ten dominated by a few rare, large events (23). Fires usually origi-
nate from a single anthropogenic or natural point of ignition. In
contrast, multi-ignition fires are wildfires that result from multiple
separate ignition points that eventually merge into a single fire pe-
rimeter. Although there are prominent examples of extremely large
and destructive multi-ignition fires in regions such as California in
2020 and Canada in 2023, there has been little quantitative assess-
ment of these events or of how their impacts differ from those of
single-ignition wildfires.

Here, we assessed the contribution of multi-ignition fires to re-
gional burned area and loss and damage in temperate and boreal
forest ecosystems using satellite data from 2012 to 2023. We exam-
ine their causes, impacts, and the atmospheric and human system
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feedbacks that may amplify their destructiveness. Our analysis le-
verages recent advances in subdaily fire tracking, drawing on perim-
eter data from the California Fire Events Data Suite (FEDS version 2)
and the Arctic-boreal Fire Atlas (ABFA) (24, 25). Together, these
datasets provide the most spatially extensive observations now avail-
able for tracking fire dynamics at subdaily time steps across diverse
fire regimes, enabling us to identify and characterize multi-ignition
fires as a broad-scale phenomenon. The datasets track individual
large (>4 km®) fire events’ starting location, growth, and merging.
Each fire perimeter at a 12-hour time step is derived from active fire
observations from the Visible Infrared Imaging Radiometer Suite
(VIIRS) instrument on the Suomi National Polar-orbiting Partner-
ship satellite, with a nadir spatial resolution of ~375 m. Fire perim-
eters were validated using official records in regions for which these
were available (California, Alaska, and Canada). We classified fire
events as multi-ignition fires if the fire tracking algorithms identified
multiple nearby fire starts that remained independent for two or more
time steps before physically merging (see Materials and Methods).
We note that this definition differs from the term “complex fire” in
fire management contexts, which refers to fires managed by a single
Incident Management Team that shares resources and equipment.
The number and location of ignition points for the fires we identi-
fied as multi-ignition fires agreed reasonably well with state and fed-
eral records in California and Canada (table S1 and fig. S1).

RESULTS

Disproportionate contribution to burned area and impacts
The largest individual fires between 2012 and 2023 in California and
the Arctic-boreal domain were multi-ignition fires (Fig. 1). The larg-
est fire on record in California, the August Complex fire, burned
4489 km? in 2020 and had 10 fire starts. Five of the 10 largest fires in
California during 2012-2023 were multi-ignition fires. In Yakutia,
Eastern Siberia, 27 fire starts merged in 2021 to ultimately burn a
total area of 15,759 km®” Multi-ignition fires accounted for 7% of the
total number of fires larger than 4 km? in California and 13% in the
Arctic-boreal domain (Fig. 2, A and D). However, they contributed
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Fig. 1. Since 2012, the largest fires in California and the Arctic-boreal region began as multiple ignitions that later merged. (A) The August Complex fire in northern
California in 2020 had 10 separate ignition points (denoted by turquoise dots). (B) A wildfire in Yakutia, Russia, in 2021 had 27 ignition points. The maps illustrate the fire
starts from FEDS/ABFA fire tracking datasets along with the 12-hourly progression of these fires (in color), showing only fire perimeters up to the 99th percentile of their
final area. See fig. S1 for a comparison of fire tracking fire starts with official governmental records for the August Complex fire and a fire in Canada. Both maps are on the
same spatial and temporal scale. (C) The location of these two fires in California and Siberia.
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Fig. 2. Although they are relatively rare, multi-ignition fires have a disproportionate effect on burned areas in California and Arctic-boreal regions. (A and D) The
number of fires aggregated by the number of fire starts from the FEDS and ABFA fire tracking datasets. (B and E) Cumulative burned area as a function of the number of
individual fire starts in a fire. (C and F) The area burned by each individual ignition in single- and multi-ignition fires, on a log scale.

to 31% of the burned area in California and 59% of the burned area in
the Arctic-boreal domain since 2012 (Fig. 2, B and E). Normalizing by
the number of separate ignition points, multi-ignition fires burned
more area than sin%Ie ignition fires (Fig. 2, C and F) in both California
(median: 103.2 km? versus 22.0 km?, P < 0.001; unless otherwise not-
ed, all P values are from a Mann-Whitney test) and the Arctic-boreal
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domain (median: 44.4 km? versus 14.0 km?, P < 0.001; table S2). These
fires occurred more frequently in California’s northern coastal and
mountain regions (fig. S2A) and were widely distributed across North
America and Siberia in the Arctic-boreal domain (fig. S2B).
Multi-ignition fires strongly influenced the interannual variability
in burned area in temperate and boreal regions (Fig. 3 and table S3).
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Fig. 3. Multi-ignition fires have a disproportionate effect on interannual variability in burned area and extreme fire years. (A) California, (B) Alaska, (C) Canada, and
(D) Russia. Colors represent the burned area contributed by fires with a given number of ignitions. Average percentages of burned area from multi- and single-ignition

fires for average and large fire years are shown in table S3.

The coefficient of variation (CV) of burned area associated with
multi-ignition fires was higher than the CV of burned area associ-
ated with single-ignition fires in all regions. Notably, large fire years
in all regions consistently had larger contributions from multi-
ignition fires than small fire years (Fig. 3 and table S3). For example,
multi-ignition fires accounted for 42% of the burned area in California’s
largest fire years (2020 and 2021), compared to only 21% for all other
fire years since 2012. Likewise, 76% of the burned area in Canada’s
extreme 2023 fire season originated from multi-ignition fires. In
Russia, multi-ignition fires contributed to 67% of the burned area in
high-fire years during 2012 and 2021.

Recent fire perimeters can restrict the growth of a newly occur-
ring fire by reducing the amount of available fuel (26). This limita-
tion from fuel availability would be expected to constrain the spread
and size of multi-ignition fires relative to more widely spaced fires
with the same number of ignition points. However, our results indi-
cate that fires grow larger when burning in a multi-ignition event.
This counterintuitive behavior may be related to fire behavior traits
that enable faster initial growth and longer duration of these fires.
Multi-ignition fires lasted longer on average than single ignition
fires in California (median: 26.8 days versus 3.5 days, P < 0.001) and
in the Arctic-boreal domain (median: 28.0 days versus 10.0 days,
P < 0.001; Fig. 4 and table S2). Four days after ignition, multi-ignition
fires burned more area per fire start compared to single-ignition
fires in the Arctic-boreal domain (median: 8.4 km? versus 5.7 km?,
P < 0.001; table S2), but not in California. This faster initial growth
could not be explained by more favorable weather conditions. For
instance, vapor pressure deficit (VPD) values during the first 4 days
of multi-ignition fires were similar compared to those observed for
single-ignition fires in both regions (Fig. 4B). Multi-ignition fires
may exhibit enhanced spread and persistence due to factors such as
a longer active fire line relative to the fire area compared to single-
ignition fires [Fig. 4, D and E; analysis of variance (ANOVA) test,
P < 0.001] and potential fire interaction effects (27).
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We used ICS-209 Incident Status Summary reports to assess the
fire management resources and damages associated with fires in
California. ICS-209 reports are standardized incident status sum-
mary forms used by US wildfire management agencies to docu-
ment and communicate key fire characteristics, resources deployed,
and suppression progress during active wildfire incidents. Multi-
ignition fires in California were significantly more expensive to
manage (median cost: $51 million dollars) and required higher
levels of fire suppression resources than single-ignition fires (me-
dian cost: $12 million dollars, P < 0.001; table S4). Multi-ignition
fires also required twice the number of personnel on average (P <
0001; table S4). When normalizing resources by the number of
ignitions for each fire, multi-ignition fires were still more costly than
single-ignition fires by a factor of 2, despite lower or comparable de-
ployment of fire suppression resources, including personnel (table S4).
Differences were even more pronounced regarding damages, with
multi-ignition fires leading to about three times more threatened
structures and evacuees per ignition as well as significantly more
destroyed structures and affected civilians per ignition compared
to single-ignition fires (table S4). Multi-ignition fires also dispro-
portionally affected the health of firefighting personnel (P = 0.04),
indicating the potential for elevated hazards from more extreme be-
havior or resource limitation. ICS-209 reports from multi-ignition
fires document potential underlying causes of the elevated risks
for firefighters, including understaffing, extended mobilization pe-
riods, and shorter resting periods due to longer shifts (table S5).
Limited data on threatened and damaged structures per fire were
also available from the Alaska Wildland Fire Maps (AWFM) Fire
Location dataset. In Alaska, multi-ignition fires resulted in more
damage to structures per ignition than single-ignition fires (P =
0.03). In contrast, the number of threatened structures did not
differ significantly. Overall, about 9.9% of multi-ignition fires in
Alaska resulted in structure damage compared to 3.8% for single-
ignition fires.
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Fig. 4. Mechanisms for the disproportionate size of multi-ignition fires. (A) Initial growth, estimated as the fire size on day 4 normalized by the number of initial igni-
tions, for single- and multi-ignition fires. (B) Initial VPD at ignition locations averaged over the first 4 days after ignition. (C) Fire duration (corrected for residual smoldering
by computing the date and time when 99% of the final fire size was reached). Boxplots (A) and (C) only include the interquartile range for better visibility since the data
are strongly skewed. Asterisks indicate significance level (***: 0.001) for statistical testing for group differences [Mann-Whitney test for (A) and (C), t test for (B)]. (D and
E) Ratio of fire line length to fire size for 12-hourly time steps of all fire perimeters larger than 4 km? in California (D) and the Arctic-boreal domain (E). Only perimeters up
to 99% of the final fire size of each fire are retained. Model intercepts and slopes are significantly different between single- and multi-ignition fires for both regions
(ANOVA P < 0.05). Information on statistical tests and sample sizes are found in table S2.

Dry lightning causes clustered fire ignitions

In California, the probability of individual fires merging was 16 +
12% during 2012-2023 (table S6). We simulated the merging rate of
fires in California expected from random chance by spatially dis-
tributing the observed number of fire ignitions in a given year using
an observed fire probability map that accounted for lower burn prob-
abilities within recent fire perimeters, as a consequence of decreases
in available fuels. We then assessed the merging probability by com-
paring the distances between simulated ignitions with radii derived
from observed fire sizes from the same year. We found that simu-
lated merging probabilities were consistently lower by several orders
of magnitude than the observed merging rate (table S6). An essen-
tial prerequisite of multi-ignition fires is thus the spatiotemporal
clustering of ignitions in a region with sufficient fuel continuity to
enable fire spread. The median distance between ignitions within a
multi-ignition fire was 9.5 km in California and 8.2 km in Arctic-
boreal regions (table S2). Multiple simultaneous ignition points sep-
arated by distances on this length scale (~5 to 13 km) appear optimal
for creating large multi-ignition fire events.

Lightning strikes are a primary cause of clustered ignitions. Data
on ignition sources for California fires revealed that multi-ignition
fires are predominantly ignited by lightning (Fig. 5A). This is in con-
trast to most fires in the region, which are ignited by humans (28).
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In central and northern California, moisture plumes linked to the
remnants of tropical cyclones and the summertime North American
monsoon circulation can support widespread thunderstorm devel-
opment that produces clustered lightning strikes (29). Thunder-
storms in these regions often develop over a layer of dry air near the
ground, which results in high cloud bases and rapid evaporation of
precipitation before it reaches the ground (30). Hundreds of fire ig-
nitions have been observed within a few days after these high-based,
“dry thunderstorm” outbreaks that can quickly overwhelm initial
fire attack capabilities (31). One of the most notable events occurred
in August 2020, when such storms sparked five of the six largest fires
of the season over a 4-day period (Fig. 5D).

Arctic-boreal regions are more prone to summer thunderstorm
activity, and lightning is a more critical ignition source compared to
wildfires in California. Large-scale regional patterns of fuel mois-
ture, shaped by summer drought, are essential for determining igni-
tion efficiency in these regions (32, 33) and can promote clusters of
ignitions that are prone to merging. According to government fire
records, lightning was responsible for all but one multi-ignition fire
in Alaska and 98% of those in Canada (Fig. 5, B and C).
Multi-ignition fires can overwhelm firefighting efforts
When multiple fires ignite simultaneously across a region, avail-
able firefighting resources can be quickly overwhelmed, requiring
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triage—that is, prioritizing which fires or management objectives to
address first. Fighting fires on multiple fire fronts also requires more
complex management structures and overhead. This strain can cre-
ate a self-reinforcing feedback that allows fires to grow larger and
increase both, the damage they cause and the hazards faced by fire-
fighters. Insufficient suppression resources, including crews, over-
head personnel, aircraft, and engines, are frequently described in
ICS-209 reports for multi-ignition fires in California (table S5). Re-
ports often note such limitations, especially in the initial days after
ignition, which present a crucial window for initial attack and cost-
efficient containment.

Many of the most prominent and destructive examples of multi-
ignition fires in California happened in large fire years, when re-
sources were divided across multiple simultaneously burning fires.
However, analysis of initial resource allocation (up to 4 days after
ignition) revealed that while large fire seasons significantly reduced
resources available to manage single-ignition fires, multi-ignition
fires consistently received less personnel per ignition regardless of
fire season severity (fig. S3 and table S7). Differences in the alloca-
tion of engines and equipment between single- and multi-ignition
fires were largest in average fire seasons. This disparity may partly
reflect that lightning-caused fires often occur in remote locations
where resource allocation faces greater logistical challenges and cost-
benefit constraints. Furthermore, large lightning events such as the
August 2020 lightning storm can deliver hundreds of fire starts

Scholten et al., Sci. Adv. 12, eadx6477 (2026) 2 January 2026

within 1 or 2 days, creating acute resource shortages when a sub-
stantial fraction of a season’ fires ignite simultaneously.

ICS-209 reports further document that multi-ignition fires dis-
play aggressive fire behavior, including substantial runs due to the
merging of fires or simultaneous crown fire initiations and spotting,
which elevates hazards and challenges to containment. Sharing of
resources such as aircraft is described as leading to difficulties in as-
sessing fire size and growth, hampering suppression planning. Oth-
er specific challenges for the suppression of multi-ignition fires are a
scarcity of specialized crews and extended deployments, which lead
to prioritization of point protection and fires being left understaffed.
While event-specific data on resource allocation were not available
for Arctic-boreal regions, considerable resource strain has also been
reported, for example, in Canada in 2023, where multi-ignition fires
contributed to 76% of the area burned (34).

Multi-ignition fires are also more likely than single-ignition fires
to generate extreme, plume-driven fire behavior and pyroconvec-
tion, which can culminate in fire-triggered thunderstorms, known
as pyrocumulonimbus events (pyroCbs). On the basis of a global
inventory of pyroCb occurrences (35-37), we found that 67% of py-
roCbs in Russia and Canada in 2023 were associated with multi-
ignition fires. The number of pyroCbs generated by a fire was linked
to the number of separate ignition points in Canada and Russia in
2023 (Pearson’s r = 0.68, P < 0.001; Fig. 6A). The merging of two fire
lines can increase the surface area with high sensible heat fluxes
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Fig. 6. In Arctic-boreal regions, multi-ignition fires are associated with more pyroCb events than single-ignition fires. (A) Scatterplot of the number of pyroCb
events caused by a fire and the number of ignitions for that fire (Pearson’s r = 0.68, P < 0.001, Spearman’s rho = 0.41, P=0.001). Data include 60 single- and multi-ignition
fires with 108 associated pyroCb events in 2023. The color of the points represents the number of fires in each bin. (B) Minimum time between a merging event and a
pyroCb in multi-ignition fires. The dataset in (B) includes 30 multi-ignition fires with 73 associated pyroCbs.

needed to trigger deep convection (38, 39) and create a rotating column
of rising air which can induce pyroconvection (40). Notably, 53% of the
73 pyroCbs observed over multi-ignition fires in Canada and Russia
in 2023 occurred between 1 day before and 3 days after a merging
event, with 22% occurring on the day of merging (Fig. 6B). In con-
trast, if pyroCbs were to have occurred randomly over the lifetime of
multi-ignition fires, the expected probability of occurring on the day
of a merging event would be only 1% (z-score = 17.5, P < 0.001).

In California, only 19 pyroCbs linked to 10 FEDS fires were iden-
tified between 2012 and 2023, providing too few cases for robust
statistical analysis. Multi-ignition fires had a slightly higher likeli-
hood of producing pyroCbs (6.6% versus 4.5% for single-ignition
fires), but only two pyroCb events occurred in fires that met our
multi-ignition definition. This indicates that factors other than fire
merging—particularly explosive fire growth—can drive pyroCb for-
mation, as many pyroCb-producing fires were extremely large re-
gardless of ignition type or number.

PyroCbs also reduce suppression efficiency by inducing unpre-
dictable and hazardous extreme fire behavior (41, 42). Lightning
strikes produced by pyroCb activity (a unique type of high-based dry
thunderstorm) (43) can limit aircraft deployment, hinder airborne
suppression efficiency (44), and ignite additional spot fires tens of
kilometers away from the fire front (45-47). Plume-driven fires gen-
erate irregular wind patterns, which may push fire fronts and spot
fires in unexpected directions, jeopardizing containment lines (36)
and elevating risks for firefighters and communities (48). Physical in-
teractions between fires burning in close vicinity can further contrib-
ute to the large size of multi-ignition fires. For example, fire merging
can be accelerated when large fires act as attractors for smaller fires
(49) through changes in surface winds that develop in response to
the intense surface heating and deep convection generated by the
larger fire. Entrainment effects are ubiquitous even at meter scales
(50) and may be most far-reaching for plume-driven fires that gener-
ate pyroCbs (38, 39). In a simulation of the Dixie Fire in California—
which produced a pyroCb on 9 August 2021, while exhibiting two
distinct fire fronts—chaotic and highly heterogeneous wind patterns
developed (fig. S4). Downbursts from pyroCbs can lead to extreme
fire spread episodes, which can further accelerate merging of fires

Scholten et al., Sci. Adv. 12, eadx6477 (2026) 2 January 2026

(48). Interactions between physical factors induced by fire attraction,
extreme fire behavior, and reduced suppression efficiency due to in-
creased firefighting hazards and resource strain are likely to exacer-
bate the impacts of multi-ignition fires in a positive feedback loop, as
shown in fig. S5.

DISCUSSION

Tropical and mid-latitude storm systems can facilitate thunderstorm
development and associated fire ignitions from lightning strikes over
large areas, when they coincide with a dry airmass near the surface
during or following a heatwave. The risk of dry lightning strikes
across temperate and boreal regions, as well as future trends in such
events, is not now well understood. Increasing regional summer heat
waves and droughts, along with associated increases in fire weather
(11), heighten the chances of thunderstorms delivering dry lightning
because intense surface heating can evaporate rain before it reaches
the ground (29). For example, modeling studies in Arctic-boreal re-
gions suggest that the number of fires escaping initial attack is rising
(31) due to increases in lightning ignitions (32, 51). Understanding
the compound risk of persistent heatwaves and high-based thunder-
storms across regions is therefore crucial to better forecast the occur-
rence of multi-ignition fires.

The identification and analysis of multi-ignition fires have only be-
come possible because of recent advances in fire tracking, and uncer-
tainties associated with these data products are considerable due to the
temporal and spatial limitations of medium-resolution satellite obser-
vations. The impact of multi-ignition fires described here is likely un-
derestimated, and our estimate of the number of multi-ignition fires is
likely conservative since our approach cannot disentangle multiple
ignitions that burn together very quickly. Furthermore, our dataset
does not represent fast-moving grass fires well due to the limited tem-
poral resolution of the satellite imagery. Dense smoke and clouds, for
example, from pyrocumulonimbus formations from large fires, can
obscure satellite detection and may limit our ability to identify and
differentiate between new ignitions and spot fires. As shown in table S8
using hourly fire observations from the Geostationary Operational
Environmental Satellites (GOES) instrument, solely increasing the
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temporal resolution of satellite active fire detections does not improve
the ability to distinguish separate ignitions. Instead, higher-resolution
satellite imagery of thermal anomalies of fire in both time and space is
critically needed to better understand the dynamics of multi-ignition
fires and their impacts. Targeted field measurements of fire behavior
are also essential for an improved understanding of the processes and
feedbacks associated with multi-ignition fires and their effects on at-
mospheric dynamics and composition.

Multi-ignition fires can become more destructive due to feedback
between physical processes and human systems (fig. S5). Given their
association with more extreme fire behavior, we hypothesize that
they may also generate disproportionate impacts through mecha-
nisms such as elevated fire severity. An essential next step in this con-
text is to quantify tree mortality and other measures of fire severity
for multi-ignition and single-ignition fires, for example, using re-
motely sensed proxies, to explore whether the observed differences
in fire behavior described here yield long-term ecosystem impacts.
Furthermore, new management approaches may be needed to ad-
dress these fires’ unique characteristics. Early identification and im-
proved assessment of the risks posed by dry lightning storms for
generating synchronized ignitions during hot summer periods may
enable more effective predeployment of fire suppression resources to
vulnerable areas. At the same time, honing strategies to optimize fire
suppression resources among multiple clustered fires, especially dur-
ing periods of resource strain, seems critical for limiting multi-
ignition fire growth and damages. Identifying the fire behavior
components that make these fires particularly hazardous and diffi-
cult to suppress can support resource allocation decisions and help
prevent stress from triaging.

MATERIALS AND METHODS
Fire tracking data
We used satellite-derived fire tracking data for 2012-2023 from the
California FEDS and ABFA. Both datasets, which contain 12-hourly
fire perimeters for all large fire events, were produced using VIIRS ac-
tive fire detections and an improved version (version 2) of the fire track-
ing FEDS algorithm. For both California and the Arctic-boreal
domain, regional optimization was performed to calibrate land
cover-specific spatial and temporal thresholds, determining whether a
new fire cluster belongs to an existing fire or constitutes a new fire start
(24, 25). The proximity threshold for assigning a cluster to an existing
fire was optimized to account for fuel type-specific variations in spread
rates and ranged from 1 to 5 km to cover gaps in fire progression in-
duced by observation gaps due to the 12-hourly overpasses (24, 25). The
fire tracking algorithm also enables the merging of two existing, ac-
tively expanding fires using the same spatial proximity thresholds. A
merging event occurs when a new cluster of fire detections is recorded
between two actively expanding fires so that the new fire locations are
within the attribution distance threshold of both fires. Actively expand-
ing fires were defined as fires that had new detections within a land
cover- and biome-specific temporal threshold (up to 5 days for FEDS
and up to 30 days for ABFA), which was based on typical smoldering
times and validated for each dataset (24, 25). Multi-ignition fires were
identified as having at least two fire starts that either fully merged or
burned simultaneously within the land cover-specific distance thresh-
old, indicating a high likelihood of merging between overpasses.
Following the minimum mapping unit of the widely used Moni-
toring Trends in Burn Severity Program (MTBS) for the western
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United States, we filtered all final perimeters by size (1000 acres or
4.05 km?). Fires greater than 4 km” account for 79% of the burned
area in California and 98% in the Arctic-boreal domain. Since agri-
cultural fires in California are generally small, they were automati-
cally excluded by the size filtering criteria. For the Arctic-boreal
domain, we further removed agricultural fires following the filtering
routine described by Scholten et al. (25). These constraints yielded a
set of 830 fires in California and 16,775 fires in the Arctic-boreal
domain for the period from 2012 through 2023.

For California, we further removed all fire polygons that did not
coincide in space and time with a Fire and Resource Assessment
Program (FRAP) or MTBS fire perimeter for California of the same
year. We restricted our analysis to this smaller set of known fires to
optimize the number of ignitions and to extract data on firefighting
resource use and impacts, which are not available for all fires in the
FEDS database. FRAP is the most complete digital record of fire
perimeters in California, but it is still incomplete. Specifically, sev-
eral large fires within Camp Pendleton, Fort Hunter Liggett, Camp
Roberts, and other military bases, as well as along the border with
Mexico, were missing in FRAP. We therefore used MTBS perimeters
for these missing fires. FRAP recorded a total of 515 fires in California
in 2012-2023, and MTBS recorded an additional 41 fires. We matched
fires based on spatial and temporal overlap. For the temporal over-
lap, we matched the ALARM_DATE” attribute of FRAP or the
“Ig_Date” attribute for MTBS perimeters, with the start time de-
rived from FEDS, allowing for a 10-day offset in both directions
to account for temporal uncertainties in all three datasets. The
crosswalk removed small and recurring anthropogenic fires in the
Central Valley and the Sierra Nevada foothill regions and returned
407 unique fires.

Identification of fire starts

Both datasets, FEDS and ABFA, record all fire start locations for each
fire throughout its lifetime as detected by the VIIRS sensor. The orig-
inal fire tracking system, therefore, does not inherently differentiate
between actual wildfire ignitions and other features that resemble
fire starts, including spot fires, back-burns ignited for fire manage-
ment purposes, or artifacts created by detection gaps (for example,
because of dense clouds or smoke). To optimize our algorithm pa-
rameters and accurately identify wildfire ignitions, we used reference
ignition location data for California from the Fire Program Analy-
sis Fire Occurrence Dataset (FPA-FOD) and for Canada from the
Canadian National Fire Database (CNFDB). We compared reference
data to the original, unfiltered ignitions, as well as seven filtering
strategies, including only ignitions that grew at least once before
merging (“growth filter”), initial ignitions, ignitions of a minimum
size (0.5 and 1 km?), and combinations of the four strategies. To
identify the best filtering strategy, we created a confusion matrix of
correctly and incorrectly identified single- and multi-ignition fires
and computed omission and commission errors, as well as the over-
all accuracy and Cohen’s Kappa value (table S9). We also computed
the average difference in the number of ignitions between datasets
for all fires and fire complexes, as well as the fraction of fires with an
identical number of ignitions in both datasets.

For California, FPA-FOD data were matched with FEDS based
on FRAP fire names. Fires within FPA-FOD labeled fire complexes
were aggregated for this comparison. The highest accuracy was
achieved by applying a combination of growth and initial ignition
filters, with initial ignitions considered as those that start within
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5 days of the earliest ignition in the multi-ignition fire. This initial
ignition threshold was chosen in line with the maximum temporal
threshold used in the FEDS fire tracking. Table SOA shows the con-
fusion matrix for the unfiltered and filtered versions of FEDS, com-
pared to FPA-FOD. FPA-FOD was filtered to only include ignitions
larger than 100 acres (fire size classes D to G) to approximately
match the detection abilities of FEDS. It should be noted that FPA-
FOD lists several known multi-ignition fires in California, such as
the CZU Lightning Complex and SCU Lightning Complex in 2020,
as single-ignition fires, and therefore, the actual commission error is
likely lower than reported. We further conducted a visual examina-
tion of the fire progression for the remaining multi-ignition fires
that did not contain multiple ignitions according to FPA-FOD. We
removed two multi-ignition fires that contained artifact ignitions
(often in fast-moving fuels, for example, the Sand fire in 2016). This
strategy served to reduce the commission error further and create a
high-confidence set of multi-ignition fires for the assessment of fire
management costs and impacts using data from ICS-209 reports.
The relatively large omission error in table S9 indicates that actual
costs and damages from these fires may be larger than reported here.
Figure S1 shows an example of the FEDS-derived ignitions com-
pared to official records from FPA-FOD and the National Interagen-
cy Fire Center Operational Data Archive fire progression data for
the August Complex fire (2020). Table S1 reports all multi-ignition
fires in California that were identified through this process.

For Canada, we matched ABFA fires with CNFDB fire locations
based on spatial and temporal overlap. Fires in Arctic-boreal regions
can be ignited and perpetuated through several consecutive thunder-
storms, a phenomenon that was not observed in California in our ob-
servational record. We therefore used both the start date (REP_DATE
attribute in CNFDB) and the end date of the ABFA fires for the tem-
poral matching. Since fires in Arctic-boreal regions can smolder for
extended periods after ignition before being detected by the satellite,
we adopted a more liberal threshold of 30 days for the initial ignition
filtering, in line with the smoldering thresholds used in the ABFA. A
combination of the growth filter and a 1-km? size filter yielded the
highest accuracies compared to the reference dataset and was there-
fore adopted for the entire ABFA dataset (table S9B).

We also compared the FEDS fire starts to fire starts derived from
the GOES-Observed Fire Event Representation (GOFER GOES-West)
product (52), which tracks fires at a higher temporal (hourly) but
coarser spatial resolution for a set of large wildfires in California from
2019 to 2021. GOES imagery has a spatial resolution of ~2 km at the
equator. We found that the higher temporal resolution of this product
does not lead to a significantly elevated ignition detection efficiency,
likely due to the tradeoff of lower spatial resolution (table S8).

We note that the actual number of individual fire starts is likely
considerably higher than what is captured by the satellite data when
considering more closely clustered fire starts that merge between
satellite overpasses. For example, the FPA-FOD fire start dataset re-
ports a total of 41 fire starts for the August Complex fire in 2020, but
only 11 of these reach a size of more than 100 acres before merging.
The relatively coarse temporal (12-hourly) and spatial (375 m) reso-
lution of VIIRS satellite observations is not well suited to capture
merging at fine temporal and spatial scales. Furthermore, the algo-
rithm is not designed to capture spotting at the fire front or potential
nearby ignitions caused by pyroCb-induced lightning. Such fires
that start close to one another may also be underrepresented in fire
inventories, particularly in remote areas. This underrepresentation
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of rapidly merging fires likely leads to an underestimation of igni-
tion counts. However, the missed ignitions will primarily affect ini-
tial fire growth dynamics rather than the longer-term (multiday) fire
behavior that constitutes the primary focus of our analysis, as multi-
ignition fires in our dataset persist significantly longer than single-
ignition fires and thus are dominated by fire dynamics following
initial attack efforts. While we cannot determine the actual num-
ber of ignitions for rapidly merging events over intervals of less than
12 hours, our focus on large-scale fire interactions and resource al-
location effects throughout the fire lifetime means that our key find-
ings regarding multi-ignition fire behavior remain robust to this
detection limitation.

Multi-ignition versus complex fires

According to fire management agencies, for example, in California
and Canada, a fire complex consists of multiple wildfires or incidents
managed by a single Incident Management Team sharing resources
and equipment. The satellite fire tracking we deployed differs from
this management-perspective definition in that it aims only to in-
clude fires that have physically merged. The system also assembles
fires that burn simultaneously and in close vicinity (1 to 5 km de-
pending on the prevailing land cover) into fire complexes to avoid
fragmentation of fires due to potential detection gaps in the active
fire data.

In comparison with reference data from Incident Status Sum-
mary (ICS-209) reports and the FPA-FOD the California FEDS ver-
sion returned a smaller number of complex fires for all years except
2020 (table S10). This omission was primarily caused by fires that
burned in a common management area but did not physically merge
or come close enough for merging to become possible or multiple
fires that started so close to each other that merging happened too
fast to be reliably picked up by the satellite data.

Fire cause attribution

We used a set of reference fire databases to assess whether fires were
caused by lightning or anthropogenic sources. For California, we
used the fire cause attribution recorded in FRAP fire perimeters,
supplemented with data from ICS-209 reports when a cause was re-
ported as unknown.

For Alaska, we used the AWFM Fire Location database distrib-
uted by the Alaska Interagency Coordination Center, which collects
causes reported by the responsible fire agencies. We overlaid all fire
locations with corresponding fire perimeters of the same year based
on spatial and temporal overlap, allowing for a 10-day uncertainty
in the date. When several fire locations were associated with the
same perimeter, they shared the same cause, so that no correction
had to be applied. This crosswalk returned 440 matched fires (asso-
ciated with 502 unique events in ABFA), out of which 369 were cat-
egorized as single-ignition and 71 as multi-ignition fires.

For Canada, we used the National Burned Area Composite (NBAC),
which combines satellite imagery with fire data from Natural Re-
sources Canada and Provincial, Territorial, and Parks Canada agen-
cies. Fire causes in this database are reported by the responsible
agency. We matched FEDS and NBAC perimeters by overlaying them
and retaining only those FEDS perimeters with a detected burn date
within a range of 10 days before to 10 days after the NBAC start date.
This crosswalk returned a total of 2648 fires (2645 events according
to NBAC), out of which 2214 were single-ignition and 334 were
multi-ignition fires.
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Fire management data

We used ICS-209 Incident Status Summary reports to investigate
hazards and resource strain associated with multi-ignition fires in
California. We downloaded more than 900 ICS-209 reports for
California fires from 2014 to 2023 from the FAMWeb Data Ware-
house (https://www.wildfire.gov/application/famweb-data-warehouse).
ICS-209 reports contain interagency updates of fire behavior and
impacts, personnel, and suppression resources (e.g., engines, dozers,
and helicopters), usually up to twice per day (morning and evening)
for large fires during periods of active fire growth. Because ICS-209
reports are not retroactively revised, the data required intensive pre-
processing to correct for various data entry errors, including numeri-
cal anomalies, missing data, duplicate incident numbers, delayed
timing of reports, and data stored as text descriptions due to technical
issues with tabular inputs. We downscaled the data to hourly time
steps using a cubic interpolation to account for the irregular temporal
frequency of the reports. For complex fires with multiple ICS-209 re-
ports, we merged the relevant reports. Last, we cross-walked ICS-209
reports to FRAP by comparing incident numbers, fire names, the tim-
ing of ignition, spatial proximity to FRAP perimeters, and final fire
size. We also searched the individual reports of 11 prominent com-
plex fires between 2014 and 2021 for mentions of resource limitations
and associated risks. Excerpts of such descriptions are summarized in
table S4. We also used ICS-209-PLUS (53) data from 2012 to 2020 to
assess the number of fires burning in a fire complex in comparison
with FEDS- and GOFER-derived data (tables S1 and S9).

Limited data on fire impacts were also available for Alaska from
AWEFM. This dataset included records of threatened and damaged
structures per fire. The methodology for matching AWFM with
ABFA is described in the “Fire cause attribution” section above.

Modeling of fire merging probability in California

Annual probabilities for the merging of fires in California were based
on 1000 random simulations of fire locations during each calendar
year from 2012 to 2023. For each year, the observed number of fire
starts (N) was used, but locations were drawn from a fire probability
map based on FRAP fire perimeters larger than 4 km®. The fire prob-
ability map was produced by computing the annual fraction of burned
area from large fires recorded in FRAP in 5-km grid cells across
California. The probability map was adjusted to consider fuel limita-
tions from previous burning in forest and shrubland ecosystems. We
used 30-m Global Land Cover Mapping and Estimation land cover
data (54) for 2011 to assign each 5-km grid cell a dominant land cover
type. We then created annual probability maps where grid cells were
adjusted to zero if more than 10% of the grid cell had burned in the
preceding 10 years for forests and 5 years for shrublands.

To account for differences in fire sizes between years, we used
observed fire sizes to compute the probability of two fires merging.
Fire sizes of complex fires were divided by the number of ignitions
assuming that all ignitions contribute the same fraction of total area.
The merging probability was assessed by computing all distances be-
tween fire starts for each simulation and comparing them to three
thresholds based on radii derived from observed fire sizes (table S6):
(1) the sum of the two largest radii of the year (maximum), (2) the
average of all radii of the year (mean), and (3) the median of all radii
of the year (median). Radii were computed from fire sizes assum-
ing circular fire shapes. The maximum scenario (the probability of
merging if all fires of a given year would reach the largest fire size
radius of that year) thereby represents a case where the largest fires
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are occurring in locations where ignitions are spatially closest. The
mean and median scenarios represent cases where distances between
ignitions and fire sizes are not linked. When using the median and
maximum observed distances between ignitions of multi-ignition
fires as thresholds instead (i.e., disregarding differences in fire sizes
between years), merging probabilities were 0.002 (median) and 0.024
(maximum) for all years.

We computed observed distances between ignitions in multi-
ignition fires by computing pairwise distances between all ignition
geometries. We then determined the shortest network that connects
all ignitions and recorded all distances within that network.

Effects of multiple ignitions on initial growth and

fire duration

To assess the effect of multiple ignitions on initial growth, defined as
the size on day 4 after the first ignition was detected, we selected a sub-
set of fires with a total duration of at least 4 days. Not all complex fires
consist of fires that started on the same day. Fire starts that are scattered
throughout time can be provided by anthropogenic ignitions, multiple
thunderstorms delivering lightning ignitions, or by differences in hold-
over (smoldering) times after ignition and before a fire is detected by
the satellite due to land cover variations. For the fire size comparison,
we therefore only designated fires as multi-ignition if they had two or
more fire starts on the first day of the fire. For the duration we used the
previously developed definition of a multi-ignition fire that considers
all ignitions throughout the lifetime of a fire and also included fires
with a duration of less than 4 days. Since data on fire sizes and duration
were strongly right-skewed, we used the Mann-Whitney test to test for
differences in medians.

We also compared the daily active fire line length recorded by
FEDS and ABFA between single- and multi-ignition fires. We summed
up active fire line lengths and fire sizes for all fire parts for multi-
ignition fires. We then tested whether the relationship between fire
area and fire line length differs between single-ignition and multi-
ignition fires using linear models. We fit three models with log-
transformed fire line length per unit burned area as the response
variable: (1) a model with fire area and fire type (single versus multi-
ignition) as additive effects, (2) a model including an interaction term
between fire area and fire type, and (3) a baseline model with fire area
only. We used ANOVA to compare these nested models and assess
whether the interaction term and fire type significantly improved
model fit, indicating different scaling relationships between single-
and multi-ignition fires. The ANOVA revealed significant differences
between the baseline model and the model including the fire type
(P < 0.001 for both regions), as well as between the models with and
without interaction term (slope value of models, P < 0.001 for Arctic-
boreal regions, P = 0.02 for California).

For assessing differences in initial weather conditions between
single- and multi-ignition fires, we computed daily mean VPD at ig-
nition locations using ERA5-Land (fifth-generation European Centre
for Medium-Range Weather Forecasts reanalysis) reanalysis data. We
obtained daily mean temperature and dewpoint temperature from
ERA5-Land and calculated saturated vapor pressure (SVP) and ac-
tual vapor pressure (AVP) using the Tetens equation

17.2694 X (T=273.16)
(T—35.86)

SVP =6.1078 X ¢ (hPa)

where T is the surface air temperature in kelvin. AVP is calculated
using the same equation as SVP but with temperature T replaced by
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dewpoint temperature. VPD was then computed as the difference
between SVP and AVP. ERA5-Land products are available at hourly
temporal resolution with a native spatial resolution of ~9 km. We
extracted VPD values at the location and timing of initial ignitions
and computed the mean VPD over the 4 days following the time
of ignition. We tested for significant differences in VPD between
single-ignition and multi-ignition fires using a two-sample ¢ test.

PyroCb inventory

All pyroCb information was obtained from a global pyroCb inven-
tory described in detail by Peterson et al. (37), which builds from an
earlier version of the inventory for 2013-2021 used in (36). This da-
taset is based in part on a growing community effort to inventory all
observed pyroCb activity worldwide, called The Worldwide PyroCb
Information Exchange (https://groups.io/g/pyrocb), which requires
constant attention to fires and pyroCb activity in all regions world-
wide. The inventory also leverages a previously developed automatic
pyroCb detection algorithm applied to geostationary weather satel-
lite observations (30, 35). All entries in the inventory are listed at the
pyroCb “event” level, defined as an individual pyroCb pulse or chain
of several pulses (and resulting smoke injections) linked to a spe-
cific fire or segment of a large fire front (55).

The location of individual pyroCb events provided in the inven-
tory can be displaced from the fire perimeters by several kilometers.
For California, the pyroCb inventory contains a reference to the
FRAP fire names. Since FEDS data were already cross-walked with
FRAP, matching was based on fire names instead of a spatiotempo-
ral overlay analysis. The recorded pyroCbs that had a corresponding
FEDS fire in California included the following: 2021 Dixie (seven
pyroCb events), 2018 Carr (two events), 2018 Cranston (two events),
2021 KNP Complex (two events), 2018 Delta (one event), 2021 An-
telope (one event), 2021 Beckwourth Complex (one event), 2021
Lava (one event), 2021 McFarland (one event), and 2022 Mosquito
(one event).

For Canada and Russia, we assigned each pyroCb event to the
closest fire within a 20-km radius that burned at the same time. Us-
ing this technique, we linked 107 of the 164 observed pyroCb events
with a fire. For the 73 pyroCb events associated with multi-ignition
fires in this dataset, we compared the date of pyroCbs to the merging
date of individual fires to assess whether merging could trigger py-
roCb events. We identified a pyroCb as associated with merging if a
merging event happened between 3 days before and 1 day after a
pyroCb development.

PyroCb simulation data

We chose the 2021 Dixie fire in California to analyze surface winds
during a pyroCb event. While the Dixie fire was a single-ignition
fire, it displayed two distinct fire fronts at the time when it devel-
oped a pyroCb on 9th August, allowing for the observation of po-
tential wind patterns that could enforce fire interactions and impede
firefighting operations.

The wildfire simulation conducted for this study used a global mul-
tiscale wildfire simulation framework integrated into the Energy
Exascale Earth System Model (E3SM) (56). Key enhancements over
E3SM version 2 (57) included the California Regionally Refined Mesh
at a convection-permitting 3-km resolution (58), a one-dimensional
plume-rise parameterization (59), a fire-induced vertical water vapor
transport scheme, and surface wildfire sensible heat flux representa-
tion. The deep convection scheme was turned off for all grids, and
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large-scale dynamics were constrained in coarser resolution areas
using nudging for horizontal winds, temperature, and specific humid-
ity. The dynamic core’s time step was reduced to 9.375 s to accommo-
date the finer resolution, and the simulation used Cloud Layers Unified
By Binormals (60) for turbulence and the cloud microphysics scheme
described by Gettelman and Morrison (MG2) (61) for cloud micro-
physics. The Dixie Fire simulation covered 8 to 14 August 2021
(2021/08/08 00 UTC-2021/08/14 00 UTC) and used ERA5-based
atmospheric initial conditions merged with prespun aerosol fields
from prior output, removing the need for additional spin-up. In both
cases, the free-running domain for nudging was centered at (37.2°N,
119.4°W) with a 17° X 17° extent. Nudging was applied using the prod-
uct of two vertical Heaviside window functions—one for the lower and
one for the upper atmosphere—scaled by a default timescale, yield-
ing 6 hours below 100 hPa and 50 hours above. This weaker strato-
spheric nudging allowed two-way interactions between wildfire plumes
and the large-scale circulation. Two experiments were conducted: a
“Fire” run incorporating high-resolution (500-m, hourly) Fire Radia-
tive Power data specific to the Dixie Fire and a “NoFire” run excluding
fire emissions. Inside the California domain, the model atmosphere
was freely evolving, while outside the domain, nudging was applied to
constrain large-scale circulation. The simulated results successfully re-
produced key pyroCb features, including cloud height, spatiotemporal
evolution, and convective intensity. For more details, please see (56).
The surface wind differences during peak pyroCb activity demon-
strate the critical role of fire processes in shaping regional atmospheric
dynamics (fig. S4).

Supplementary Materials
This PDF file includes:

Figs.S1to S5

Tables S1to S10
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