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ARTICLE INFO ABSTRACT
Keywords: Free fatty acid (FFA) production in bacteria is a key target for metabolic engineering. The knockout of the acyl-
Fatty acid synthesis ACP synthetase (AAS) prevents reincorporation of FFA into the fatty acid biosynthetic cycle and is widely used to

Systems biology
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Cyanobacteria
Biofuel

Acyl-ACP synthetase

enhance their secretion. However, the role of AAS in membrane lipid remodeling under environmental stress,
such as altered temperature, remains poorly understood. In cyanobacteria, temperature shifts are known to affect
fatty acid desaturation and membrane fluidity, yet it is unclear whether AAS contributes to these adaptive re-
sponses through re-esterification of membrane-released acyl chains. We elucidated unique aspects of fatty acid
metabolism in response to temperature changes in biotechnologically relevant microbes with the development of
an efficient method for quantifying acyl-ACP intermediates using anion exchange chromatography (AEX). In
Escherichia coli, which performs desaturation during fatty acid biosynthesis, we detected saturated and unsatu-
rated acyl-ACPs that confirm biosynthetic pathway operation. In the cyanobacteria, Picosynechococcus sp. PCC
7002 and the Aaas strain, changes between two temperatures were interpreted with support from proteomic and
lipidomic analyses and indicated that the AAS is tied to membrane lipid remodeling. Further, polyunsaturated
acyl-ACPs were detected in the Aaas strain, which was unexpected because fatty acid synthesis does not produce
polyunsaturates in cyanobacteria, suggesting the presence of alternative acyl-activating enzymes or unknown
acyl-ACP desaturases. This study highlights the possible link between acyl chain recycling and lipid remodeling
in cyanobacteria and demonstrates the utility of AEX-based acyl-ACP profiling in dissecting fatty acid

metabolism.
1. Introduction spatially define cells and organelles, functioning as signaling molecules
for metabolism and in response to stress, and acting as a storage reserve
Lipids are essential to living organisms, forming membranes that that contains twice the energy of carbohydrates (Allen et al., 2015;
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Mukherjee et al., 2024; Suh et al., 2022; Yu et al., 2021; Sohlenkamp and
Geiger, 2015; Li-Beisson et al., 2019; Chapman and Ohlrogge, 2012).
Lipids are essential components of animal and human diets and are
highly valued as eco-friendly replacement feedstocks for fuels, poly-
mers, surfactants, and other societal needs that are predominantly
derived from petroleum (Lu et al., 2011). It is estimated that by 2050,
the production of lipids must double to meet global demand (Faostat,
2022). Small changes in lipid production can significantly impact the
economics of crops (Mukherjee et al., 2024) that are a primary source of
acyl chains for fuels and feedstocks (Yu et al., 2011a). However, mi-
crobes can grow considerably faster than plants, requiring limited space
or land, and could provide a sustainable complement to plant-based
products. Engineering fast-growing microbes to produce elevated
levels of fatty acids and other lipids would contribute to the goal of a
sustainable bioeconomy (Jaroensuk et al., 2024; Intasian et al., 2021;
Jouhet et al., 2024).

Bacteria, both autotrophs (e.g., cyanobacteria) and heterotrophs (e.
g., E. coli), utilize type II fatty acid synthesis with multiple monofunc-
tional enzymes (White et al., 2005; Cronan and Thomas, 2009). Fatty
acids are generated from the sequential condensation of acetyl groups
with an acyl chain attached to an acyl carrier protein (ACP) scaffold
(Chan and Vogel, 2010). Fatty acid synthesis entails four successive
enzymatic reactions: condensation, reduction, dehydration, and a sec-
ond reduction. The respective intermediates of these reactions are
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B-ketoacyl-ACP, p-hydroxyacyl-ACP, trans-2-enoyl-ACP, and a fully
reduced acyl-ACP that is longer by two carbons (Fig. 1) (White et al.,
2005; Birge and Vagelos, 1972; Cronan, 2024; Bloch, 1969; Kass et al.,
1967; Cronan et al., 1969; Choi et al., 2000; Heath and Rock, 1995,
1996a, 1996b; Ruch and Vagelos, 1973; Lai and Cronan, 2004; Borgaro
et al., 2011). This cycle repeats until the acyl chains reach 16 or 18
carbons in length (in most microorganisms) and are diverted to pro-
karyotic lipid assembly (Yu et al., 2011a; Allen, 2016). Alternatively, the
acyl group can be cleaved by a thioesterase, if present, resulting in
non-esterified or free fatty acids (FFA) for the production of
oleochemicals.

Although the type II fatty acid synthesis pathway is common in mi-
crobes, the process of desaturation of fatty acids differs depending on the
organism (Cronan, 2024; Los and Murata, 1998). In some microbes,
including E. coli, unsaturated fatty acids are synthesized by an
oxygen-independent FabA-FabB pathway, where a cis double bond is
introduced into the acyl chain of the 10-carbon acyl-ACP intermediate
(Birge and Vagelos, 1972; Bloch, 1969; Kass et al., 1967; Cronan et al.,
1969; Feng and Cronan, 2009; Norris and Bloch, 1963). During this
process, FabA catalyzes the dehydration of f-hydroxydecanoyl-ACP to
trans-2-decenoyl-ACP, which is then isomerized to cis-3-decenoyl-ACP,
serving as a starting intermediate for sequential steps involving FabB,
FabG, FabZ, and Fabl to produce unsaturated fatty acids in the synthesis
cycle (Birge and Vagelos, 1972; Bloch, 1969; Kass et al., 1967; Cronan
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Fig. 1. Saturated fatty acid biosynthesis in microbes (White et al., 2005; Birge and Vagelos, 1972; Cronan, 2024; Bloch, 1969; Kass et al., 1967; Cronan et al., 1969;
Choi et al., 2000; Heath and Rock, 1995, 1996a, 1996b; Ruch and Vagelos, 1973; Lai and Cronan, 2004; Borgaro et al., 2011). Fatty acid biosynthesis initiates with
converting an apo-ACP to a holo-ACP form by ACP synthase (AcpS). The holo form includes a 4-phosphopantetheinyl arm that covalently links to fatty acid in-
termediates. After initiation, holo-ACP is recycled in the fatty acid biosynthetic cycle. The source of carbon for the cycle originates from acetyl-CoA, which is
carboxylated by acetyl-CoA carboxylase (AccABCD) to form malonyl-CoA and then transferred to holo-ACP by s-malonyltransferase (FabD), generating malonyl-ACP,
the key substrate for chain elongation and additionally producing a free CoA molecule. In fatty acid synthesis, p-ketoacyl-ACP synthase III (FabH) catalyzes the first
condensation of acetyl-CoA with malonyl-ACP, producing acetoacetyl-ACP, (the initial p-ketoacyl-ACP), and CoA-SH. In subsequent synthesis cycles, f-ketoacyl-ACP
synthase I enzymes (FabB/FabF) add malonyl-ACP to the growing chain. The p-ketoacyl-ACP intermediates undergo reduction by 3-oxoacyl-ACP reductase (FabG),
dehydration involving p-hydroxyacyl-ACP dehydratase (FabZ/FabA), and a second reduction by an enoyl-ACP reductase (Fabl) to form acyl-ACP, which is propa-
gated through the cycle repeatedly to produce a full-length fatty acid. This Type II Fatty Acid Synthase (FAS) system enables fatty acid synthesis for membrane lipid
formation and cellular metabolism. Abbreviations: Ad-3',5°dP—adenosine 3',5-phosphate. Asterisk (*) indicates the apo-ACP does not contain a 4-phosphopante-

theinyl arm. Created with aid from BioRender.com.
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et al., 1969; Feng and Cronan, 2009; Norris and Bloch, 1963). This is
distinct from cyanobacteria, where the substrate for desaturation of fatty
acids is a glycerolipid (Los and Murata, 1998; Sato et al., 2009; Higashi
and Murata, 1993; Wada et al., 1993a, 1993b; Effendi et al., 2023;
Sakamoto et al., 1994; Starikov et al., 2022; Murata and Wada, 1995),
and does not involve fatty acid synthesis cycle intermediates as in E. coli.
Instead, cyanobacteria utilize an oxygen-dependent pathway, catalyzed
by membrane-bound desaturases (Los and Murata, 1998; Sato et al.,
2009; Higashi and Murata, 1993; Wada et al., 1993a, 1993b; Effendi
et al., 2023; Sakamoto et al., 1994; Starikov et al., 2022; Murata and
Wada, 1995; Mendez-Perez et al., 2014). Enzymes such as DesA, DesB,
and DesC introduce double bonds into fatty acids already esterified to
galacto-, sulfo-, and phospholipids (Murata and Wada, 1995; Murata
et al., 1992; Los et al., 1997; Sakamoto and Bryant, 1997). While the
regiospecificity and substrate preferences of these enzymes vary by
species and remain incompletely characterized (Murata and Wada,
1995; Murata et al., 1992), they operate without a phosphatidylcholine
(PC)-based acyl editing cycle, which in plants supports acyl chain
desaturation and remodeling via removal and re-attachment to PC
(Bates et al., 2007, 2009). Analogous mechanisms that recycle acyl
chains and enhance lipid desaturation in cyanobacteria are unknown
but could contribute to lipid remodeling to maintain membrane fluidity
during changes in temperature (Murata and Wada, 1995; Murata et al.,
1992; Sakamoto et al., 1997; Séres et al., 2025; Douchi et al., 2023).

Independent of fatty acid biosynthesis, acyl-ACPs can be generated
by acyl-ACP synthetase (AAS), which attaches a FFA to an ACP back-
bone. Since cyanobacteria lack beta oxidation enzymes (Figueiredo
et al., 2021; von Berlepsch et al., 2012), AAS is commonly deleted in
engineered strains to prevent the reincorporation of FFA into lipids and
promote FFA secretion. However, the physiological role of AAS in cya-
nobacteria under different conditions remains underexplored, including
its potential contribution to membrane lipid remodeling through acyl
chain recycling. Therefore, we sought to quantify reduced acyl-ACPs and
acyl-ACP intermediates to assess changes in lipid metabolism due to
variations in temperature and/or loss of AAS expression.

Previously, we developed a method (Nam et al., 2020; Jenkins et al.,
2021) based on trichloroacetic acid (TCA) extraction to quantify
acyl-ACPs from oleaginous plant tissues. However, applying this method
to non-oleaginous systems, including plant leaves (Xu et al., 2023),
resulted in fewer sensitively detected ACPs. Here, we developed an
efficient method to characterize less-abundant acyl-ACPs from bacteria
using anion exchange chromatography (AEX). The technique was com-
bined with omics analysis to examine the adjustments in fatty acid
metabolism that accompanied growth at different temperatures. We
investigated the effects in wild-type E. coli and both wild-type and Aaas
mutant strains of Picosynechococcus sp. PCC 7002 (PCC 7002). PCC 7002
is a particularly important strain for the metabolic engineering com-
munity due to its potential for biotechnological applications and pro-
duction of valued compounds, growth in variable conditions and with
short (2.6 h) doubling time in optimal conditions, overall productivity,
and well-studied physiology (Ludwig and Bryant, 2012; Davies et al.,
2014; Work et al., 2015; Hendry et al., 2016; Ruffing et al., 2016a; Gao
et al., 2018; Selao et al., 2019; Kachel and Mack, 2020). By profiling
acyl-ACP pools and integrating omics data, we show that lack of AAS
expression results in altered levels of lipases and desaturases that
mediate membrane remodeling in response to growth in cooler tem-
peratures. Unexpectedly, unsaturated acyl-ACPs were detected in the
Aaas mutant, indicating that residual acyl activation persists through
alternative enzymatic routes or pathways, a finding that could not be
elucidated with other pathway analysis approaches that has ramifica-
tions for metabolic engineering-based production of fatty acids in mi-
crobes. These findings suggest the presence of compensatory
mechanisms that may limit the effectiveness of metabolic engineering
strategies designed to enhance FFA production in cyanobacterial hosts.
The results describe acyl chain recycling as a part of lipid remodeling
and highlight the potential of AEX-based acyl-ACP profiling as an
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approach for dissecting temperature-dependent fatty acid and lipid
metabolism in biotechnologically relevant microbes.

2. Materials and methods
2.1. Chemicals and reagents

DEAE Sephadex™ A-25 was purchased from GE Healthcare.
Disposable Polypropylene gravity flow columns, 6 mL (66.7 mm x 12.9
mm, 20 pm frit pore size), were obtained from Marvelgent Biosciences
Inc. Urea (99-100 %) and Amicon Ultra centrifugal filters (3 kDa cut-off)
used for protein concentration were obtained from Millipore Sigma. To
make Na-acetate buffer, sodium acetate trihydrate and acetic acid were
obtained from Calbiochem and Merck, respectively. rAsp-N for the
enzymatic digestion of acyl-ACPs was acquired from Promega.

2.2. Synthesis of 1°N labeled Acyl-ACP for absolute quantification

15N-labeled acyl-ACPs were synthesized using a previously described
method (Nam et al., 2020; Jenkins et al., 2021). The reaction mixture
contained the following components: 50 mM MOPS (pH 6.5), 4 mM
TCEP, 100 uM °N-labeled apo-ACP, 500 pM acyl-CoA, 10 % DMSO, 1 %
Tween 20, 10 mM MgCl,, 10 mM MnCly, and 25 pM 4'-phosphopante-
theinyl transferase (Sfp). The reactions were incubated for 2 h at 37 °C,
180 rpm. The labeled acyl-ACPs were washed three times and concen-
trated in 50 mM MOPS (pH 6.5) using Amicon Ultra centrifugal filters (3
kDa cut-off). The yield of each acyl-ACP standard was determined by
16.5 % (w/v) Tris-Tricine SDS-PAGE obtained from Bio-Rad and
confirmed by LC-MS/MS.

2.3. Mass spectrometry analysis of acyl-ACPs

The rAsp-N digestion products of acyl-ACPs (the acyl-4-
phosphopantetheine-DSL) were separated on a Supelco Discovery®
Bio Wide Pore C18-3 column and analyzed using a Thermo TSQ Altis
triple quadrupole LC-MS/MS system. The mass spectrometer was
operated in positive mode, and the data were acquired in SRM mode to
detect and quantify the acyl-4-phophopantetheine-DSL peptide based on
the parameters of m/z of the transmitted parent ion and m/z of the
monitored product ion previously reported (Nam et al., 2020; Jenkins
et al., 2021). Full LC gradient, MS parameters, and instrument settings
are provided in the Supporting Information (SI).

2.4. Optimization of cell lysis methods to effectively inhibit thioesterase

An E. coli (MG1655 AfadD AaraBAD) strain overexpressing Umbel-
lularia californica thioesterase (E. coli-UcTE) (Jindra et al., 2023) was
used to test and optimize the cell lysis method, and ensure effective
inhibition of any residual thioesterase (TE) activity. E. coli-UcTE was
cultured, induced, quenched with cold methanol, and processed using
two distinct cell lysis methods.

Method (I): The cell pellets were resuspended in 7 M urea on ice, 50
mM Na-acetate buffer, pH 5.5, and bead-milled at 30 Hz/s for 5 min.

Method (II): The pellets were resuspended in 50 mM Na-acetate
buffer pH 5.5 on ice, and boiled for either 5 or 10 min in hot water
(95-100 °C) as described in the Results and Discussion, followed by
bead-milling at 30 Hz/s for 5 min.

TE inhibition was evaluated by incubating crude protein extracts
with °N-labeled C12:0-ACP, followed by rAsp-N digestion and LC-MS/
MS analysis. Full experimental details are provided in the SI.

2.5. Development of an anion exchange chromatography (AEX) method
to isolate acyl-ACPs

The AEX approach was developed on a gravity column. The column
was packed with a 2 mL slurry of DEAE resin (prepared as a mixture with
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a ratio of 75 % settled resin to 25 % 50 mM Na-acetate buffer, pH 5.5).
Various NaCl concentrations (0, 50, 100, and 200 mM) in a solution of 7
M urea, 50 mM Na-acetate buffer at pH 5.5 were tested to determine the
effect of salt concentration in the wash buffer on acyl-ACPs purification.

E. coli-UcTE was grown as described above and utilized for AEX
development. Approximately 10 mL of culture collected 5 h post-
induction (ODggp ~ 3) was quenched with an equal volume of cold
60 % MeOH/water (—20 °C), then centrifuged at 4,500g for 10 min at
4 °C to collect the pellets. The pellets were resuspended in 500 pL of 50
mM Na-acetate buffer and boiled for 5 min. A mixture of 300 pmol in-
dividual '°N-labeled acyl-ACPs (C4:0, C8:0, C16:0, and C18:1 (9)-ACP
representing short, medium, and long-chain acyl-ACPs) was spiked into
the sample, followed by the addition of approximately 400-500 mg of
0.5 mm glass beads. The cells were disrupted by bead beating at 30 Hz/s
for 5 min. Crude protein was separated from the glass beads using a
gravity flow column through centrifugation at 180g for 1 min, followed
by three washes with 1 mL of 7 M urea in 50 mM Na-acetate buffer at pH
5.5. The flowthrough was then centrifuged at 17,800g for 30 min at 4 °C,
and the crude supernatant was collected and loaded into a column pre-
equilibrated with 5-10 column volumes (CV) (20-30 mL) of an equili-
bration buffer (7 M urea, 50 mM Na-acetate buffer, pH 5.5).

After loading, the sample was mixed with DEAE resins by inversion
for 1 min, followed by a 30-60 min incubation at room temperature to
allow the resin beads to repack. Following the incubation, the columns
were washed with 5-10 CV (20-30 mL) of wash buffer with various
concentrations of NaCl (0, 50, 100, and 200 mM) in a solution of 7 M
urea, 50 mM Na-acetate buffer at pH 5.5, taking care not to disturb the
resin bed. Subsequently, the acyl-ACPs were eluted with two rounds of
1.5 mL of elution buffer (1 M NaCl, 50 mM Na-acetate buffer, pH 5.5)
using centrifugation at 180g for 2 min. The eluate volume was concen-
trated to 200 pL using a 3 kDa cut-off filter unit via centrifugation at
4,500g at 4 °C. A control reaction was performed to assess acyl-ACP loss
during AEX purification. A solution containing 300 pmol each of °N-
labeled C4:0, C8:0, C16:0, and C18:1 (9)-ACP standards was processed
identically to the eluate from this point onward. The resulting 200 pL
concentrate was precipitated with nine volumes of cold ethanol
(—20 °Q), followed by digestion of acyl-ACPs with rAsp-N and analysis
via LC-MS/MS as described previously.

2.6. Culture conditions for analyzing the impact of growth temperature
and the quantity of acyl-acyl-ACPs in microbes

E. coli DH5a (fhuA2A(argF-lacZ)U169 phoA ginV44 ®80A(lacZ)M15
grA 96 recAl relA1 endAl thi-1 hsdR17) from NEB (Catalog #: C2987H)
was cultivated in LB media at 30 °C and 37 °C with shaking at 180 rpm
until reaching mid-log phase (ODggpo of 0.5-0.8). The 25 mL cultures
were then quenched with an equal volume of cold 60 % MeOH/water
(—20 °C). Next, the cell pellets were collected by centrifugation at
4,500g for 10 min at 4 °C, the supernatant was decanted, and the pellets
were lyophilized and stored at —80 °C for acyl-ACPs analysis by the AEX
method. Additionally, a chloroform-methanol extraction was performed
following a previous report (Whaley et al., 2021), with modifications
(see SI for method detail) to enhance the signal of the digested acyl-ACP
products detected by mass spectrometry and to allow direct comparison
with AEX purification.

The wild-type Picosynechococcus sp. PCC 7002 (wild-type PCC 7002)
and the AAS-deficient strain (Aaas) were cultivated in A+ media
(Table S1) at 30 °C and 37 °C with shaking at 130 rpm, 1 % CO,, 300
pmol/mz/s illumination until reaching mid-log phase (ODy3p of
0.6-0.7). Approximately 60 mL cultures were quenched with 90 mL
volume of cold 30 % MeOH/water (—20 °C). The cell pellets were
collected by centrifugation at 4,000g for 10 min at —4 °C, the super-
natant was decanted, and the pellets were snap frozen with liquid ni-
trogen, lyophilized, and stored at —80 °C for acyl-ACPs analysis. Details
of the construction and maintenance of the Aaas strain are provided in
the SI.
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2.7. Isolation of acyl-ACPs using AEX to analyze the effect of growth
temperature and the quantity of acyl-ACPs in microbes

The lyophilized E. coli, wild-type PCC 7002, and Aaas PCC 7002
pellets were resuspended on ice in 500 pL of cold 50 mM Na-acetate
buffer (pH 5.5) and transferred into a 2 mL tube on ice. Samples were
boiled in a water bath for 5 min to inactivate the thioesterase. Subse-
quently, 20 pmol each of a'°N-labeled acyl-ACPs mixture (20 pmol each
of C2:0, C4:0, C6:0, C8:0, C10:0, C12:0, C14:0, C16:0, C16:1 (9), C18:0,
C18:1 (9), C18:2 (9,12), and C18:3 (9,12,15)-ACP and 80 pmol of holo-
ACP) were added as internal standards for quantification and identifi-
cation of acyl-ACPs present in the samples. Cells were bead-milled at 30
Hz/s for 5 min for disruption. Crude protein was separated from the
glass beads using a column through centrifugation at 180g for 1 min,
followed by three washes with 1 mL of equilibration buffer (7 M urea in
50 mM Na-acetate buffer at pH 5.5). The ~4 mL flowthrough was then
centrifuged at 17,800g for 30 min at 4 °C, and the supernatant was
collected and loaded onto a DEAE column with ~3 mL resin bed, pre-
equilibrated with 5-10 CV (20-30 mL) of an equilibration buffer (7 M
urea, 50 mM Na-acetate buffer, pH 5.5). After loading, the sample was
mixed with DEAE resins by inverting for 1 min and then incubated for
30-60 min at room temperature. Following the 30-60 min incubation,
the columns were washed with 5-10 CV (20-30 mL) of wash buffer (50
mM NaCl, 7 M urea, 50 mM Na-acetate buffer, pH 5.5) taking care not to
disturb the resin bed, followed by elution with 3 mL of elution buffer (1
M NacCl, 50 mM Na-acetate buffer at pH 5.5) by centrifugation at 180g
for 2 min. The eluate was processed as previously described for acyl-ACP
analysis by HPLC-MS/MS.

2.8. Protein extraction, LC-MS proteomics analysis, and data processing

Lyophilized wild-type PCC 7002 and Aaas pellets were extracted
using the Thermo EasyPep MS Sample Prep Kit, digested, and analyzed
by LC-MS/MS on a Dionex RSLCnano HPLC system coupled to an
Orbitrap Fusion Lumos mass spectrometer. Peptides were separated on a
PepMap C18 column using a 115-min gradient, and data were processed
with Proteome Discoverer 2.4 against the Picosynechococcus sp. PCC
7002 UniProt database. Protein quantification was based on summed
peptide intensities after curation. Full experimental details, including
digestion, LC-MS conditions, database search parameters, and data
processing workflow, are provided in the SI.

2.9. Statistics for the analysis of proteomics data

The data were normalized and Pareto-scaled in MetaboAnalyst
6.04%° before being subjected to Partial Least Squares Discriminant
Analysis (PLS-DA). Tukey’s tests were performed in R version 4.4.0.

2.10. Lipid and fatty acid extraction and LC-MS lipidomics analysis

Lyophilized wild-type PCC 7002 and Aaas pellets were extracted
with cold methanol, spiked with isotopically labeled standards, and
subjected to liquid-liquid extraction with MTBE. The resulting lipid
fractions were resuspended in 2-propanol/MeOH containing internal
standards and analyzed using a 1290 Infinity LC system coupled to a
6560 A IM-QTOF (Agilent). Lipids and fatty acids were separated on a
Thermo Hypersil Gold C18 column with a 30-min gradient and detected
in negative ion mode. LC-MS/MS was performed in iterative data-
dependent acquisition (iDDA) mode. Full extraction protocol, LC con-
ditions, and MS parameters are provided in the SI.

2.11. LC-MS processing and analysis of lipidomics data
LC-MS data processing, such as retention time alignment, molecular

feature finding, and QA/QC evaluation, was performed using Progenesis
QI (Waters Corporation, Manchester, UK). Tentative analyte
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identifications were made implementing a mass measurement threshold
of 15 ppm and 80 % isotopic envelope similarity and using various da-
tabases, including METLIN Metabolite and Chemical Entity Database,
Human Metabolome Database, LIPID MAPS Structure Database, UCSD
Metabolomics Workbench, and LipidBlast. LC-MS/MS iDDA analysis
was performed in LipidAnnotator using a mass deviation threshold of 15
ppm.

2.12. Statistics for the analysis of lipidomic data

The processed LC-MS peak intensities were exported from Progenesis
QI (Waters Corporation, Manchester, UK), normalized relative to the
intensity of the [M+Cl] ion of the internal standard (15:0-18:1 (d7)DG),
Pareto-scaled in MetaboAnalyst 6.04 (Pang et al., 2024), and subjected
to sPLS-DA using the MixOmics R package (Rohart et al., 2017). Tukey’s
tests were performed in R version 4.4.0.

3. Results and Discussion
3.1. Selection of AEX to purify microbial acyl-ACPs

ACP is a small acidic protein involved in fatty acid and polyketide
biosynthesis (White et al., 2005; Buyachuihan et al., 2024). After syn-
thesis as the inactive apo form, ACP is modified by adding a 4’-phos-
phopantetheine (Ppant) group at a conserved serine residue, forming
holo-ACP (White et al., 2005; Buyachuihan et al., 2024). The free thiol
group of Ppant on holo-ACP is a site for acyl groups to covalently attach
to form an acyl-ACP (White et al., 2005; Buyachuihan et al., 2024). ACPs

A
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B Synechocystis sp. PCC 6803 ACP B. subtilis ACP E. coli ACP
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Fig. 2. (A) Isoelectric point (pI) vs. molecular weight of protein plots. The
theoretical protein isoelectric points and protein molecular weights were
computed from the proteins’ amino acid sequences using the IPC2.0 web server
(Kozlowski, 2021). (B) Surface plots of the acyl carrier protein (ACP) from
B. subtilis (PDB 2 x 2B) (Martinez et al., 2010), E. coli (PDB 1LOH)
(Roujeinikova et al., 2002), and Synechocystis sp. PCC 6803 (AlphaFold-Uniprot
(UniProt, 2023)). ACP is anionic with a high content of negatively charged
amino acids (indicated in red) and a low content of positively charged amino
acids (indicated in blue), supporting the use of AEX for purification. Figures for
the protein structures were generated using PyMOL.
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from different species have distinct isoelectric points (pl), as indicated
by sequence analysis (Fig. 2A). Bacterial ACPs are highly acidic with pI
values < 5.0 (Table S2). Previously, we developed a method to partially
purify acyl-ACPs using TCA-based extraction (Nam et al., 2020; Jenkins
et al., 2021). This method proved effective for plant seed studies where a
significant amount of oil is produced (Morley et al., 2023), in high-oil
tobacco leaves (Chu et al., 2022) and in an immortalized cell line
(Kim et al., 2025); however, the technique lacked the sensitivity to
measure the profile of acyl-ACPs from non-oleaginous microbes
(Fig. S1). The lower pI and multiple negatively charged amino acid
residues in the bacterial ACP (Fig. 2A and B) suggested that anion ex-
change chromatography (AEX) methods at low pH could facilitate the
isolation of acyl-ACPs from complex protein samples and improve
detection of acyl-ACPs from non-oleaginous microbes.

3.2. Optimized cell lysis methods eliminate thioesterase activity and
preserve acyl-ACP levels

One of the challenges in evaluating cellular FFA biosynthetic pro-
cesses is the continued activity of thioesterases (TEs) that may not be
adequately quenched during cell lysis and can result in artifacts. TEs
catalyze the hydrolysis of thioesters, typically resulting in the formation
of a free thiol and carboxylic acid. TEs cleave the thioester bond in acyl-
ACP/CoA molecules, releasing FFA and ACP-SH/CoA-SH. To establish
stringent conditions for inhibiting TE activity in whole-cell extracts, two
cell lysis methods were evaluated using a TE activity assay. The assay
included crude protein extracts incubated with 1°N-labeled C12:0-ACP,
the canonical UcTE substrate (Fig. 3A), as described in the methods
section.

When treated with 7 M urea, UcTE degraded 90 % of '°N-labeled
C12:0-ACP (i.e., Method I; Fig. 3B), indicating the urea did not effec-
tively inhibit TE activity. When the cells were instead boiled, the UcTE
was completely inhibited (i.e., Method II; Fig. 3B) based on the similar
peak areas of 1°N-labeled C12:0-ACP in the test sample and a control
sample lacking TE. Furthermore, boiling samples for 5 or 10 min
resulted in equally suitable inhibition of UcTE activity (i.e., Method II;
Fig. 3B). The combination of results suggested boiling is suitable for the
isolation and quantification of acyl-ACPs. Other approaches including
cold 60 % MeOH or high urea concentrations (e.g., 7 M) are commonly
used to quench cellular metabolism or inhibit protein activity (Winder
et al., 2008; de Koning and van Dam, 1992; Yang et al., 2018), although
care must be taken to maintain the inactive TE state in whole cell ex-
tracts before AEX. It should be noted that fresh acyl-ACP standards are
not impacted by the boiling process (Fig. S2), but the repeated
freeze-thaw of standards followed by boiling can result in deterioration
and negatively impact results.

3.3. Salt concentration modestly impacts AEX purification and detection
of acyl-ACPs

The presence of NaCl in the equilibration buffer and wash buffers
directly influenced the binding interaction between the acyl-ACPs and
the DEAE Sepharose beads. Fine-tuning the concentration of NaCl in the
buffers ensured the binding of acyl-ACP to the DEAE Sepharose beads
while maximizing the removal of impurities during washing steps. By
varying the concentration of NaCl (0, 50, 100, and 200 mM NaCl, see
Materials and Methods for details) in buffer (7 M urea, 50 mM Na-
acetate buffer, pH 5.5), we found that up to 50 mM NaCl can be
included in the buffer without reducing the binding of spiked °N-
labeled acyl-ACPs (C4:0, C8:0, C16:0, and C18:1 (9)-ACP) to DEAE
Sepharose beads (Fig. S3A). In addition, 50 mM Nacl slightly improved
the detection signal of some acyl-ACP species in E. coli-UcTE samples
(Fig. S3B). Thus, 50 mM NaCl was used in the wash buffer for subsequent
experiments.
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Fig. 3. Impact of cell lysis method on TE activity. (A) The experimental outline to determine the optimal cell lysis method for effectively inhibiting TE, an enzyme
that catalyzes the cleavage of acyl-ACPs. E. coli-UcTE was cultured, induced for overexpression, quenched with 60 % MeOH during harvesting, and lysed using two
distinct approaches, as described in the Methods section. The effectiveness of each method in inhibiting TE activity was assessed using an in vitro UcTE activity assay
with crude protein extracts from Method I (7 M urea with bead milling) and Method II (heat treatment with bead milling). The extracts were incubated with 15N-
labeled C12:0-ACP at room temperature for 1 h in 50 mM sodium acetate buffer (pH 5.5), the buffer for optimizing the anion exchange chromatography method. (B)
Comparison of the peak area of >N-labeled C12:0-ACP in the TE activity assay containing UcTE, derived from cell lysis Methods I and II, with the control reaction
(20 pmol of >N-labeled C12:0-ACP without 10 pg crude protein). Data are presented as mean + SD., with n = 3. Asterisks (*) indicate significant differences
compared to the control, as determined by Student’s t-test (p < 0.05). Created with aid from BioRender.com.

3.4. AEX enables sensitive detection of temperature-dependent changes in
acyl-ACP profiles and levels in E. coli

The AEX method was compared to other extraction strategies,
including a chloroform-methanol (CHCl3-MeOH) method (Fig. S4A and
B) (see SI for method details). Using AEX, E coli acyl-ACPs and ACP in-
termediates were detected with greater sensitivity. Recovery analysis
further showed that AEX achieved significantly higher acyl-ACP recov-
ery across all acyl-ACP chain lengths than chloroform-methanol
extraction (Fig. S5 and SI for method details), enabling more sensitive
and comprehensive quantification of acyl-ACPs.

Small changes in temperature dramatically impact lipid acyl chain
compositions. Such changes are necessary to maintain membrane
fluidity. The remodeling of the lipids affects fatty acid biosynthesis and
results in acyl chain recycling. We examined the adjustments in fatty
acid composition that reflect the sensitive response through comparison
of modest but significant temperature differences of 37 °C relative to
30 °C, then confirmed coarser details at 22 °C. As expected, acyl-ACP
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profiles changed with temperature, most notably the levels of unsatu-
rated acyl-ACPs and corresponding ACP cycle intermediates that were
elevated at 30 °C (p < 0.05, Fig. 4A and B). E. coli synthesizes unsatu-
rated fatty acids via the oxygen-independent FabA-FabB pathway
(Cronan and Thomas, 2009; Cronan, 2024; Cronan et al., 1969; Feng and
Cronan, 2009; Zhang and Rock, 2008) (Fig. 4C). Cooler temperatures
result in the production of more unsaturated fatty acids needed to
maintain membrane fluidity (Cronan and Thomas, 2009; Birge and
Vagelos, 1972; Cronan, 2024; Bloch, 1969; Kass et al., 1967; Cronan
et al., 1969; Feng and Cronan, 2009; Norris and Bloch, 1963; Zhang and
Rock, 2008; Hoogerland et al., 2024). Additionally, the measurement of
acyl-ACP unsaturated intermediates provides metabolite-level confir-
mation of the desaturation cycle in E. coli, which has been mainly
elucidated through biochemical activities (Cronan, 2024; Heath and
Rock, 1996a; Yu et al., 2011b; Dodge et al., 2019).

The branch point between saturated and unsaturated fatty acid
pathways in E. coli occurs at p-hydroxy-C10-ACP (Cronan and Thomas,
2009; Birge and Vagelos, 1972; Cronan, 2024; Bloch, 1969; Kass et al.,
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1967; Cronan et al., 1969; Feng and Cronan, 2009; Norris and Bloch,
1963; Zhang and Rock, 2008), which can be converted to
C10-enoyl-ACP via FabZ (Cronan et al., 1969) or cis-C10:1 (3)-ACP (i.e.,
C10:1 (3)-ACP) via FabA (Cronan et al., 1969), resulting in the synthesis
of saturated and unsaturated fatty acids (Fig. 4C), respectively. We
observed increased partitioning of f-hydroxy-C10-ACP into the unsat-
urated fatty acid pathway in response to lower temperatures including
elevated levels of several intermediates and importantly unsaturates
such as C10:1 (3)-ACP, Cl14:1 (7)-ACP, C16:1 (9)-ACP, and C18:1
(11)-ACP, in cells cultured at 30 °C (p < 0.05, Fig. 4A and B) which was
further confirmed with additional experiments at 22 °C (p < 0.05,
Fig. S6B). Conversely, saturated acyl-ACPs were lower (p < 0.05,
Fig. 4A, B, S6A), indicating a temperature-sensitive metabolic valve
involving Fabl and FabB (Hoogerland et al., 2024) in E. coli.

3.5. Low temperature-induced accumulation of C16:1-ACP and C18:3-
ACP in wild-type PCC 7002

With a sensitive method to investigate acyl-ACP metabolism estab-
lished in E. coli, we inspected the impact of temperature on acyl-ACP
profiles in the cyanobacterium PCC 7002 (Fig. 5A and B, S7), a fast-
growing, genetically tractable strain that is biotechnologically relevant
with established tools for gene editing, knockout, and overexpression
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(Ludwig and Bryant, 2012; Abernathy et al., 2019; Hendry et al., 2017;
Bernstein et al., 2016; Ruffing, 2014; Ruffing et al., 2016b; Markley
et al., 2015). PCC 7002 grown at 30 °C relative to 37 °C exhibited
dramatically higher levels of saturated acyl-ACPs including C6:0, C8:0,
C10:0, C12:0, C16:0, and C18:0-ACP and several unsaturated forms,
C16:1-ACP and C18:3-ACP (p < 0.05, Tukey’s test), while the levels of
C18:1-ACP and C18:2-ACP were unchanged (Fig. 5A and B). These re-
sults were confirmed with a comparison at 22 °C (p < 0.05, Fig. S8).

The presence of unsaturated acyl-ACPs in cyanobacteria indicates a
process whereby fatty acids were hydrolyzed from membrane lipids
(Jimbo and Wada, 2022) and reactivated to acyl-ACPs by AAS (Fig. 5C),
presuming that an unannotated acyl-ACP desaturase does not exist in
cyanobacteria. We postulate that this cycle of lipid synthesis, desatu-
ration, hydrolysis, and re-incorporation of acyl groups may increase the
desaturation in membrane lipids, similar to plant-based acyl editing that
cycles acyl chains on and off of phosphatidylcholine and results in highly
polyunsaturated lipid compositions in oilseeds (Allen, 2016; Bates and
Shockey, 2024; Zhou et al., 2019; Karki et al., 2019; Yang et al., 2017;
Tjellstrom et al., 2011).
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3.6. Diminished AAS alters fatty acid synthesis and slows growth at lower
temperature

AAS plays an important role in recycling FFAs through esterification
to holo-ACP (Kaczmarzyk and Fulda, 2010) that results in acyl-ACPs,
which are substrates for lipid assembly. Unsaturated acyl-ACP species,
particularly C16:1-ACP and C18:3-ACP, were elevated in PCC 7002
grown at 30 °C compared to 37 °C. Fatty acid synthesis in cyanobacteria
does not include characterized acyl-ACP desaturases, although the
biosynthesis of the monounsaturated form (C16:1-ACP) could be
explained if a putative acyl-ACP desaturase were identified. Therefore,
known plant acyl-ACP desaturase sequences (Schultz et al., 2000;
Cahoon et al., 1992; Nishida et al., 1992; Nagai and Bloch, 1968) were
used through a BLAST search to assess putative proteins in the PCC 7002
genome. There was little sequence similarity based on E-values, and no
candidate proteins for an acyl-ACP desaturase were found (Table S3).
Thus, the synthesis of C16:1 and C18:3-ACP is most likely the result of
AAS-mediated activation of C16:1 and C18:3 FFA hydrolyzed from
membrane lipids. Based on these observations, we investigated the role
of AAS and its consequences on acyl-ACP profiles and membrane lipid

52

homeostasis, using a PCC 7002 Aaas strain.

Short to long chain acyl-ACPs involved in fatty acid synthesis (C4:0-
ACP to C18:0-ACP) were less abundant in the Aaas strain at both tem-
peratures compared to the wild type, with a more pronounced reduction
under low-temperature growth (Fig. 5A). Further, proteomics indicated
enzymes involved in fatty acid biosynthesis, including AccA, AccC,
AccD, FabH, FabZ, and Fabl, were present at lower levels in the Aaas
strain at both temperatures (Fig. S9A). This reduction may reflect a
cellular strategy to slow growth due to decreased carbon flow from the
CO», fixation pathway (Forchhammer and Selim, 2020; Jahn et al., 2018;
Battchikova et al., 2010), as proteins and enzymes in this process, along
with those involved in nitrogen metabolism, were also reduced (Fig. S9B
and C). Consistent with these findings, the growth rate of the Aaas strain
was lower than that of the wild type, with a more pronounced effect
when the temperature was decreased to 22 °C (Fig. S10).

3.7. Diminished AAS alters lipase induction at lower temperature

Unexpectedly, we detected the presence of unsaturated acyl-ACPs,
including C16:1, C18:1, C18:2, and C18:3-ACP, in both the wild-type
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and Aaas strains (Fig. 5B-S8B).

We have previously reported (Nam et al., 2020) unsaturated
acyl-ACPs in Camelina sativa, an oilseed, which were novel and remain
somewhat enigmatic, but may also be related to changes in temperature.
Because cyanobacteria are often polyploid, incomplete copies of the aas
gene could exist and provide basal expression and activity; however, the
aas gene and AAS protein were not detectable in the mutant line
(Fig. S11A and B). Levels of the unsaturated acyl-ACPs in the Aaas strain
were comparable to the wild-type strain at 37 °C but were much lower
than wild-type at 30 °C, indicating a diminished pool of cleaved un-
saturated fatty acids available for reactivation. This result is consistent
with a change in lipid remodeling, for example, the absence of lipase
induction necessary to create the unsaturated acyl-ACP profile. Further,
the presence of unsaturated acyl-ACPs when AAS is absent indicated
alternative mechanisms capable of reactivating FFAs into acyl-ACPs that
are responsive to temperature. The motif-based and functional enrich-
ment analyses identified several candidate enzymes that may compen-
sate for AAS loss (Figure S12 and S13A, B), providing potential targets
for future functional characterization.

To assess changes in lipid remodeling, we analyzed proteins that
could hydrolyze fatty acyl chains from membrane lipids (Fig. 5D). Es-
terases, lipases, and hydrolases were identified with BIXRNS, a putative
esterase/lipase, elevated during low-temperature growth in wild-type
PCC 7002 (p < 0.05, Tukey’s test, Fig. 5D). In the mutant, the puta-
tive esterase/lipase remained unchanged and was lower than in the
wild-type strain during low-temperature growth. Thus, combined pro-
teomic and acyl-ACP results suggest that temperature-dependent
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membrane lipid remodeling is impaired in the Aaas strain, due to
reduced acyl-ACP availability and the absence of lipase induction under
reduced temperature conditions.

3.8. Inactivation of AAS disrupts temperature-induced lipid desaturation
and alters lipid remodeling

In cyanobacteria, increased membrane-bound desaturase activities
(Los and Murata, 1998; Sato et al., 2009; Higashi and Murata, 1993;
Wada et al., 1993a, 1993b; Effendi et al., 2023; Sakamoto et al., 1994;
Starikov et al., 2022; Murata and Wada, 1995; Mendez-Perez et al.,
2014) result in higher levels of unsaturated C16 and C18-containing
glycerolipids (Sato et al., 2009; Sakamoto et al., 1997, 1998; Douchi
et al., 2023). Lipidomic analysis of PCC 7002 indicated increases in
select lipids, including MGDG 34:3 and SQDG 34:4 at 30 °C (p < 0.05,
Tukey’s test; Fig. 6A). The changes corresponded with elevated desa-
turase levels, including DesA (A12 desaturase) and DesB (#3 desatur-
ase). DesA showed a 4-fold induction (p = 0.06, Tukey’s test) and DesB,
a 12-fold induction (p < 0.05, Tukey’s test) at 30 °C relative to 37 °C
(Fig. 6B). The results matched observed increases in 16:0 and 18:0-ACP
that are substrates for the 34-carbon unsaturated lipids. Although other
lipid assembly intermediates, including DAG 32:3, were elevated, cor-
responding 32:3 galactolipids did not show a similar change. DGDG 32:3
decreased at the lower temperature, implying additional roles beyond
membrane fluidity.

The Aaas strain showed modestly impaired desaturation. MGDG 34:3
increased significantly at 30 °C, but the level of SQDG 34:4 did not
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change, consistent with the modest increase in 18:3-ACP (Fig. 5B). The
levels of DesA and DesB remained unchanged between 30 °C and 37 °C
in the Aaas strain, at levels that were comparable to wild-type PCC 7002
at 37 °C. These findings indicate that the temperature-responsive
regulation of desaturase proteins is impaired in the Aaas strain and
limits polyunsaturation when the temperature decreases. This may
reflect an observed lower expression of two-component histidine kinases
in the Aaas strain that are known to influence desaturase expression
(Mikami and Murata, 2003; Suzuki et al., 2000) (Fig. S14).

Other lipid patterns were comparable in the wild-type and Aaas
strains; however, there were several differences. At 30 °C, the Aaas
strain exhibited increased levels of MGDG 16:0/16:0 and phosphati-
dylglycerol (PG) 36:1 (p < 0.05) relative to the higher temperature. In
the wild-type, these lipids did not change (Fig. 6). Thus, the absence of
reduced temperature-induced desaturation through AAS-based lipid
remodeling is accommodated by the elevation of saturated and mono-
unsaturated lipids in a subset of molecular species in Aaas.

4. Conclusion

In the current study, a sensitive anion exchange chromatography
(AEX) approach to isolate and purify acyl-ACPs from microbes was
developed and used to study temperature-dependent changes in acyl-
ACP, fatty acid, and lipid biosynthesis. Microbial lipid metabolism in
two important species, E. coli and Picosynechococcus sp. PCC 7002 was
considered through the impact of acyl-ACP levels in response to the
altered environment.

AEX enhanced the detection of long-chain acyl-ACPs and low-
abundance intermediates compared to prior in-house methods (Nam
et al., 2020; Jenkins et al., 2021), benefiting from acidic residues in
microbial ACPs, which are retained on the column while impurities are
removed through flow-through and salt elution. To further improve
accurate quantification, we inhibited endogenous thioesterase activity
by boiling the cell pellet, which preserved acyl-ACPs for analysis.

The method enabled the elucidation of acyl-ACP intermediates
involved in saturated and unsaturated fatty acid biosynthesis, including
elongation steps in E. coli, where intermediate levels changed in a
temperature-dependent manner. Though the biochemical steps to create
unsaturates in E. coli have been deduced using enzymology, our
approach quantifies the intermediates involved in the pathway and
therefore offers a unique strategy to assess important biochemical
pathways for metabolic engineering and their perturbation under stress.
The AEX method is readily applicable to acyl-ACP profiling in diverse
microbial systems when the ACP pl is comparable to that of the organ-
isms examined in this study (E. coli and cyanobacteria; ACP pI = 4.0). In
contrast, for target organisms with an ACP pl substantially higher than
~4.0 (e.g., yeast or plants), the working buffer pH should be adjusted to
at least 0.5-1.0 units above the ACP pl to ensure efficient binding.
Importantly, the buffer pH must remain within a range that is not
excessively alkaline in order to preserve acyl-ACP integrity.

Temperature-dependent lipid metabolism in the cyanobacterium
Picosynechococcus sp. PCC 7002 included changes in acyl-ACPs from
fatty acid synthesis and lipid remodeling, and lipid desaturation. The
acyl-ACP profile at lower temperatures suggested that Cyanobacteria
recycle acyl chains from lipids, possibly to increase the degree of lipid
desaturation. In the wild-type strain, acclimation to a limited reduction
in temperature by 7 °C increased unsaturated glycerolipids such as
MGDG and SQDG, accompanied by elevated levels of C16:1-ACP and
C18:3-ACP, indicating lipid breakdown with desaturation processes
mediated by DesA and DesB, and AAS activity. Recycling unsaturated
acyl chains through the acyl-ACP mechanism may be a strategy to in-
crease lipid desaturation, similar to acyl-editing in plants, but involving
acyl-ACP instead of acyl-CoAs as substrates; however, this will require
further study. In the Aaas strain, the change in unsaturated glycerolipids
due to a drop in temperature was limited and occurred without the in-
duction of desaturases. However, the presence of polyunsaturated acyl-
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ACPs in the Aaas strain suggested potential alternative compensatory
mechanisms, such as the upregulation of acyltransferase enzymes, for
which several candidates were identified from proteomic analysis. Given
that engineering efforts to secrete fatty acids rely on an inactive AAS, the
compensating mechanisms identified here present an unexplored op-
portunity to improve fatty acid yield in cyanobacterial production sys-
tems. These findings have fundamental and biotechnological
implications for lipid metabolism and manipulation of fatty acid
biosynthetic pathways to optimize the production of biofuels and other
valuable bioproducts.
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