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Abstract

We show thatlarge language models (LLMs) can be used to distinguish the writings
of different authors. Specifically, an individual GPT-2 model, trained from scratch on
the works of one author, will predict held-out text from that author more accurately
than held-out text from other authors. We suggest that, in this way, a model trained
on one author’s works embodies the unique writing style of that author. We first
demonstrate our approach on books written by eight different (known) authors. We
also use this approach to confirm R. P. Thompson’s authorship of the well-studied 15%

book of the Oz series, originally attributed to F. L. Baum.

1 Introduction

Herein we introduce predictive comparison, anew LLM-based relative stylometric measure.

It derives from a simple idea, that if an LLM can be trained to write like—i.e., in the
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style of—a given author by training on their work (e.g., Mikros, 2025), then the degree
to which such a model can predict another author’s work could be a measure of stylistic
similarity. This approach builds upon a growing body of work applying language models
to authorship attribution (Huang et al., 2025; Uchendu et al., 2020), extending established
information-theoretic methods in stylometry (Juola and Baayen, 2005; Zhao et al., 2006).

Recent work has demonstrated the effectiveness of using perplexity and cross-entropy
loss from fine-tuned language models for authorship attribution (Huang et al., 2025),
achieving state-of-the-art performance on standard benchmarks. Unlike traditional stylo-
metric approaches that rely on the direct articulation of particular features such as function
word frequencies (Mosteller and Wallace, 1963) or syntactic patterns (Holmes, 1998), large
language models can capture complex, hierarchical patterns in authorial style (Fabien
et al., 2020). This shift from explicit feature engineering to learned representations par-
allels broader trends in computational literary analysis (Moretti, 2000; Underwood, 2019)
and digital humanities (Hughes et al., 2012).

In this paper we show, using a small set of authors and their works, that large lan-
guage models capture author-specific writing patterns. Our method differs from related
approaches (Rezaei, 2025) in scale (we use entire books rather than individual sentences)
and in our reliance solely on cross-entropy loss as a measure of stylometric distance.
This in turn suggests a notion of stylometric distance derived from the cross-entropy loss
assigned to held-out texts by models trained on known works of different authors. We
believe this approach could be of use in considering questions of authorial influence and
stylistic evolution (Hughes et al., 2012). Lastly, this further suggests a literary attribution
tool (a common use of stylometric techniques; Binongo, 2003; Juola, 2008; Mosteller and
Wallace, 1963, 1984) that would assign an unknown or contested work to the model (and

author) under which predictive comparison generates the smallest loss. We illustrate this



on the well-known attribution problem of the 15" book in the Oz series, confirming what

is now the accepted attribution.

2 Methods

In this section, we outline our methodology for identifying stylometric signatures using
large language models. For each selected author, we train a GPT-2 model (Radford et al.,
2019) on that author’s corpus. We then use the trained model to compute the cross-
entropy loss on held-out texts from both the target author and each of the other authors
in the dataset. By comparing these losses, we assess whether the model captures author-
specific stylistic patterns: a model trained on a given author should exhibit lower loss

when predicting that author’s own texts as compared to the texts of others.

2.1 Data and preprocessing

We consider a dataset comprising books by eight authors: Jane Austen, L. Frank Baum,
Charles Dickens, E. Scott Fitzgerald, Herman Melville, Rosemary Plumly Thompson,
Mark Twain, and H. G. Wells. We selected these authors because their writings are well-
represented in Project Gutenberg, are all in the public domain, and are written in English—
eliminating any potential confounds due to translation. For each book, we pre-process
the text by stripping Project Gutenberg metadata, publisher information, illustration tags,
transcriber notes, prefaces, tables of contents, and chapter headings. We standardize
whitespace, remove non-ASCII characters, and lowercase all alphabetic characters. Basic
statistics on token lengths and the full list of books used are provided in the Appendix.
To construct training data for each author, we randomly select one book to hold out for
evaluation and train their model using the remaining books. To ensure fair comparisons

across authors, we standardize the number of training tokens per author by truncating
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each author’s corpus. This token budget is determined by removing the longest book
from each author’s set and then taking the smallest of the (remaining) total token counts.
For our dataset, this yields a fixed training token budget of 643,041 tokens.

To construct a truncated corpus of 643,041 tokens for each author, we sample one
contiguous sub-sequence from each book in their training corpus (after holding out a to-
be-evaluated book). The length of the sub-sequence sampled from book i is proportional

to its original length:

length, = 643,041 x tokens in book i

total tokens in corpus

The starting position of each sub-sequence is chosen uniformly at random, ensuring the
sample fits within the book’s bounds. Finally, we shuffle and then concatenate the sampled
sub-sequences from each book, resulting in a single 643,041-token training sequence for
each author. This process is repeated for each of 10 random seeds, yielding 10 different

training corpora for each author.

2.2 Model architecture, training, and evaluation

For each author, we train GPT-2 language models from scratch using the GPT2LMHeadModel
class from the Hugging Face Transformers library with custom architecture settings: a
context window of 1024 tokens, an embedding dimension of 128, 8 transformer layers, and
8 attention heads per layer. We fit each model using the AdamW optimizer (Loshchilov
and Hutter, 2017) with a learning rate of 5x 10 to minimize the cross-entropy loss on the
training data. We train models using a causal language modeling objective, whereby the
model iteratively predicts the next token in the sequence given all of the previous tokens
in the same training sequence.

We construct training samples by sampling 1024-token chunks from the truncated
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corpus for the given author and random seed (constructed as described above, using
contiguous sub-sequences selected from all but one of their books). Each training epoch
consists of 40 batches, each containing 16 sequences of 1024 tokens. This results in a total
of 655,360 tokens per epoch. We continue training until the cross-entropy loss falls to
3.0 or lower. (We decided on this threshold after taking random draws from the models
trained on Baum’s and Thompson’s Oz books and manually inspecting the quality of the
resulting samples.) Training to a fixed loss threshold (e.g., as opposed to training for a
fixed number of epochs) enables us to fairly compare model performance across authors,
which is the central component of our stylometric analyses.

We evaluate the models using the held-out book from the corresponding author. We
partition the held-out book into 1024-token chunks to ensure that each token in the evalu-
ation set contributes equally to the computed loss. We repeat the full process (of selecting
a held-out book at random and training the model using randomly selected samples from
the remaining books) using 10 different random seeds. This approach enables us to assess
the robustness of our results and to ensure that the models are not overfitting to a specific

book or random sample.

2.3 Investigating the contributions of function words, content words, and parts

of speech

In order to investigate the contributions of different types of words to the stylometric
signatures captured by our models, we carried out additional analyses using modified
corpora. First, we created content-word-only corpora by replacing all function words
with a special token, <FUNC>. Function words were identified using scikit-learn’s list of
English stop words (Pedregosa et al., 2011). Next, we created function-word-only corpora

by replacing all content (i.e., non-function) words with a <CONTENT> token. Finally, we
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Figure 1: Cross-entropy loss across models and authors. A. Average cross-entropy loss on
Training data and held-out test data from each author, plotted as a function of the number of
training epochs. Each color denotes a model trained on a single author’s work. Error ribbons
denote bootstrap-estimated 95% confidence intervals over 10 random seeds. B. Cross-entropy loss
assigned to held-out test data by each author’s model (x-axis). Held-out test data is either from
the same author (black) or from other authors (gray). Each dot denotes the average loss (across all
1024-token chunks) for a single random seed. See Supplementary Materials for analogous plots
using models trained on only content words (Supp. Fig. 1), only function words (Supp. Fig. 2),
and only parts of speech (Supp. Fig. 3).

created part-of-speech-only corpora by using the Natural Language Toolkit (NLTK; Bird
and Loper, 2004) to replace each word with its corresponding part-of-speech tag. We then
re-trained our models on each of these modified corpora, following the same methodology

as described above.

3 Results

3.1 Predictive comparison testing of eight classic authors

We carried out predictive comparison testing on eight classic authors (see Sec. 2.1). The
top-left sub-panel of Figure 1A (labeled “Train”) shows the average training loss for each
author’s model, computed over 10 random seeds. Training losses are comparable across
models, indicating that the models are trained to similar levels of performance. The

other sub-panels of Figure 1A show the average predictive (cross-entropy) loss, for each
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Figure 2: Same vs. other author comparisons, by model. A. Each curve denotes, as a function of
the number of training epochs, the the f-statistic from a t-test comparing the distribution of losses
(across random seeds) assigned to held-out texts from the given author (color) versus held-out texts
from all other authors. B. The average t-statistic across all eight authors, as a function of the number
of training epochs. The black curves in both panels indicates the average t-value corresponding
to p = 0.001, for each epoch. Error ribbons denote bootstrap-estimated 95% confidence intervals
across authors. See Supplementary Materials for analogous plots using models trained on only
content words (Supp. Fig. 4), only function words (Supp. Fig. 5), and only parts of speech (Supp.
Fig. 6).

author’s model, on held-out texts from each author. For every author’s held-out text,
the model trained on the same author’s writings produces the lowest loss, indicating a
clear preference for its own author’s stylistic patterns. As shown in Figure 1B, across
every author we considered, and for every random seed, models trained and tested on the
same author always yield smaller losses than models trained on one author and tested on
another. Indeed, we achieve perfect (100%) classification accuracy when matching authors
with held-out texts by labeling the held-out text according to which model produces the
smallest loss.

We also wondered how many training epochs were required for the models to reliably
distinguish author styles. We compared the distributions (across random seeds) of average
cross-entropy losses for each author’s model computed for held-out text from the same
author versus for held-out text from other authors. Figure 2A displays the t-values from -

tests comparing these same versus other loss distributions for each of the first 500 training

epochs. For all authors except Twain, the t-tests yielded p-values below 0.001 after just



one or two epochs, indicating that the models rapidly acquire author-specific stylometric
patterns. For Twain, this threshold is crossed at epoch 77. Figure 2B shows the average
t-values across all eight authors as a function of the number of training epochs (final epoch:
t9) = 13.196,p = 3.41 x 1077). This latter plot provides an estimate of the performance
we might expect to see in the general case (e.g., across a larger set of authors). Table 1

summarizes the results of the t-tests for each author’s model after training is complete.

Model t-stat  df p-value

Baum 4839 31.53 3.69 x 10731
Thompson 22.35 1639 1.04 X 10713
Austen 50.64 47.38 6.48x10™%

Dickens 1637 17.84 3.46x10712
Fitzgerald 2594 23.13 1.55x10716
Melville 2338 2313 1.35x 1077
Twain 1674 1127 2.60x 107
Wells 3573 23.68 4.15x 1072

Table 1: Loss differences between same-author and other-author texts. Each row displays the
results of a f-test comparing the average loss values assigned by each author’s model (after training
is complete) to the author’s held-out text and to the other authors’ randomly sampled texts. See
Supplementary Materials for analogous tables using models trained on only content words (Supp.
Tab. 1), only function words (Supp. Tab. 2), and only parts of speech (Supp. Tab. 3).

Despite achieving perfect classification accuracy, not all authors are equally distinctive.
For example, we reasoned that authors with similar writing styles might be more confus-
able (i.e., yielding relatively smaller losses for models trained across different authors).
We computed the average loss for each author using the models trained on the other
authors’ texts (Fig. 3). Authors with similar writing styles (e.g., Baum and Thompson)
yield relatively small losses when evaluated using models trained on the other author’s
texts. In contrast, authors with more distinct writing styles (e.g., Austen and Thompson)
yield relatively large losses when evaluated using each other’s models. To illustrate these
patterns, we also project the losses into a 3D space using multidimensional scaling (MDS;

Kruskal, 1964) applied to the pairwise correlations between rows of the loss matrix, ex-
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Figure 3: Confusion matrix. The matrix displays the average cross-entropy loss assigned by
models trained on each author’s writing (column) to held-out texts from each author (row), after
subtracting the native author’s baseline loss. See Supplementary Materials for analogous plots
using models trained on only content words, function words, and parts of speech (Supp. Fig. 7).

cluding the diagonal entries (i.e., the losses obtained using each author’s model when
applied to their own held-out text; Fig. 4). We suggest that this approach might lend itself
to further exploration and consideration by literature scholars, particularly if extended to
a larger embedding space. For the purposes of our present work, however, we provide

the plot solely as a provocative demonstration.

3.2 Stylometric distance

As indicated by Figure 4, predictive comparison suggests a natural notion of distance
between authorial styles. Let L;(i) denote the average loss of a work of author i for a model
trained on author j (entry i, j of the average loss matrix in Fig. 3). Let m = L;(@) — Lj()),
normalizing the entries by subtracting the native author’s baseline loss. Then define the
LLM-based stylometric distance, d(i, j) = (m + r(])) Thus, Figure 4 is a visualization of

the relative “distances” among our author set.
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Figure 4: Multidimensional scaling plot. Three-dimensional MDS projection of the (symmetrized)
average cross-entropy loss matrix shown in Figure 3. See Supplementary Materials for analogous
plots using models trained on only content words, function words, and parts of speech (Supp.
Fig. 8).

3.3 Predictive attribution of the 15" Oz book

Attribution is another application of predictive comparison. We illustrate with the well-
known example of the contested authorship of the 15" Oz book (in a thirty-one book
series), widely believed to have been written by Ruth Plumly Thompson, but originally
attributed to L. Frank Baum (Binongo, 2003). We applied predictive comparison to the
15" Oz book, using models trained on Baum and Thompson’s undisputed Oz books. As
shown in the bottom left sub-panel of Figure 5, we find lower loss for the Thompson-
trained model than for the Baum-trained model, indicating that the contested book is
indeed more similar to Thompson’s writing style than to Baum’s. We also applied both

models to a non-Oz book by Baum (bottom center) and Thompson (bottom right). We see
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Figure 5: Cross-entropy loss across models and Oz authors. The top sub-panels replicate the
Baum (blue) and Thompson (orange) results from Figure 1—i.e., that a given Thompson is well-
distinguished from Baum and vice-versa (the two rightmost top sub-panels; error ribbons denote
bootstrap-estimated 95% confidence intervals over 10 random seeds). The bottom sub-panels show
the cross-entropy loss assigned to a held-out text whose authorship is contested (lower left), to a
held-out non-Oz text by Baum (lower center), and to a held-out non-Oz text by Thompson (lower
right). Le., the contested book shows lower loss for Thompson-trained models; a non-Oz Baum
book shows lower loss for Baum-trained models; and a non-Oz Thompson book shows lower loss
for Thompson-trained models.

lower losses for the correct author in each case, demonstrating that predictive comparison

is robust to thematic differences within the same author’s writings.

3.4 Ablation studies: content words, function words, and parts of speech

The above analyses show that LLMs trained on one author’s works can effectively capture
the distinctive statistical patterns of that author’s writing style. We carried out a series
of ablation studies to investigate the contributions of different aspects of writing style.
Specifically, we constructed three modified corpora for each author: (1) content-word-

only corpora, in which all function words were replaced with a special token; (2) function-
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word-only corpora, in which all content words were replaced with a special token; and
(3) part-of-speech-only corpora, in which each word was replaced with its corresponding
part-of-speech tag (see Investigating the contributions of function words, content words,
and parts of speech). We then re-trained our models on each of these modified corpora
and repeated the predictive comparison analyses (Supp. Figs. 1-6).

The models trained on the content-word-only corpora were intended to capture stylistic
patterns related to vocabulary choice and thematic content. The models trained on the
function-word-only corpora were intended to capture syntactic and grammatical patterns
that transcended story-specific content. Finally, the models trained on the part-of-speech-
only corpora were intended to capture higher-level syntactic patterns while abstracting
away from specific word choices. Models trained on a single author’s texts from each of
these modified corpora all converged, achieving training losses below 3.0 well within 500
training epochs (Supp. Figs. 1, 2, and 3).

We found that models trained on content-word-only corpora reliably learned author-
specific patterns for 6 of the 8 authors (Supp. Figs. 1 and 4, Supp. Tab. 1). Overall, by
the final training epoch, the average t-values across all models and held-out texts were
reliably greater than zero (#(9) = 8.438,p = 1.44 x 10~°). However, models trained only
on content words were significantly less effective at distinguishing authors than models
trained on the intact texts (£(11.77) = 3.21,p = 7.68 x 1073).

Models trained on function-word-only corpora reliably learned author-specific pat-
terns for 5 of the 8 authors (Supp. Figs. 2 and 5, Supp. Tab. 2). Overall, by the
final training epoch, the average t-values across all models and held-out texts were
reliably greater than zero (#9) = 4.428,p = 1.65 x 107%). These models were also sig-
nificantly less effective at distinguishing authors than models trained on the intact texts

(t(8.36) = 4.82,p = 1.15 x 1073), but not significantly different from models trained on
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content-word-only corpora (£(10.29) = 1.81,p = 0.100).

Models trained on part-of-speech-only corpora reliably learned author-specific pat-
terns for just 3 of the 8 authors (Supp. Figs. 3 and 6, Supp. Tab. 3). By the final training
epoch, the average t-values across all models and held-out texts were not reliably greater
than zero (£(9) = 1.616,p = 0.141). These models were significantly less effective at distin-
guishing authors than models trained on the intact texts (£(7.36) = 5.72,p = 6.01 x 107%),
models trained on content-word-only corpora (£(7.90) = 3.10,p = 1.49 X 1072), and models
trained on function-word-only corpora (#(10.41) = 2.11,p = 6.04 X 1072).

Taken together, these ablation results suggest that both content words and function
words contribute to the author-unique stylometric signatures captured by our models.
In contrast, grammatical structure alone, as reflected in part-of-speech sequences and
captured by our methodology, appears to be more similar across authors. Distinctiveness
notwithstanding, however, models trained on all of the corpora (intact texts, content-
word-only, function-word-only, and part-of-speech-only) all rapidly converged to low
training and evaluation losses. This indicates that all four corpora contain sufficient
statistical regularities for GPT-2 models to learn to reliably and accurately make next-

token predictions.

4 Discussion

We introduced predictive comparison, a method for stylometric analysis that leverages
the predictive capabilities of language models trained on individual authors” works. Our
approach rests on a straightforward principle: if a language model can learn to generate
text in an author’s style, then the cross-entropy loss of that model on held-out text should
reflect stylistic similarity. By training separate GPT-2 models for each author and com-

paring their predictive performance, we aimed to develop both a measure of stylometric
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distance and a practical tool for authorship attribution.

Our results demonstrate the effectiveness of this approach across multiple dimensions.
Models trained and tested on the same author consistently yielded lower cross-entropy
losses than models trained on different authors, achieving perfect classification accuracy
across all eight authors examined. This separation emerged rapidly during training:
for seven of eight authors, statistically significant discrimination was achieved after just
two training epochs. The resulting stylometric distances proved meaningful, clustering
authors with known stylistic similarities (e.g., Baum and Thompson) while maintaining
clear separation between all author pairs. Finally, our method successfully resolved the
well-studied attribution problem of the 15™ Oz book, confirming Thompson's authorship
in agreement with traditional stylometric analyses (Binongo, 2003).

We also conducted ablation studies to investigate the contributions of different aspects
of writing style. Models trained on content-word-only and function-word-only corpora
both captured author-specific patterns, though with reduced effectiveness compared to
models trained on intact texts. In contrast, models trained solely on part-of-speech se-
quences struggled to distinguish authors, suggesting that grammatical structure alone
is less distinctive. These findings highlight the importance of both lexical choice and

syntactic patterns in shaping authorial style.

4.1 Relationship to prior work

Our predictive comparison approach relates closely to recent work using language model
perplexity for authorship attribution (Huang et al., 2025), which independently developed
a similar methodology using fine-tuned (rather than trained-from-scratch) GPT-2 models.
Both approaches exploit the relationship between perplexity and cross-entropy loss, treat-

ing authorship attribution as a language modeling problem rather than a classification
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task. This convergent development suggests that predictive modeling may be a natural
framework for capturing authorial style.

The information-theoretic foundations of our approach connect to earlier work using
cross-entropy (Juola and Baayen, 2005) and relative entropy (Zhao et al., 2006) for stylome-
try. These methods recognized that authorial style manifests not just in feature frequencies
but in their sequential dependencies—precisely what language models are designed to
capture. Our contribution extends this line of reasoning to large language models, which
can learn these dependencies implicitly rather than requiring explicit feature engineering.

Compared to classification-based approaches using BERT (Fabien et al., 2020) or other
transformers (Uchendu et al., 2020), predictive comparison offers conceptual simplicity:
rather than training a single classifier to distinguish multiple authors, we train author-
specific models that embody each writer’s style. This approach naturally extends to open-
set attribution problems where new authors may be introduced without retraining existing
models. However, classification approaches may be more computationally efficient when
dealing with fixed author sets, as they require training only a single model.

Our reliance on books as training data contrasts with most contemporary stylometry
research, which typically uses shorter texts to enable larger author sets (Tyo et al., 2022).
While this limits our experimental scope, it ensures that our models capture sustained
stylistic patterns rather than topic-specific or context-dependent features that might dom-
inate shorter texts (Fincke and Boschee, 2024). The success on full-length books suggests

that predictive comparison can leverage the rich stylistic signal present in longer texts.

4.2 Limitations and challenges

Several limitations constrain the interpretation and application of our results. The most

immediate is the limited experimental scope; we examined only eight authors writing in
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English during overlapping historical periods. Whether predictive comparison maintains
its effectiveness across larger author sets, different languages, or more diverse time periods
remains an open question. The computational requirements of training separate models
for each author may become prohibitive for attribution problems involving hundreds or
thousands of candidate authors.

The opacity of large language models also presents interpretability challenges (Schuster
et al., 2020). While our method successfully discriminates between authors, understand-
ing which stylistic features drive this discrimination remains elusive. Unlike traditional
stylometry, where specific features (e.g., function word frequencies) can be examined
directly, the distributed representations learned by GPT-2 resist straightforward interpre-
tation. This “black box” nature may limit adoption in domains where explanations for
attribution decisions are required.

Cross-domain robustness represents another significant challenge. Prior work has
shown that language model-based authorship attribution methods can struggle when
training and test texts come from different genres or topics (Barlas and Stamatatos, 2020).
Our experiments used books from the same genre for each author, leaving cross-domain
performance unexplored. The strong performance on Baum and Thompson’s Oz books
versus their non-Oz works provides encouraging evidence, but systematic evaluation
across diverse domains is needed.

The vulnerability of language model-based methods to adversarial attacks (Quiring
et al., 2019) raises concerns about the reliability of predictive comparison in adversarial
settings. Authors attempting to disguise their style or imitate others might fool language
model-based attribution more easily than traditional methods that rely on subtler stylistic
habits that are difficult to intentionally emulate. Evaluating robustness against both

intentional obfuscation and unintentional style drift (e.g., authorial development over
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time) will be crucial for practical applications.

4.3 Future directions

Several research directions could address current limitations while extending the theo-
retical and practical reach of predictive comparison. Understanding the theoretical re-
lationship between cross-entropy loss and stylistic similarity would provide principled
foundations for the approach. Why does minimizing cross-entropy during training lead
to models that capture author-specific rather than general linguistic patterns? Connecting
language model objectives to stylometric theory could yield insights for both fields.

Developing hybrid approaches that combine predictive comparison with traditional
stylometric features or classification-based language-modeling methods might offset indi-
vidual weaknesses. For instance, using cross-entropy loss as one feature among many in
an ensemble model could improve robustness while maintaining interpretability through
traditional features. Alternatively, predictive comparison could provide initial attributions
that are refined using more interpretable methods.

The scalability challenge invites algorithmic innovations. Rather than training sep-
arate models from scratch for each author, could we use parameter-efficient fine-tuning
methods (Houlsby et al., 2019) to adapt a single base model? Could authors be represented
as vectors in a learned embedding space, with a single model conditioned on these em-
beddings? Such approaches might enable attribution among thousands of authors while
maintaining the conceptual advantages of predictive modeling.

Finally, exploring applications beyond attribution could demonstrate the broader util-
ity of modeling individual writing styles. For example, author-specific language models
might be used to assist in literary analysis by generating counterfactual texts, such as

what Austen might have written about modern themes (e.g., the impact of social media on
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relationships). These approaches might also help to identify stylistic development within
an author’s career, or trace influence networks among authors. These applications would
position predictive comparison within the broader landscape of computational literary

studies.

44 Concluding remarks

Just as prior work has shown that it is possible to train LLMs to write in the “style”
or “voice” of a given author (see e.g., Mikros, 2025), our work shows that LLMs may
also be used to predict authorship and measure the stylistic distances between different
authors. The predictive comparison method we have introduced offers a conceptually
straightforward approach: models trained on individual authors” works embody their
unique stylistic patterns, and the cross-entropy loss of these models on new texts provides
a natural measure of stylistic similarity.

The strong empirical results—perfect attribution accuracy and meaningful stylometric
distances—suggest that language models capture robust stylistic signatures, even when
trained on relatively limited data. The convergence of our approach with concurrent
work (Huang et al., 2025; Rezaei, 2025) indicates that the field may be moving toward
predictive modeling as a unifying framework for computational stylometry. Our finding
that models trained only on content words or function words can still capture author-
specific patterns highlights the multifaceted nature of writing style. Both lexical choice
and syntactic patterns appear to contribute to unique authorial signatures. In contrast,
models trained solely on part-of-speech sequences struggled to differentiate between most
authors, suggesting that grammatical structure alone is less distinctive. Overall, we sug-
gest that our approach holds promise as a new technique for machine reading approaches

to text-based disciplines (Holmes, 1998; Moretti, 2000, 2017) and the practices of cultural
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analytics (Underwood et al., 2013).
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Appendix: Authors, books, and tokens

Charles Dickens Tokens | Herman Melville Tokens
A Christmas Carol 38,906 I and My Chimney 15,341
Oliver Twist 216,100 Bartleby, the Scrivener 19,112
The Old Curiosity Shop 285,895 Israel Potter 88,570
Bleak House 471,630 Omoo 134,628
Dombey and Son 482,161 Mardi, Vol. 11 150,347
David Copperfield 479,387 The Confidence-Man 129,059
A Tale of Two Cities 181,593 White Jacket 190,577
Nicholas Nickleby 446,457 | Mardi, Vol. I 132,358
American Notes 129,214 Moby-Dick 285,066
The Pickwick Papers 432,546 | Typee 114,239
Great Expectations 244 897

Martin Chuzzlewit 455,995

Little Dorrit 449,230

Hard Times 142,759

Total 4,456,770 | Total 1,259,297
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L. Frank Baum Tokens | Ruth Plumly Thompson Tokens
Ozma of Oz 52,039 | The Giant Horse of Oz 51,036
Dorothy and the Wizard in Oz 53,849 | The Cowardly Lion of Oz 61,666
Tik-Tok of Oz 63,781 | Handy Mandy in Oz 44,778
The Road to Oz 52,866 | The Gnome King of Oz 51,687
The Magic of Oz 51,166 | Grampa in Oz 55,169
The Patchwork Girl of Oz 75,703 | Captain Salt in Oz 61,797
The Wonderful Wizard of Oz 49,686 | Ozoplaning with the Wizard of Oz 50,660
The Lost Princess of Oz 60,418 | The Wishing Horse of Oz 59,490
The Emerald City of Oz 70,781 | The Lost King of Oz 58,105
The Tin Woodman of Oz 57,338 | The Hungry Tiger of Oz 53,543
Rinkitink in Oz 62,241 | The Silver Princess in Oz 47,964
The Marvelous Land of Oz 54,733 | Kabumpo in Oz 62,693
Glinda of Oz 51,218 | Jack Pumpkinhead of Oz 49,661
The Scarecrow of Oz 59,593

Total 815,412 | Total 708,249

24



Jane Austen Tokens | Mark Twain Tokens
Sense And Sensibility 153,718 | Adventures Of Huckleberry Finn 147,655
Mansfield Park 201,611 | A Connecticut Yankee In King Arthur’S Court 150,327
Lady Susan 29,043 | Roughing It 208,545
Northanger Abbey 98,090 | The Innocents Abroad 246,321
Emma 207,830 | The Adventures Of Tom Sawyer, Complete 95,059
Pride And Prejudice 157,777 | The Prince And The Pauper 88,409
Persuasion 106,027

Total 954,096 | Total 936,316
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FE. Scott Fitzgerald Tokens | H. G. Wells Tokens
The Beautiful And Damned 168,147 | The Red Room 4,944
Flappers And Philosophers 84,707 | The First Men In The Moon 87,615
This Side Of Paradise 100,796 | The Island Of Doctor Moreau 55,967
All The Sad Young Men 85,411 | The Open Conspiracy 40,271
Tales Of The Jazz Age 109,997 | A Modern Utopia 105,810
The Pat Hobby Stories 51,069 | The Sleeper Awakes 98,228
The Great Gatsby 65,136 | The New Machiavelli 185,158
Tender Is The Night 145,925 | The War Of The Worlds 75,727
Tales Of Space And Time 94,711
The Invisible Man: A Grotesque Romance 65,584
The Time Machine 40,184
The World Set Free 80,518
Total 811,188 | Total 934,717

26



Supplementary materials for: A Stylometric Application of
Large Language Models

Harrison F. Stropkay, Jiayi Chen, Mohammad J. Latifi,
Daniel N. Rockmore, and Jeremy R. Manning
Dartmouth College
Hanover, NH 03755, USA
{harrison. f.stropkay.25, jiayi.chen.gr, mohammad.javad.latifi.jebelli
daniel.n.rockmore, jeremy.r.manning}@dartmouth.edu



Train Baum Thompson ) o Self .
10 ©  Other
40 . .
2 -
8 o © e e .
= 5 LY H . . $ .
35 o . :
Author ° ° H . .
Austen Dickens Fitzgerald W Baum ° [} H H 'l i
10 B Thompson 30 - 3 . < ° -
M Austen 2 0 g . s 3
" W Dickens 8 2 ° ' e 3 s ‘
g, W Fitzgerald -8 $ ® >
W Melville 25 H ?
H Twain : .
u Wells . 3 ‘
Melville Twain Wells . s e » ¢ 4
o 20 j . b < ° P < y ¢ g
g it "%
] Y 1 s
S f :
15 .
P o 20 w0 a0 o0 20 a0 400 Baum  Thompson Austen  Dickens Fitzgerald Melvile  Twain Wells
Epochs completed Epochs completed Epochs completed Training author

Supplementary Figure 1: Cross-entropy loss across models and authors using only content words. Follows
the general format of Figure 1 in the main text, but uses models trained on only content words. All function
words are masked out using <FUNC>. A. Average cross-entropy loss on Training data and held-out test data
from each author, plotted as a function of the number of training epochs. Each color denotes a model trained
on asingle author’s work. Error ribbons denote bootstrap-estimated 95% confidence intervals over 10 random
seeds. B. Cross-entropy loss assigned to held-out test data by each author’s model (x-axis). Held-out test data
is either from the same author (black) or from other authors (gray). Each dot denotes the average loss (across
all 1024-token chunks) for a single random seed.
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Supplementary Figure 2: Cross-entropy loss across models and authors using only function words. Follows
the general format of Figure 1 in the main text, but uses models trained on only function words. All content
words are masked out using <CONTENT>. A. Average cross-entropy loss on Training data and held-out test
data from each author, plotted as a function of the number of training epochs. Each color denotes a model
trained on a single author’s work. Error ribbons denote bootstrap-estimated 95% confidence intervals over 10
random seeds. B. Cross-entropy loss assigned to held-out test data by each author’s model (x-axis). Held-out
test data is either from the same author (black) or from other authors (gray). Each dot denotes the average loss
(across all 1024-token chunks) for a single random seed.
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Supplementary Figure 3: Cross-entropy loss across models and authors using only parts of speech. Follows
the general format of Figure 1 in the main text, but uses models trained on only parts of speech. All words
are replaced with their corresponding part of speech tag. A. Average cross-entropy loss on Training data
and held-out test data from each author, plotted as a function of the number of training epochs. Each color
denotes a model trained on a single author’s work. Error ribbons denote bootstrap-estimated 95% confidence
intervals over 10 random seeds. B. Cross-entropy loss assigned to held-out test data by each author’s model
(x-axis). Held-out test data is either from the same author (black) or from other authors (gray). Each dot
denotes the average loss (across all 1024-token chunks) for a single random seed.
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Supplementary Figure 4: Same vs. other author comparisons, by model, using only content words. Follows
the general format of Figure 2 in the main text, but uses models trained on only content words. All function
words are masked out using <FUNC>. A. Each curve denotes, as a function of the number of training epochs,
the the t-statistic from a t-test comparing the distribution of losses (across random seeds) assigned to held-out
texts from the given author (color) versus held-out texts from all other authors. B. The average t-statistic across
all eight authors, as a function of the number of training epochs. The black curves in both panels indicates the
average t-value corresponding to p = 0.001, for each epoch. Error ribbons denote bootstrap-estimated 95%
confidence intervals across authors.
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Supplementary Figure 5: Same vs. other author comparisons, by model, using only function words.
Follows the general format of Figure 2 in the main text, but uses models trained on only function words.
All content words are masked out using <CONTENT>. A. Each curve denotes, as a function of the number of
training epochs, the the t-statistic from a t-test comparing the distribution of losses (across random seeds)
assigned to held-out texts from the given author (color) versus held-out texts from all other authors. B. The
average t-statistic across all eight authors, as a function of the number of training epochs. The black curves
in both panels indicates the average t-value corresponding to p = 0.001, for each epoch. Error ribbons denote
bootstrap-estimated 95% confidence intervals across authors.
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Supplementary Figure 6: Same vs. other author comparisons, by model, using only parts of speech.
Follows the general format of Figure 2 in the main text, but uses models trained on only parts of speech. All
words are replaced with their corresponding part of speech tag. A. Each curve denotes, as a function of the
number of training epochs, the the t-statistic from a t-test comparing the distribution of losses (across random
seeds) assigned to held-out texts from the given author (color) versus held-out texts from all other authors.
B. The average t-statistic across all eight authors, as a function of the number of training epochs. The black
curves in both panels indicates the average t-value corresponding to p = 0.001, for each epoch. Error ribbons
denote bootstrap-estimated 95% confidence intervals across authors.
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Supplementary Figure 7: Confusion matrices. Follows the general format of Figure 3 in the main text, but
shows confusion matrices for models trained on only content words (A), only function words (B), and only
parts of speech (C). Within each panel, the matrix displays the average cross-entropy loss assigned by models
trained on each author’s writing (column) to held-out texts from each author (row), after subtracting the
native author’s baseline loss.
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Supplementary Figure 8: Multidimensional scaling plots. Follows the general format of Figure 4 in the
main text, but shows MDS projections of the (symmetrized) average cross entropy loss matrices shown in
Figure 7, for models trained on only content words (A), only function words (B), and only parts of speech (C).



Model t-stat df p-value

Baum 2058 6836 5.27x107
Thompson 329 1133 6.97x107°
Austen 2546 7033 3.20%x107%¥
Dickens 804 3739 1.13x107°
Fitzgerald 11.21 49.02 3.97x107"
Melville 128 10.28 0.2274

Twain 873 2250 1.12x1078
Wells 1579 71.87 453x10™%

Supplementary Table 1: Loss differences between same-author and other-author texts using only content
words. Follows the general format of Table 1 in the main text, but uses models trained on only content words.
Each row displays the results of a t-test comparing the average loss values assigned by each author’s model
(after training is complete) to the author’s held-out text and to the other authors’ randomly sampled texts.

Model t-stat  df p-value
Baum 897 2085 1.34x1078
Thompson 1020 2296 5.39x 10710
Austen -046  9.52 0.6581
Dickens 369 1746 1.73x1078
Fitzgerald 1152 7798 1.70x10718
Melville 208 17.29 0.0529
Twain 631 3466 3.14x107
Wells 449 1594 3.76x10™*

Supplementary Table 2: Loss differences between same-author and other-author texts using only function
words. Follows the general format of Table 1 in the main text, but uses models trained on only function
words. Each row displays the results of a t-test comparing the average loss values assigned by each author’s
model (after training is complete) to the author’s held-out text and to the other authors’ randomly sampled

texts.



Model t-stat df p-value

Baum 0.04 9.22 0.9695
Thompson  1.05 10.91 0.3179
Austen 572 7797 1.89x107

Dickens 441 62.85 4.14x10°°
Fitzgerald 043 1425 0.6704
Melville 0.81 11.98 0.4337
Twain 243  20.88 0.0240
Wells 405 5690 155x107*

Supplementary Table 3: Loss differences between same-author and other-author texts using only parts
of speech. Follows the general format of Table 1 in the main text, but uses models trained on only parts of
speech. Each row displays the results of a t-test comparing the average loss values assigned by each author’s
model (after training is complete) to the author’s held-out text and to the other authors’ randomly sampled
texts.
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