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Abstract

We show that large language models (LLMs) can be used to distinguish the writings

of different authors. Specifically, an individual GPT-2 model, trained from scratch on

the works of one author, will predict held-out text from that author more accurately

than held-out text from other authors. We suggest that, in this way, a model trained

on one author’s works embodies the unique writing style of that author. We first

demonstrate our approach on books written by eight different (known) authors. We

also use this approach to confirm R. P. Thompson’s authorship of the well-studied 15th

book of the Oz series, originally attributed to F. L. Baum.

1 Introduction

Herein we introduce predictive comparison, a new LLM-based relative stylometric measure.

It derives from a simple idea, that if an LLM can be trained to write like—i.e., in the

1

ar
X

iv
:2

51
0.

21
95

8v
1 

 [c
s.C

L]
  2

4 
O

ct
 2

02
5

https://arxiv.org/abs/2510.21958v1


style of—a given author by training on their work (e.g., Mikros, 2025), then the degree

to which such a model can predict another author’s work could be a measure of stylistic

similarity. This approach builds upon a growing body of work applying language models

to authorship attribution (Huang et al., 2025; Uchendu et al., 2020), extending established

information-theoretic methods in stylometry (Juola and Baayen, 2005; Zhao et al., 2006).

Recent work has demonstrated the effectiveness of using perplexity and cross-entropy

loss from fine-tuned language models for authorship attribution (Huang et al., 2025),

achieving state-of-the-art performance on standard benchmarks. Unlike traditional stylo-

metric approaches that rely on the direct articulation of particular features such as function

word frequencies (Mosteller and Wallace, 1963) or syntactic patterns (Holmes, 1998), large

language models can capture complex, hierarchical patterns in authorial style (Fabien

et al., 2020). This shift from explicit feature engineering to learned representations par-

allels broader trends in computational literary analysis (Moretti, 2000; Underwood, 2019)

and digital humanities (Hughes et al., 2012).

In this paper we show, using a small set of authors and their works, that large lan-

guage models capture author-specific writing patterns. Our method differs from related

approaches (Rezaei, 2025) in scale (we use entire books rather than individual sentences)

and in our reliance solely on cross-entropy loss as a measure of stylometric distance.

This in turn suggests a notion of stylometric distance derived from the cross-entropy loss

assigned to held-out texts by models trained on known works of different authors. We

believe this approach could be of use in considering questions of authorial influence and

stylistic evolution (Hughes et al., 2012). Lastly, this further suggests a literary attribution

tool (a common use of stylometric techniques; Binongo, 2003; Juola, 2008; Mosteller and

Wallace, 1963, 1984) that would assign an unknown or contested work to the model (and

author) under which predictive comparison generates the smallest loss. We illustrate this
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on the well-known attribution problem of the 15th book in the Oz series, confirming what

is now the accepted attribution.

2 Methods

In this section, we outline our methodology for identifying stylometric signatures using

large language models. For each selected author, we train a GPT-2 model (Radford et al.,

2019) on that author’s corpus. We then use the trained model to compute the cross-

entropy loss on held-out texts from both the target author and each of the other authors

in the dataset. By comparing these losses, we assess whether the model captures author-

specific stylistic patterns: a model trained on a given author should exhibit lower loss

when predicting that author’s own texts as compared to the texts of others.

2.1 Data and preprocessing

We consider a dataset comprising books by eight authors: Jane Austen, L. Frank Baum,

Charles Dickens, F. Scott Fitzgerald, Herman Melville, Rosemary Plumly Thompson,

Mark Twain, and H. G. Wells. We selected these authors because their writings are well-

represented in Project Gutenberg, are all in the public domain, and are written in English—

eliminating any potential confounds due to translation. For each book, we pre-process

the text by stripping Project Gutenberg metadata, publisher information, illustration tags,

transcriber notes, prefaces, tables of contents, and chapter headings. We standardize

whitespace, remove non-ASCII characters, and lowercase all alphabetic characters. Basic

statistics on token lengths and the full list of books used are provided in the Appendix.

To construct training data for each author, we randomly select one book to hold out for

evaluation and train their model using the remaining books. To ensure fair comparisons

across authors, we standardize the number of training tokens per author by truncating
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each author’s corpus. This token budget is determined by removing the longest book

from each author’s set and then taking the smallest of the (remaining) total token counts.

For our dataset, this yields a fixed training token budget of 643,041 tokens.

To construct a truncated corpus of 643,041 tokens for each author, we sample one

contiguous sub-sequence from each book in their training corpus (after holding out a to-

be-evaluated book). The length of the sub-sequence sampled from book i is proportional

to its original length:

lengthi = 643,041 ×
tokens in book i

total tokens in corpus
.

The starting position of each sub-sequence is chosen uniformly at random, ensuring the

sample fits within the book’s bounds. Finally, we shuffle and then concatenate the sampled

sub-sequences from each book, resulting in a single 643,041-token training sequence for

each author. This process is repeated for each of 10 random seeds, yielding 10 different

training corpora for each author.

2.2 Model architecture, training, and evaluation

For each author, we train GPT-2 language models from scratch using the GPT2LMHeadModel

class from the Hugging Face Transformers library with custom architecture settings: a

context window of 1024 tokens, an embedding dimension of 128, 8 transformer layers, and

8 attention heads per layer. We fit each model using the AdamW optimizer (Loshchilov

and Hutter, 2017) with a learning rate of 5×10−5 to minimize the cross-entropy loss on the

training data. We train models using a causal language modeling objective, whereby the

model iteratively predicts the next token in the sequence given all of the previous tokens

in the same training sequence.

We construct training samples by sampling 1024-token chunks from the truncated
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corpus for the given author and random seed (constructed as described above, using

contiguous sub-sequences selected from all but one of their books). Each training epoch

consists of 40 batches, each containing 16 sequences of 1024 tokens. This results in a total

of 655,360 tokens per epoch. We continue training until the cross-entropy loss falls to

3.0 or lower. (We decided on this threshold after taking random draws from the models

trained on Baum’s and Thompson’s Oz books and manually inspecting the quality of the

resulting samples.) Training to a fixed loss threshold (e.g., as opposed to training for a

fixed number of epochs) enables us to fairly compare model performance across authors,

which is the central component of our stylometric analyses.

We evaluate the models using the held-out book from the corresponding author. We

partition the held-out book into 1024-token chunks to ensure that each token in the evalu-

ation set contributes equally to the computed loss. We repeat the full process (of selecting

a held-out book at random and training the model using randomly selected samples from

the remaining books) using 10 different random seeds. This approach enables us to assess

the robustness of our results and to ensure that the models are not overfitting to a specific

book or random sample.

2.3 Investigating the contributions of function words, content words, and parts

of speech

In order to investigate the contributions of different types of words to the stylometric

signatures captured by our models, we carried out additional analyses using modified

corpora. First, we created content-word-only corpora by replacing all function words

with a special token, <FUNC>. Function words were identified using scikit-learn’s list of

English stop words (Pedregosa et al., 2011). Next, we created function-word-only corpora

by replacing all content (i.e., non-function) words with a <CONTENT> token. Finally, we
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A. B.


















Figure 1: Cross-entropy loss across models and authors. A. Average cross-entropy loss on
Training data and held-out test data from each author, plotted as a function of the number of
training epochs. Each color denotes a model trained on a single author’s work. Error ribbons
denote bootstrap-estimated 95% confidence intervals over 10 random seeds. B. Cross-entropy loss
assigned to held-out test data by each author’s model (x-axis). Held-out test data is either from
the same author (black) or from other authors (gray). Each dot denotes the average loss (across all
1024-token chunks) for a single random seed. See Supplementary Materials for analogous plots
using models trained on only content words (Supp. Fig. 1), only function words (Supp. Fig. 2),
and only parts of speech (Supp. Fig. 3).

created part-of-speech-only corpora by using the Natural Language Toolkit (NLTK; Bird

and Loper, 2004) to replace each word with its corresponding part-of-speech tag. We then

re-trained our models on each of these modified corpora, following the same methodology

as described above.

3 Results

3.1 Predictive comparison testing of eight classic authors

We carried out predictive comparison testing on eight classic authors (see Sec. 2.1). The

top-left sub-panel of Figure 1A (labeled “Train”) shows the average training loss for each

author’s model, computed over 10 random seeds. Training losses are comparable across

models, indicating that the models are trained to similar levels of performance. The

other sub-panels of Figure 1A show the average predictive (cross-entropy) loss, for each
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A. B.

Figure 2: Same vs. other author comparisons, by model. A. Each curve denotes, as a function of
the number of training epochs, the the t-statistic from a t-test comparing the distribution of losses
(across random seeds) assigned to held-out texts from the given author (color) versus held-out texts
from all other authors. B. The average t-statistic across all eight authors, as a function of the number
of training epochs. The black curves in both panels indicates the average t-value corresponding
to p = 0.001, for each epoch. Error ribbons denote bootstrap-estimated 95% confidence intervals
across authors. See Supplementary Materials for analogous plots using models trained on only
content words (Supp. Fig. 4), only function words (Supp. Fig. 5), and only parts of speech (Supp.
Fig. 6).

author’s model, on held-out texts from each author. For every author’s held-out text,

the model trained on the same author’s writings produces the lowest loss, indicating a

clear preference for its own author’s stylistic patterns. As shown in Figure 1B, across

every author we considered, and for every random seed, models trained and tested on the

same author always yield smaller losses than models trained on one author and tested on

another. Indeed, we achieve perfect (100%) classification accuracy when matching authors

with held-out texts by labeling the held-out text according to which model produces the

smallest loss.

We also wondered how many training epochs were required for the models to reliably

distinguish author styles. We compared the distributions (across random seeds) of average

cross-entropy losses for each author’s model computed for held-out text from the same

author versus for held-out text from other authors. Figure 2A displays the t-values from t-

tests comparing these same versus other loss distributions for each of the first 500 training

epochs. For all authors except Twain, the t-tests yielded p-values below 0.001 after just
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one or two epochs, indicating that the models rapidly acquire author-specific stylometric

patterns. For Twain, this threshold is crossed at epoch 77. Figure 2B shows the average

t-values across all eight authors as a function of the number of training epochs (final epoch:

t(9) = 13.196, p = 3.41 × 10−7). This latter plot provides an estimate of the performance

we might expect to see in the general case (e.g., across a larger set of authors). Table 1

summarizes the results of the t-tests for each author’s model after training is complete.

Model t-stat df p-value

Baum 48.39 31.53 3.69 × 10−31

Thompson 22.35 16.39 1.04 × 10−13

Austen 50.64 47.38 6.48 × 10−43

Dickens 16.37 17.84 3.46 × 10−12

Fitzgerald 25.94 23.13 1.55 × 10−16

Melville 23.38 23.13 1.35 × 10−17

Twain 16.74 11.27 2.60 × 10−9

Wells 35.73 23.68 4.15 × 10−22

Table 1: Loss differences between same-author and other-author texts. Each row displays the
results of a t-test comparing the average loss values assigned by each author’s model (after training
is complete) to the author’s held-out text and to the other authors’ randomly sampled texts. See
Supplementary Materials for analogous tables using models trained on only content words (Supp.
Tab. 1), only function words (Supp. Tab. 2), and only parts of speech (Supp. Tab. 3).

Despite achieving perfect classification accuracy, not all authors are equally distinctive.

For example, we reasoned that authors with similar writing styles might be more confus-

able (i.e., yielding relatively smaller losses for models trained across different authors).

We computed the average loss for each author using the models trained on the other

authors’ texts (Fig. 3). Authors with similar writing styles (e.g., Baum and Thompson)

yield relatively small losses when evaluated using models trained on the other author’s

texts. In contrast, authors with more distinct writing styles (e.g., Austen and Thompson)

yield relatively large losses when evaluated using each other’s models. To illustrate these

patterns, we also project the losses into a 3D space using multidimensional scaling (MDS;

Kruskal, 1964) applied to the pairwise correlations between rows of the loss matrix, ex-
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3.52 7.29 7.50 7.54 7.74 8.30 7.99 7.69

6.09 3.43 7.89 7.78 7.90 8.51 8.26 7.89

8.48 9.60 3.64 7.73 8.62 8.85 8.99 8.48

7.59 8.41 6.77 5.44 7.81 8.12 7.99 7.66

7.78 8.47 7.44 7.48 3.97 8.72 8.34 7.69

7.97 8.74 7.38 7.47 8.44 4.93 8.32 7.80

7.68 8.62 7.51 7.61 8.01 8.30 4.50 7.80

8.06 8.73 7.57 7.51 7.84 8.55 8.30 4.02

Figure 3: Confusion matrix. The matrix displays the average cross-entropy loss assigned by
models trained on each author’s writing (column) to held-out texts from each author (row), after
subtracting the native author’s baseline loss. See Supplementary Materials for analogous plots
using models trained on only content words, function words, and parts of speech (Supp. Fig. 7).

cluding the diagonal entries (i.e., the losses obtained using each author’s model when

applied to their own held-out text; Fig. 4). We suggest that this approach might lend itself

to further exploration and consideration by literature scholars, particularly if extended to

a larger embedding space. For the purposes of our present work, however, we provide

the plot solely as a provocative demonstration.

3.2 Stylometric distance

As indicated by Figure 4, predictive comparison suggests a natural notion of distance

between authorial styles. Let L j(i) denote the average loss of a work of author i for a model

trained on author j (entry i, j of the average loss matrix in Fig. 3). Let L j(i) = L j(i) − L j( j),

normalizing the entries by subtracting the native author’s baseline loss. Then define the

LLM-based stylometric distance, d(i, j) = 1
2

(

L j(i) + Li( j)
)

. Thus, Figure 4 is a visualization of

the relative “distances” among our author set.
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Figure 4: Multidimensional scaling plot. Three-dimensional MDS projection of the (symmetrized)
average cross-entropy loss matrix shown in Figure 3. See Supplementary Materials for analogous
plots using models trained on only content words, function words, and parts of speech (Supp.
Fig. 8).

3.3 Predictive attribution of the 15th
Oz book

Attribution is another application of predictive comparison. We illustrate with the well-

known example of the contested authorship of the 15th Oz book (in a thirty-one book

series), widely believed to have been written by Ruth Plumly Thompson, but originally

attributed to L. Frank Baum (Binongo, 2003). We applied predictive comparison to the

15th Oz book, using models trained on Baum and Thompson’s undisputed Oz books. As

shown in the bottom left sub-panel of Figure 5, we find lower loss for the Thompson-

trained model than for the Baum-trained model, indicating that the contested book is

indeed more similar to Thompson’s writing style than to Baum’s. We also applied both

models to a non-Oz book by Baum (bottom center) and Thompson (bottom right). We see

10



3

4

5

6

7

8

9

10

11

Lo
ss

Training Baum Thompson

100 200 300 400 500 600
Epochs completed

3

4

5

6

7

8

9

10

11

Lo
ss

Contested

100 200 300 400 500 600
Epochs completed

Non-Oz Baum

100 200 300 400 500 600
Epochs completed

Non-Oz Thompson

Figure 5: Cross-entropy loss across models and Oz authors. The top sub-panels replicate the
Baum (blue) and Thompson (orange) results from Figure 1—i.e., that a given Thompson is well-
distinguished from Baum and vice-versa (the two rightmost top sub-panels; error ribbons denote
bootstrap-estimated 95% confidence intervals over 10 random seeds). The bottom sub-panels show
the cross-entropy loss assigned to a held-out text whose authorship is contested (lower left), to a
held-out non-Oz text by Baum (lower center), and to a held-out non-Oz text by Thompson (lower
right). I.e., the contested book shows lower loss for Thompson-trained models; a non-Oz Baum
book shows lower loss for Baum-trained models; and a non-Oz Thompson book shows lower loss
for Thompson-trained models.

lower losses for the correct author in each case, demonstrating that predictive comparison

is robust to thematic differences within the same author’s writings.

3.4 Ablation studies: content words, function words, and parts of speech

The above analyses show that LLMs trained on one author’s works can effectively capture

the distinctive statistical patterns of that author’s writing style. We carried out a series

of ablation studies to investigate the contributions of different aspects of writing style.

Specifically, we constructed three modified corpora for each author: (1) content-word-

only corpora, in which all function words were replaced with a special token; (2) function-
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word-only corpora, in which all content words were replaced with a special token; and

(3) part-of-speech-only corpora, in which each word was replaced with its corresponding

part-of-speech tag (see Investigating the contributions of function words, content words,

and parts of speech). We then re-trained our models on each of these modified corpora

and repeated the predictive comparison analyses (Supp. Figs. 1–6).

The models trained on the content-word-only corpora were intended to capture stylistic

patterns related to vocabulary choice and thematic content. The models trained on the

function-word-only corpora were intended to capture syntactic and grammatical patterns

that transcended story-specific content. Finally, the models trained on the part-of-speech-

only corpora were intended to capture higher-level syntactic patterns while abstracting

away from specific word choices. Models trained on a single author’s texts from each of

these modified corpora all converged, achieving training losses below 3.0 well within 500

training epochs (Supp. Figs. 1, 2, and 3).

We found that models trained on content-word-only corpora reliably learned author-

specific patterns for 6 of the 8 authors (Supp. Figs. 1 and 4, Supp. Tab. 1). Overall, by

the final training epoch, the average t-values across all models and held-out texts were

reliably greater than zero (t(9) = 8.438, p = 1.44 × 10−5). However, models trained only

on content words were significantly less effective at distinguishing authors than models

trained on the intact texts (t(11.77) = 3.21, p = 7.68 × 10−3).

Models trained on function-word-only corpora reliably learned author-specific pat-

terns for 5 of the 8 authors (Supp. Figs. 2 and 5, Supp. Tab. 2). Overall, by the

final training epoch, the average t-values across all models and held-out texts were

reliably greater than zero (t(9) = 4.428, p = 1.65 × 10−3). These models were also sig-

nificantly less effective at distinguishing authors than models trained on the intact texts

(t(8.36) = 4.82, p = 1.15 × 10−3), but not significantly different from models trained on
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content-word-only corpora (t(10.29) = 1.81, p = 0.100).

Models trained on part-of-speech-only corpora reliably learned author-specific pat-

terns for just 3 of the 8 authors (Supp. Figs. 3 and 6, Supp. Tab. 3). By the final training

epoch, the average t-values across all models and held-out texts were not reliably greater

than zero (t(9) = 1.616, p = 0.141). These models were significantly less effective at distin-

guishing authors than models trained on the intact texts (t(7.36) = 5.72, p = 6.01 × 10−4),

models trained on content-word-only corpora (t(7.90) = 3.10, p = 1.49× 10−2), and models

trained on function-word-only corpora (t(10.41) = 2.11, p = 6.04 × 10−2).

Taken together, these ablation results suggest that both content words and function

words contribute to the author-unique stylometric signatures captured by our models.

In contrast, grammatical structure alone, as reflected in part-of-speech sequences and

captured by our methodology, appears to be more similar across authors. Distinctiveness

notwithstanding, however, models trained on all of the corpora (intact texts, content-

word-only, function-word-only, and part-of-speech-only) all rapidly converged to low

training and evaluation losses. This indicates that all four corpora contain sufficient

statistical regularities for GPT-2 models to learn to reliably and accurately make next-

token predictions.

4 Discussion

We introduced predictive comparison, a method for stylometric analysis that leverages

the predictive capabilities of language models trained on individual authors’ works. Our

approach rests on a straightforward principle: if a language model can learn to generate

text in an author’s style, then the cross-entropy loss of that model on held-out text should

reflect stylistic similarity. By training separate GPT-2 models for each author and com-

paring their predictive performance, we aimed to develop both a measure of stylometric
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distance and a practical tool for authorship attribution.

Our results demonstrate the effectiveness of this approach across multiple dimensions.

Models trained and tested on the same author consistently yielded lower cross-entropy

losses than models trained on different authors, achieving perfect classification accuracy

across all eight authors examined. This separation emerged rapidly during training:

for seven of eight authors, statistically significant discrimination was achieved after just

two training epochs. The resulting stylometric distances proved meaningful, clustering

authors with known stylistic similarities (e.g., Baum and Thompson) while maintaining

clear separation between all author pairs. Finally, our method successfully resolved the

well-studied attribution problem of the 15th Oz book, confirming Thompson’s authorship

in agreement with traditional stylometric analyses (Binongo, 2003).

We also conducted ablation studies to investigate the contributions of different aspects

of writing style. Models trained on content-word-only and function-word-only corpora

both captured author-specific patterns, though with reduced effectiveness compared to

models trained on intact texts. In contrast, models trained solely on part-of-speech se-

quences struggled to distinguish authors, suggesting that grammatical structure alone

is less distinctive. These findings highlight the importance of both lexical choice and

syntactic patterns in shaping authorial style.

4.1 Relationship to prior work

Our predictive comparison approach relates closely to recent work using language model

perplexity for authorship attribution (Huang et al., 2025), which independently developed

a similar methodology using fine-tuned (rather than trained-from-scratch) GPT-2 models.

Both approaches exploit the relationship between perplexity and cross-entropy loss, treat-

ing authorship attribution as a language modeling problem rather than a classification
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task. This convergent development suggests that predictive modeling may be a natural

framework for capturing authorial style.

The information-theoretic foundations of our approach connect to earlier work using

cross-entropy (Juola and Baayen, 2005) and relative entropy (Zhao et al., 2006) for stylome-

try. These methods recognized that authorial style manifests not just in feature frequencies

but in their sequential dependencies—precisely what language models are designed to

capture. Our contribution extends this line of reasoning to large language models, which

can learn these dependencies implicitly rather than requiring explicit feature engineering.

Compared to classification-based approaches using BERT (Fabien et al., 2020) or other

transformers (Uchendu et al., 2020), predictive comparison offers conceptual simplicity:

rather than training a single classifier to distinguish multiple authors, we train author-

specific models that embody each writer’s style. This approach naturally extends to open-

set attribution problems where new authors may be introduced without retraining existing

models. However, classification approaches may be more computationally efficient when

dealing with fixed author sets, as they require training only a single model.

Our reliance on books as training data contrasts with most contemporary stylometry

research, which typically uses shorter texts to enable larger author sets (Tyo et al., 2022).

While this limits our experimental scope, it ensures that our models capture sustained

stylistic patterns rather than topic-specific or context-dependent features that might dom-

inate shorter texts (Fincke and Boschee, 2024). The success on full-length books suggests

that predictive comparison can leverage the rich stylistic signal present in longer texts.

4.2 Limitations and challenges

Several limitations constrain the interpretation and application of our results. The most

immediate is the limited experimental scope; we examined only eight authors writing in
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English during overlapping historical periods. Whether predictive comparison maintains

its effectiveness across larger author sets, different languages, or more diverse time periods

remains an open question. The computational requirements of training separate models

for each author may become prohibitive for attribution problems involving hundreds or

thousands of candidate authors.

The opacity of large language models also presents interpretability challenges (Schuster

et al., 2020). While our method successfully discriminates between authors, understand-

ing which stylistic features drive this discrimination remains elusive. Unlike traditional

stylometry, where specific features (e.g., function word frequencies) can be examined

directly, the distributed representations learned by GPT-2 resist straightforward interpre-

tation. This “black box” nature may limit adoption in domains where explanations for

attribution decisions are required.

Cross-domain robustness represents another significant challenge. Prior work has

shown that language model-based authorship attribution methods can struggle when

training and test texts come from different genres or topics (Barlas and Stamatatos, 2020).

Our experiments used books from the same genre for each author, leaving cross-domain

performance unexplored. The strong performance on Baum and Thompson’s Oz books

versus their non-Oz works provides encouraging evidence, but systematic evaluation

across diverse domains is needed.

The vulnerability of language model-based methods to adversarial attacks (Quiring

et al., 2019) raises concerns about the reliability of predictive comparison in adversarial

settings. Authors attempting to disguise their style or imitate others might fool language

model-based attribution more easily than traditional methods that rely on subtler stylistic

habits that are difficult to intentionally emulate. Evaluating robustness against both

intentional obfuscation and unintentional style drift (e.g., authorial development over
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time) will be crucial for practical applications.

4.3 Future directions

Several research directions could address current limitations while extending the theo-

retical and practical reach of predictive comparison. Understanding the theoretical re-

lationship between cross-entropy loss and stylistic similarity would provide principled

foundations for the approach. Why does minimizing cross-entropy during training lead

to models that capture author-specific rather than general linguistic patterns? Connecting

language model objectives to stylometric theory could yield insights for both fields.

Developing hybrid approaches that combine predictive comparison with traditional

stylometric features or classification-based language-modeling methods might offset indi-

vidual weaknesses. For instance, using cross-entropy loss as one feature among many in

an ensemble model could improve robustness while maintaining interpretability through

traditional features. Alternatively, predictive comparison could provide initial attributions

that are refined using more interpretable methods.

The scalability challenge invites algorithmic innovations. Rather than training sep-

arate models from scratch for each author, could we use parameter-efficient fine-tuning

methods (Houlsby et al., 2019) to adapt a single base model? Could authors be represented

as vectors in a learned embedding space, with a single model conditioned on these em-

beddings? Such approaches might enable attribution among thousands of authors while

maintaining the conceptual advantages of predictive modeling.

Finally, exploring applications beyond attribution could demonstrate the broader util-

ity of modeling individual writing styles. For example, author-specific language models

might be used to assist in literary analysis by generating counterfactual texts, such as

what Austen might have written about modern themes (e.g., the impact of social media on
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relationships). These approaches might also help to identify stylistic development within

an author’s career, or trace influence networks among authors. These applications would

position predictive comparison within the broader landscape of computational literary

studies.

4.4 Concluding remarks

Just as prior work has shown that it is possible to train LLMs to write in the “style”

or “voice” of a given author (see e.g., Mikros, 2025), our work shows that LLMs may

also be used to predict authorship and measure the stylistic distances between different

authors. The predictive comparison method we have introduced offers a conceptually

straightforward approach: models trained on individual authors’ works embody their

unique stylistic patterns, and the cross-entropy loss of these models on new texts provides

a natural measure of stylistic similarity.

The strong empirical results—perfect attribution accuracy and meaningful stylometric

distances—suggest that language models capture robust stylistic signatures, even when

trained on relatively limited data. The convergence of our approach with concurrent

work (Huang et al., 2025; Rezaei, 2025) indicates that the field may be moving toward

predictive modeling as a unifying framework for computational stylometry. Our finding

that models trained only on content words or function words can still capture author-

specific patterns highlights the multifaceted nature of writing style. Both lexical choice

and syntactic patterns appear to contribute to unique authorial signatures. In contrast,

models trained solely on part-of-speech sequences struggled to differentiate between most

authors, suggesting that grammatical structure alone is less distinctive. Overall, we sug-

gest that our approach holds promise as a new technique for machine reading approaches

to text-based disciplines (Holmes, 1998; Moretti, 2000, 2017) and the practices of cultural
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analytics (Underwood et al., 2013).
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Appendix: Authors, books, and tokens

Charles Dickens Tokens Herman Melville Tokens

A Christmas Carol 38,906 I and My Chimney 15,341

Oliver Twist 216,100 Bartleby, the Scrivener 19,112

The Old Curiosity Shop 285,895 Israel Potter 88,570

Bleak House 471,630 Omoo 134,628

Dombey and Son 482,161 Mardi, Vol. II 150,347

David Copperfield 479,387 The Confidence-Man 129,059

A Tale of Two Cities 181,593 White Jacket 190,577

Nicholas Nickleby 446,457 Mardi, Vol. I 132,358

American Notes 129,214 Moby-Dick 285,066

The Pickwick Papers 432,546 Typee 114,239

Great Expectations 244,897

Martin Chuzzlewit 455,995

Little Dorrit 449,230

Hard Times 142,759

Total 4,456,770 Total 1,259,297
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L. Frank Baum Tokens Ruth Plumly Thompson Tokens

Ozma of Oz 52,039 The Giant Horse of Oz 51,036

Dorothy and the Wizard in Oz 53,849 The Cowardly Lion of Oz 61,666

Tik-Tok of Oz 63,781 Handy Mandy in Oz 44,778

The Road to Oz 52,866 The Gnome King of Oz 51,687

The Magic of Oz 51,166 Grampa in Oz 55,169

The Patchwork Girl of Oz 75,703 Captain Salt in Oz 61,797

The Wonderful Wizard of Oz 49,686 Ozoplaning with the Wizard of Oz 50,660

The Lost Princess of Oz 60,418 The Wishing Horse of Oz 59,490

The Emerald City of Oz 70,781 The Lost King of Oz 58,105

The Tin Woodman of Oz 57,338 The Hungry Tiger of Oz 53,543

Rinkitink in Oz 62,241 The Silver Princess in Oz 47,964

The Marvelous Land of Oz 54,733 Kabumpo in Oz 62,693

Glinda of Oz 51,218 Jack Pumpkinhead of Oz 49,661

The Scarecrow of Oz 59,593

Total 815,412 Total 708,249
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Jane Austen Tokens Mark Twain Tokens

Sense And Sensibility 153,718 Adventures Of Huckleberry Finn 147,655

Mansfield Park 201,611 A Connecticut Yankee In King Arthur’S Court 150,327

Lady Susan 29,043 Roughing It 208,545

Northanger Abbey 98,090 The Innocents Abroad 246,321

Emma 207,830 The Adventures Of Tom Sawyer, Complete 95,059

Pride And Prejudice 157,777 The Prince And The Pauper 88,409

Persuasion 106,027

Total 954,096 Total 936,316
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F. Scott Fitzgerald Tokens H. G. Wells Tokens

The Beautiful And Damned 168,147 The Red Room 4,944

Flappers And Philosophers 84,707 The First Men In The Moon 87,615

This Side Of Paradise 100,796 The Island Of Doctor Moreau 55,967

All The Sad Young Men 85,411 The Open Conspiracy 40,271

Tales Of The Jazz Age 109,997 A Modern Utopia 105,810

The Pat Hobby Stories 51,069 The Sleeper Awakes 98,228

The Great Gatsby 65,136 The New Machiavelli 185,158

Tender Is The Night 145,925 The War Of The Worlds 75,727

Tales Of Space And Time 94,711

The Invisible Man: A Grotesque Romance 65,584

The Time Machine 40,184

The World Set Free 80,518

Total 811,188 Total 934,717
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A. B.


















Supplementary Figure 1: Cross-entropy loss across models and authors using only content words. Follows
the general format of Figure 1 in the main text, but uses models trained on only content words. All function
words are masked out using <FUNC>. A. Average cross-entropy loss on Training data and held-out test data
from each author, plotted as a function of the number of training epochs. Each color denotes a model trained
on a single author’s work. Error ribbons denote bootstrap-estimated 95% confidence intervals over 10 random
seeds. B. Cross-entropy loss assigned to held-out test data by each author’s model (x-axis). Held-out test data
is either from the same author (black) or from other authors (gray). Each dot denotes the average loss (across
all 1024-token chunks) for a single random seed.
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
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





Supplementary Figure 2: Cross-entropy loss across models and authors using only function words. Follows
the general format of Figure 1 in the main text, but uses models trained on only function words. All content
words are masked out using <CONTENT>. A. Average cross-entropy loss on Training data and held-out test
data from each author, plotted as a function of the number of training epochs. Each color denotes a model
trained on a single author’s work. Error ribbons denote bootstrap-estimated 95% confidence intervals over 10
random seeds. B. Cross-entropy loss assigned to held-out test data by each author’s model (x-axis). Held-out
test data is either from the same author (black) or from other authors (gray). Each dot denotes the average loss
(across all 1024-token chunks) for a single random seed.
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





Supplementary Figure 3: Cross-entropy loss across models and authors using only parts of speech. Follows
the general format of Figure 1 in the main text, but uses models trained on only parts of speech. All words
are replaced with their corresponding part of speech tag. A. Average cross-entropy loss on Training data
and held-out test data from each author, plotted as a function of the number of training epochs. Each color
denotes a model trained on a single author’s work. Error ribbons denote bootstrap-estimated 95% confidence
intervals over 10 random seeds. B. Cross-entropy loss assigned to held-out test data by each author’s model
(x-axis). Held-out test data is either from the same author (black) or from other authors (gray). Each dot
denotes the average loss (across all 1024-token chunks) for a single random seed.
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A. B.

Supplementary Figure 4: Same vs. other author comparisons, by model, using only content words. Follows
the general format of Figure 2 in the main text, but uses models trained on only content words. All function
words are masked out using <FUNC>. A. Each curve denotes, as a function of the number of training epochs,
the the t-statistic from a t-test comparing the distribution of losses (across random seeds) assigned to held-out
texts from the given author (color) versus held-out texts from all other authors. B. The average t-statistic across
all eight authors, as a function of the number of training epochs. The black curves in both panels indicates the
average t-value corresponding to p = 0.001, for each epoch. Error ribbons denote bootstrap-estimated 95%
confidence intervals across authors.
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A. B.

Supplementary Figure 5: Same vs. other author comparisons, by model, using only function words.
Follows the general format of Figure 2 in the main text, but uses models trained on only function words.
All content words are masked out using <CONTENT>. A. Each curve denotes, as a function of the number of
training epochs, the the t-statistic from a t-test comparing the distribution of losses (across random seeds)
assigned to held-out texts from the given author (color) versus held-out texts from all other authors. B. The
average t-statistic across all eight authors, as a function of the number of training epochs. The black curves
in both panels indicates the average t-value corresponding to p = 0.001, for each epoch. Error ribbons denote
bootstrap-estimated 95% confidence intervals across authors.

3

















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A. B.

Supplementary Figure 6: Same vs. other author comparisons, by model, using only parts of speech.
Follows the general format of Figure 2 in the main text, but uses models trained on only parts of speech. All
words are replaced with their corresponding part of speech tag. A. Each curve denotes, as a function of the
number of training epochs, the the t-statistic from a t-test comparing the distribution of losses (across random
seeds) assigned to held-out texts from the given author (color) versus held-out texts from all other authors.
B. The average t-statistic across all eight authors, as a function of the number of training epochs. The black
curves in both panels indicates the average t-value corresponding to p = 0.001, for each epoch. Error ribbons
denote bootstrap-estimated 95% confidence intervals across authors.

A. Content words only B. Function words only C. Parts of speech

Supplementary Figure 7: Confusion matrices. Follows the general format of Figure 3 in the main text, but
shows confusion matrices for models trained on only content words (A), only function words (B), and only
parts of speech (C). Within each panel, the matrix displays the average cross-entropy loss assigned by models
trained on each author’s writing (column) to held-out texts from each author (row), after subtracting the
native author’s baseline loss.
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A. B. C.Content words only Function words only Parts of speech

Supplementary Figure 8: Multidimensional scaling plots. Follows the general format of Figure 4 in the
main text, but shows MDS projections of the (symmetrized) average cross entropy loss matrices shown in
Figure 7, for models trained on only content words (A), only function words (B), and only parts of speech (C).
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Model t-stat df p-value

Baum 20.58 68.36 5.27 × 10−31

Thompson 3.29 11.33 6.97 × 10−3

Austen 25.46 70.33 3.20 × 10−37

Dickens 8.04 37.39 1.13 × 10−9

Fitzgerald 11.21 49.02 3.97 × 10−15

Melville 1.28 10.28 0.2274
Twain 8.73 22.50 1.12 × 10−8

Wells 15.79 71.87 4.53 × 10−25

Supplementary Table 1: Loss differences between same-author and other-author texts using only content
words. Follows the general format of Table 1 in the main text, but uses models trained on only content words.
Each row displays the results of a t-test comparing the average loss values assigned by each author’s model
(after training is complete) to the author’s held-out text and to the other authors’ randomly sampled texts.

Model t-stat df p-value

Baum 8.97 20.85 1.34 × 10−8

Thompson 10.20 22.96 5.39 × 10−10

Austen -0.46 9.52 0.6581
Dickens 3.69 17.46 1.73 × 10−3

Fitzgerald 11.52 77.98 1.70 × 10−18

Melville 2.08 17.29 0.0529
Twain 6.31 34.66 3.14 × 10−7

Wells 4.49 15.94 3.76 × 10−4

Supplementary Table 2: Loss differences between same-author and other-author texts using only function
words. Follows the general format of Table 1 in the main text, but uses models trained on only function
words. Each row displays the results of a t-test comparing the average loss values assigned by each author’s
model (after training is complete) to the author’s held-out text and to the other authors’ randomly sampled
texts.
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Model t-stat df p-value

Baum 0.04 9.22 0.9695
Thompson 1.05 10.91 0.3179
Austen 5.72 77.97 1.89 × 10−7

Dickens 4.41 62.85 4.14 × 10−5

Fitzgerald 0.43 14.25 0.6704
Melville 0.81 11.98 0.4337
Twain 2.43 20.88 0.0240
Wells 4.05 56.90 1.55 × 10−4

Supplementary Table 3: Loss differences between same-author and other-author texts using only parts
of speech. Follows the general format of Table 1 in the main text, but uses models trained on only parts of
speech. Each row displays the results of a t-test comparing the average loss values assigned by each author’s
model (after training is complete) to the author’s held-out text and to the other authors’ randomly sampled
texts.
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