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Abstract By examining the historical temperature record during the industrial era, we can infer the climate's
sensitivity to radiative perturbations, given knowledge of historical forcings. Energy conservation enforces a
negative correlation between the climate feedback and historical forcing for a given change in global-mean
temperature. Here, we examine the negative correlation between the radiative forcing due to aerosol-cloud
interactions and the shortwave cloud feedback to warming that appears in a perturbed parameter ensemble
(PPE). The PPE is not tuned to match the historical record, yet a negative correlation emerges over the
extratropics due to the combined effects of liquid cloud precipitation efficiency and radiative saturation in the
shortwave. Using an energy balance model, we argue that these processes combine to push Earth System
Models to yield a temperature record in keeping with observations, but also limit our ability to constrain future
warming posterior with the temperature record.

Plain Language Summary Clouds play an important role in Earth's energy budget by reflecting solar
radiation back to space and by absorbing and re-emitting thermal radiation. As the planet warms, cloud
properties may change, which can either amplify or dampen global warming—a process known as cloud
feedback. In addition to changes caused by warming, aerosols interact with clouds in complex ways, further
modifying cloud properties. This is referred to as aerosol-cloud interactions. Understanding how clouds
respond to both warming and changing aerosol emissions, and how these responses affect radiation is critical for
constraining future climate projections. In this study, we examine the changes in cloud properties and radiation
in response to warming and aerosol perturbations using a climate model run many times with modified
parameters. The results show that the radiative response to both warming-induced and aerosol-induced cloud
changes is primarily governed by how efficiently clouds convert their water content into precipitation. In this
context, we illustrate how the interplay of cloud, precipitation, and radiative processes affect the ability of
models to match the historical temperature record and in turn, how the historical temperature record can be used
to provide constraint on future warming.

1. Introduction

Clouds play an important role in regulating Earth's energy budget. The radiative response at the top of the at-
mosphere (TOA) due to the presence of clouds is referred to as cloud radiative effect (CRE: W/m?). The net CRE
on Earth's climate depends on cloud type, altitude, and coverage (Boucher et al., 2013). As the planet warms with
increasing greenhouse gases (GHGs) emissions, the change in cloud properties in response to warming may lead
to the change in TOA radiative flux (ACRE) and consequently an amplified or dampened global warming, known
as cloud feedback (A.,: W/m?/K) (Zelinka et al., 2020). Cloud feedback is the primary source of uncertainty in
the total radiative feedback response to increasing GHGs, which is composed of cloud feedback 1., and non-
cloud feedback 4,4 (Ceppi et al., 2017; Eyring et al., 2016; Taylor et al., 2012; Zelinka et al., 2020), given by

A= /Icld + /Irmncld (1)

where the non-cloud feedbacks 4,,,,., arise from changes in water vapor, surface albedo and atmospheric tem-
perature (B. J. Soden & Held, 2006). They are less uncertain relative to cloud feedback.
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In addition to cloud response to warming, anthropogenic aerosols provide an additional mechanism for inducing
cloud changes. Aerosols can act as cloud condensation nuclei during cloud formation, altering the Earth's energy
budget through changes in cloud properties (ACI: aerosol-cloud interactions). First, aerosols may change cloud
reflectivity through changes in cloud microphysical properties such as cloud droplet number concentration (Nd)
and cloud droplet size (Twomey, 1977). Second, cloud macrophysics (cloud extent and the amount of cloud
condensate) may be altered due to change in Nd and cloud droplet size (Ackerman et al., 2004; Albrecht, 1989).
The change in TOA radiative flux due to the combined effects from changes in cloud microphysics and mac-
rophysics is the effective radiative forcing due to ACI (ERF,.;: W/m?) (Bellouin et al., 2020). ERF,; is the
leading source of uncertainty in the total radiative forcing from aerosols ERF,,,, given in

ERFaer = ERFari + ERElci (2)

The direct radiative forcing from aerosol-radiation interactions (ERF,,;) is less uncertain and contributes less to
ERF,,, than ERF,; (Bellouin et al., 2020; C. J. Smith et al., 2020). ERF,; and cloud feedback can each be further
decomposed into shortwave and longwave components. In this study, we focus our analysis on the shortwave
component of both ERF,; and cloud feedback 4, which is the dominant source of intermodel spread (Bellouin
et al., 2020; Sherwood et al., 2020; Zelinka et al., 2020).

Previous studies have examined the relationship between ERF,.; and 1.,,. A negative correlation between ERF;
and 4., has been found in fully-coupled Earth System Models (ESMs) (Andrews et al., 2012; Kiehl, 2007; Wang
et al., 2021; Webb et al., 2013). Wang et al. (2021) suggest that the negative correlation between 4.,; and ERF,;
across ESMs may be a result of tuning cloud-related parameters. This tuning can occur either explicitly, by
adjusting parameters directly, or implicitly, through modifications to model physics during development when the
climate sensitivity appears unrealistic. As a result, ESMs may be tuned to have more positive 4., and more
negative ERF,;, or vice-versa as a result of energy conservation (Mauritsen et al., 2012). The concept of energy
conservation means that the relationship between the global-mean near-surface air temperature response AT,
radiative forcing AF, and climate feedback parameter A can be related using

AN = AF + AAT 3)

where AN is the net TOA radiative flux anomaly. Considering TOA radiative flux perturbations only resulting
from cloud changes, the total cloud radiative response ACRE,,, can be decomposed into the radiative response
from changes in clouds driven by surface warming (i.e., cloud feedback) and ACI (Wang et al., 2021; B. Soden &
Chung, 2017), given by

ACREmt = ERFaci + ACREwarming (4)

We note that ACRE,,, here includes cloud masking effect: the presence of clouds tends to obscure part of the
radiative effects of non-cloud feedbacks (B. J. Soden et al., 2004). We do not attempt to separate the masking
effect from the true cloud feedback in this work. Assuming the cloud radiative response to warming is propor-
tional to global-mean surface warming (Gregory et al., 2004), the cloud radiative response to warming can be
estimated by cloud feedback parameter multiplied by surface temperature perturbation

ACRE,UI = ERFaci + ﬂ,ﬂldAT (5)

As a result, ERF,; and 1., tend to be anti-correlated when models are forced to match with historical records
(e.g., ACRE,,,, AT) by turning parameters in fully-coupled ESMs. This equation is intended as an illustration. In
practice, climate models are more commonly tuned to match the TOA radiation balance and surface temperature
(i.e., AT), rather than changes in CRE. ACRE remains too uncertain observationally to serve as direct tuning
targets. However, tuning cloud-related parameters to match the historical record may implicitly lead to agreement
with observed changes in CRE (ACRE).

Instead of looking at fully-coupled ESMs, we examine ERF,. and cloud feedback 4., using a Perturbed
Parameter Ensemble (PPE) from the Community Atmosphere Model version 6 (CAM6). A negative correlation
between global mean shortwave cloud feedback 4., and global mean ERF,; emerges across the CAM6 PPE, for
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which parameters are not tuned with the intention of matching historical record across simulations (Figure Sla in
Supporting Information S1). As in Gettelman et al. (2024), there is substantial spread among ensemble members,
but there is a statistically robust relationship that emerges between these terms. The result indicates that the
negative correlation between 4., and ERF,; is insensitive to constraining TOA flux to observations.

Gettelman et al. (2024) traced the negative correlation to cloud and precipitation processes. Here we examine this
behavior in the context of recent work highlighting how precipitation and cloud processes couple with radiation
(Song et al., 2024). Unlike Song et al. (2024) that primary focus on the radiative buffering on aerosol forcing, this
work provides a physically based explanation of how radiative buffering simultaneously influences both aerosol
forcing and cloud feedback and examine how this dual role contributes to their negative correlation.

Finally, in the context of a zero-dimensional energy balance model (Forster, 2016), we illustrate how the interplay
of cloud, precipitation, and radiative processes affects the ability of ESMs to match the historical temperature
record and in turn of the historical temperature record to provide constraint on future warming.

2. Data and Methods
2.1. CAMG6 Perturbed Parameter Ensemble

CAMB6 is the atmosphere component of the Community Earth System Model 2 (CESM2) (Danabasoglu
et al., 2020). The CAM6 allows a two-moment microphysics scheme for stratiform cloud microphysics for which
cloud hydrometers (e.g., liquid droplets, ice crystals, rain and snow) are calculated using prognostic equations
(Gettelman et al., 2015). It permits more realistic representations on the number concentration and mass mixing
ratio of hydrometers than one-moment microphysics scheme, thus a more robust interaction between aerosols,
clouds, and radiation.

A PPE is created with CAMG6. A PPE is an ensemble of simulations with unique parameter combinations within a
defined parameter range based on expert-elicitation. In this study, CAM6 PPE is perturbed with 45 parameters
related to aerosols, their activation, cloud microphsics, turbulence, and convection. It consists of 262 simulations
with combinations of 45 parameters sampled from latin hypercube, enabling efficient coverage of parameter
space (Eidhammer et al., 2024). A full list of perturbed parameters is given in Table S1 in Supporting
Information S1.

We evaluate cloud radiative response from changes in clouds driven by surface warming (i.e., cloud feedback)
using paired Present-day (PD) and SST4k (i.e., SST uniformly increased by 4K) simulations. PD and SST4K
simulations are completed using the same model configuration and parameter sets except setting the SST uni-
formly increased by 4K in SST4K simulations (Cess et al., 1989). The detailed model configuration can be found
in Eidhammer et al. (2024).

To evaluate cloud radiative response due to anthropogenic aerosols, we use paired preindustrial (PI) and PD
simulations integrated for 2 years from 2019 to 2020. We note that 2020 was a weak El Nifio, but we believe it has
minimal impact on our results, as we analyze 2-year and extratropical-averaged aerosol forcing and cloud feedback,
which helps reduce the impact of short-term and internal variability. Furthermore, the anticorrelation identified in
the PPE is also evident in fully coupled model ensembles with 50-year simulation (Wang et al., 2021), suggesting
that it is a robust feature. In these simulations, the atmosphere is nudged to horizontal winds and temperature from
the NASA Modern-Era Retrospective analysis for Research and Applications, Version 2 (MERRA?2) (Molod
etal., 2015) as detailed in Song et al. (2024). SSTs are also prescribed from the MERRA-2 reanalysis. This setup
suppresses the surface temperature feedback and limits the potential for regional feedbacks initiated by aerosol
perturbations. PI simulations are completed using the same model configuration and parameter sets as PD except
setting the aerosol emissions to 1850 levels. Nudging configuration is needed for the calculations of aerosol forcing
as it reduces the variability in aerosol forcing induced by meteorological variabilities. In our setup, 2-year inte-
gration is able to produce a stable aerosol forcing without additional years of simulations, while extending to longer
simulations would be computationally expensive (Song et al., 2024). One caveat to our analysis is that all simu-
lations are run in atmosphere-land mode as opposed to fully-coupled. Coupling PPE members is usually not
possible (Sexton et al., 2021) and if possible, computationally expensive. Early studies pointed to disconnects
between uniform warming (Cess-type) cloud feedbacks and the feedback calculated from fully-coupled models
(Ringer et al., 2006; Senior & Mitchell, 1993). However, studies of modern ESMs suggest that the correspondence
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between the feedback simulated by fully-coupled and Cess-type simulations is substantially stronger than previ-
ously reported (Qin et al., 2022).

2.2. Analysis Approach

For each paired simulations (i.e., PD and SST4K, PD and PI), we evaluate their cloud macrophysical property
response and cloud radiative response to surface warming and aerosols. The variables analyzed in this study are
detailed in Text S1 and Table S2 in Supporting Information S1.

The goal of this study is to characterize the interaction between cloud radiative response to surface warming and
aerosols using precipitation and cloud radiative processes. Precipitation efficiency describes how effectively a
certain amount of water condensate in a cloud can be converted into precipitation (Li et al., 2022), given in

P
PE=__ 6
W (6)

where CWP is the condensed water path, which represents the column-integrated cloud liquid and ice content. P,
is the surface precipitation including both liquid and ice precipitation. A full list of CAM6 PPE variables analyzed
in this study is given in Table S2 in Supporting Information S1.

We restrict our study domain in extratropics in both hemispheres. The extratropics is a region of moisture
convergence in the present-day climate (McCoy et al., 2022), which is also evident in the CAM6 PPE simulations
(Figure S2 in Supporting Information S1). We choose this region because the Northern extratropics dominate
ERF,; (Song et al., 2024; Wall et al., 2022) and because of the large inter-model spread in extratropical shortwave
feedback in the Southern Hemisphere (Zelinka et al., 2020). The tropics are also a region of strong moisture
convergence but are excluded from our reanalysis because ESMs don't typically include aerosol-cloud in-
teractions in deep convection, which makes it hard to interpret results. We examine the CRE in the extratropics in
both hemispheres in the CAM6 PPE in the latitude range of 50° to 80° (Figure S2 in Supporting Information S1),
although extending the study region to global does not significantly change the results.

2.3. Energy Balance Model

We illustrate how the correlations between ERF,.; and cloud feedback, driven by the interplay of cloud, pre-
cipitation, and radiative processes, affect the ability of ESMs to match the historical temperature record. We also
show the role of correlations in constraining future warming with historical temperature record.

Finite amplitude Impulse Response version 2 (FalRv2.0) is a highly parameterized, zeroth-dimension model that
simulates globally averaged variables (Leach et al., 2021). We use the FalRv2.0 energy balance model to simulate
temperature predictions under different combinations of ERF,.; and cloud feedback. Following Watson-Par-
ris (2025); Cummins et al. (2020), the configuration of FalR model is tuned to match the deep-ocean heat uptake
simulated from fully-coupled CESM?2 model. The parameters used in this study are in Table S3 in Supporting
Information S1, consistent with the setting in Watson-Parris (2025).

We generate 1,000 paired samples of ERF,; and cloud feedback from a bivariate normal distribution. This is
intended to represent a prior on what a plausible climate model might look like in terms of its representation of
ERF,.; and cloud feedback processes. The distributions capture the uncertainty ranges of ERF,. and cloud
feedback reported in 6th Assesment Report (AR6). To explore how correlations between ERF,.; and cloud
feedback impact ESMs to predicting future temperature, we generate 3 sets of 1,000 paired samples of ERF,; and
cloud feedback with imposed correlation coefficients of 0.6, —0.6, and 0 (Figure S3 in Supporting
Information S1).

To simulate historical temperature projections under the assumptions of different correlations between ERF,; and
cloud feedback, we derive ERF,, as a function of emissions for each scenario of correlation (ERF,.(E))
following the scaling method from Watson-Parris (2025), given by

ERF,(E) = ERF,(E0) (%) v
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Where ERF,;(0) = —0.84 W/m? is the central estimate from AR6 (C. Smith et al., 2021). ERF,,; is from the
jointly sampled 1,000 ERF,,; in a normal distribution. ERF,;(EO) is the time-series of ERF,.; from AR6 best
estimate (Watson-Parris, 2025; C. Smith et al., 2021). The total imposed forcing in the FalR model is the sum of
the forcing from ACI contributions and the non-ACI components

ERF;‘UI = ERFau(E) + ERFnonaci(E) (8)

where ERF,,,,,..(E) is calculated from ARG best estimate ERF (C. Smith et al., 2021). The total climate feedback
Ay 15 estimated as the default total climate feedback 4,,,(, add the difference between the jointly sampled cloud
feedback 4., and the default cloud feedback 4., following Watson-Parris (2025).

Aior = Aior0  Acta = Acido )

where the default total climate feedback 4,,,( is set to 0.65 in our configurative following Watson-Parris (2025),
and the default cloud feedback parameter is set to 0.5 (Gettelman et al., 2019; Watson-Parris, 2025). We note that,
in the FalR model, a positive value of total climate feedback indicates stabilization, in contrast to the conventional
definition where negative values imply stability. For each combination of ERF,; and cloud feedback, we use FalR
model to simulate the historical and future temperature predictions. Within this set up, the simulated temperature
trajectory from FalR model is generally consistent with observational record and AR6 model estimate shown in
Watson-Parris (2025).

2.4. Observational Constraints

Global mean surface temperature was 1.09°C [0.95 to 1.20°C] higher in 2011-2020 compared to 1850-1900
according to IPCC (2023). We reject samples that fail to reproduce historical global temperature change dur-
ing this period.

3. Results

The ERF,,; calculated in this study (i.e., nudged CAM6 PPE) shows good agreement over the extratropics with the
ERF,

a

;i values calculated from the free-running CAM6 PPE in Gettelman et al. (2024) (Figure S4 in Supporting
Information S1). Disagreement in ERF,; between the two model configurations appears in tropical regions.
Following Song et al. (2024), we exclude 45 PPE members from our analysis as these members results in runaway
ice cloud fractions exceeding 50% over the tropics, inconsistent with satellite observations.

3.1. Cloud Responses to SST4K and Aerosols

Cloud macrophysical property changes in response to warming and anthropogenic aerosols, resulting in changes
in CRE. Within extratropics, we see that the cloud radiative response to warming (ACRE,,qing: W/ m?) is well
correlated with the macrophysical cloud response to warming SST (ALWP, ,ine: W/ m?) with a r-value of —0.78
(Figure 1a). An increase in LWP with warming corresponds to a stronger negative feedback and vice-versa.
However, the correlation between ACRE,,qying and ALWP, .., degrades quickly in the negative cloud feed-
back (or positive ALWP,;,,,iy,) regime with a r-value of —0.33 (Figure 1a).

Similarly, we see a negative correlation between cloud radiative response to anthropogenic aerosol (ERF,;:
W/m?) and macrophysical cloud response to aerosol (ALWP,,,,.,) With a r-value of —0.3. The correlation
coefficient between ERF,,; and ALWP,,, ., is similar with the value of correlation coefficient between
ACRE,4ming and ALWP, .., when a positive of LWP response is simulated (Figures la and 1b).

As the LWP response correlates negatively with cloud radiative response in both warming- and aerosol-driven
cloud changes (Figures la and 1b), we suspect that the relationship between ALWP,,o5 and ALWP,,ine
provides insight into the negative correlation between cloud feedback and ERF,.;. However, the correlation
between ALWP,,, .5, and ALWP, i, is not negative and is even slightly positive (Figure S1b in Supporting
Information S1). This apparent disagreement between the LWP response correlation and the radiative response
correlation suggests that additional physical processes influence the relationship between ACRE,,ming
and ERF,,.
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Figure 1. The cloud radiative response as a function of liquid water path (LWP) response to (a) warming and (b) aerosols and colored by LWP response across the CAM6
PPE members. (c) The cloud radiative response as a function of LWP response to warming scaled by albedo susceptibility to LWP across the CAM6 PPE members.
(d) Similar to (c) but showing the cloud radiative response as a function of liquid water path response to aerosols scaled by albedo susceptibility to LWP. In (a), two
regression lines are shown: the solid black line represents the linear regression across all points, while the blue dashed line represents the regression based only on points
with negative cloud feedback. Both LWP and cloud radiative responses are calculated as extratropically averaged quantities over both hemispheres. LWP is grid-box

averaged.

As discussed in McCoy et al. (2022) and Song et al. (2024), the scaling of cloud macrophysical processes by the
sensitivity of top of atmosphere radiation to LWP is critical to understanding the ACRE,,,,,, and ERF,;,
respectively. However, neither study examines the radiative buffering of both forcing and feedback together, nor
the correlation between them. Building on these studies, we demonstrate that when the LWP response to
anthropogenic aerosol and warming is scaled by da/0LWP as defined in Song et al. (2024), strong negative
correlations between the cloud radiative response and the LWP response emerge on both warming- and aerosol-
driven cloud changes (Figures 1c and 1d). This suggests that the negative correlation between cloud feedback and
ERF,,; is driven both by variation in the albedo susceptibility term da/0LWP, and by the response of macro-
physical cloud properties to warming and aerosol perturbation. The variation in da/dLWP is due to the nonlinear
relationship between LWP and albedo, which has been demonstrated theoretically in Stephens (1978).

3.2. Role of Precipitation Efficiency

As suggested in Gettelman et al. (2024), precipitation processes must play a role in setting the behavior of the
albedo susceptibility term and the emergent correlation between cloud feedback and ERF, ;. The link between
precipitation efficiency (PE) and macrophysical cloud property (e.g., LWP) is shown in a strong inverse rela-
tionship across the CAM6 PPE ensembles (Figure S5 in Supporting Information S1). This relationship is
reasonable to expect, as the large-scale circulation enforces a precipitation demand on the atmosphere. As pre-
cipitation efficiency decreases, the amount of cloud required to meet this demand must rise. However, as LWP
rises with decreasing precipitation efficiency, the albedo susceptibility falls (Figures 2a and 2b: red dots). This is
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Figure 2. LWP response (ALWP) to (a) warming ALWP,;,,,,, and (b) aerosols ALWP,,,,,, anticorrelate with albedo susceptibility (da/dLWP) across CAM6 PPE
members as a function of precipitation efficiency. (c) The linear regression slope on ALWP,;in, and ALWP,,,,,; scaled by da/0LWP reproduces the negative
correlation between ERF,,.; and ACRE i, Shown in (d). Precipitation efficiency, LWP and cloud radiative responses are calculated as extratropically averaged quantities

over both hemispheres.

because radiative saturation has been reached and changes in LWP play a relatively unimportant role in albedo
(McCoy et al., 2022; Song et al., 2024; Tan et al., 2024). The range of this behavior across the PPE is large, but not
out of step with the range across recent ESMs (e.g., CMIP6: Coupled Model Intercomparison Project Phase 6) due
to large inter-model spread in mean state LWP (McCoy et al., 2022; Song et al., 2024; Tan et al., 2024).

In addition to the impact on the mean-state amount of cloud and resultant radiative properties, precipitation ef-
ficiency also plays an important role in setting the cloud macrophysical responses (ALWP) to warming and
aerosol. Decreasing precipitation efficiency (increasing mean state LWP) corresponds to an increase in the LWP
response to warming (Figure 2c: blue dots), which is broadly consistent with arguments related to moisture-
convergence driven extratropical cloud feedback (McCoy et al., 2022; Tan et al., 2024). Similarly, decreasing
precipitation efficiency (increasing mean state LWP) also corresponds to an increase in LWP response to changes
in aerosol (Figure 2b: blue dots), consistent with simple arguments based on precipitation suppression from
smaller and more abundant cloud droplets in the presence of more aerosols (Song et al., 2024). Comparing the
cloud responses induced by aerosol and warming, a wider spread of LWP warming response relative to the LWP
aerosol response is simulated across the CAM6 PPE (Figures 2a and 2b: blue dots). This is consistent with
aerosol-cloud adjustments being dominated by precipitation suppression (Song et al., 2024) while cloud feedback
is due to a combination of different processes such as changes in boundary layer structure (Terai et al., 2019),
resulting in a wider variability in cloud response to warming. Taken together, the weaker variability in aerosol-
driven liquid cloud response results in a fairly robust negative correlation between the LWP response to aerosol
and the albedo susceptibility term (Figure S6b in Supporting Information S1) while the relationship is less robust
between LWP response to warming and albedo susceptibility (Figure S6a in Supporting Information S1). Despite
the difference in the strength of relationship, both the aerosol forcing (ERF,;) and cloud radiative response to
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warming (ACRE,,,,mine) can be predicted by the LWP responses scaled by albedo susceptibility (Figures 1a and
1b). However, the stronger negative relationship between LWP response to aerosols and albedo susceptibility
relative to that from warming-driven changes, results in a stronger buffering of the magnitude of ERF,; relative to
ACRE,;qming (Figure 1). This stronger buffering arises from a stronger decrease in albedo susceptibility to cloud
responses due to aerosol (Figure S6 in Supporting Information S1).

Given the apparent role of precipitation efficiency in driving the correlation between ERF,.; and ACRE,,4ing, W
examine the precipitation efficiency as a function of parameters in Figure S7 in Supporting Information S1 to
identify which parameters exert the strongest influence in models. We found the precipitation efficiency in the
CAMG6 PPE is primarily driven by variation in parameters related to precipitation process (Figure S7 in Sup-
porting Information S1). The key parameterization of rain formation in CAMS6 is through autoconversion.
Autoconversion is used in representing initial rain formation in many ESMs in order to circumvent the need to
deal with the complicated physical processes in micro-scale during rain formation (e.g., diabatic condensation and
stochastic collection) (Gettelman et al., 2015; Khairoutdinov & Kogan, 2000; Lamb & Verlinde, 2011). The rate
of generation of rain from cloud water through autoconversion in CAM6 is written as (Gettelman et al., 2015;
Khairoutdinov & Kogan, 2000):

0q, PR
2 =a-¢®-Nd© 10
( at )auto ¢ qL ( )

Where Nd is the cloud droplet concentration in cm™. g, is the cloud water content in kg/kg. a, b and -c are
uncertain parameters perturbed in the CAM6 PPE (Table S1 in Supporting Information S1). They are micro_-
mg_autocon_fact, micro_mg_autocon_lwp_exp and micro_mg_autocon_nd_exp, respectively. The positive
correlation between micro_mg_autocon_nd_exp (i.e., -c in Equation 10) and precipitation efficiency with a
r-value of 0.33 suggests that the precipitation is suppressed with decreasing (more negative) micro_-
mg_autocon_nd_exp (Figure S7-2 in Supporting Information S1). Precipitation efficiency also decreases with
increasing micro_mg_autocon_lwp_exp with a r-value of —0.67 (Figure S7-21 in Supporting Information S1), as
q. is usually less than 1 kg/kg (Khairoutdinov & Kogan, 2000; Song et al., 2025). The results suggest that the
buffering of cloud radiative response to aerosol (ERF,.) and warming (ACRE,,qyin,) through precipitation
efficiency are both primarily driven by the autoconversion parameterization in the CAM6. We note that the power
law formulation of autoconversion is common across ESMs (Jing et al., 2019; Michibata & Takemura, 2015),
suggesting the radiative buffering via precipitation efficiency may also occur in other models (McCoy et al., 2022;
Song et al., 2024).

One caveat of CAMG is that it does not include an explicit parameterized entrainment effect on clouds, which
might suppress the compensation effect between LWP response and albedo susceptibility because the
sedimentation—evaporation feedback tends to reduce LWP. Previous studies have shown entrainment can strongly
affects both climate sensitivity (Rowlands et al., 2012) and aerosol forcing (Haerter et al., 2009). Nevertheless, we
believe the radiative buffering effect identified in our study is not unique to CAM6, and likely persists in other
models, including those with more explicit entrainment representations. More recent work shows that enhanced
evaporation does not significantly reduce LWP (Karset et al., 2020), even when the emergent relationship be-
tween LWP and droplet number is negative (Mikkelsen et al., 2025; Miilmenstédt et al., 2024) and that positive
LWP adjustments to aerosols are robust across models (Miilmenstédt et al., 2024).

3.3. Implications for Observational Constraints on Future Warming

The magnitude in future temperature change depends on the magnitude of the radiative forcings and feedbacks
(Gregory et al., 2004). As discussed in Section 3.2, the precipitation processes determine precipitation efficiency
(Figure S7 in Supporting Information S1), and result in macro-scale impacts on mean-state cloud amount (Figure
S5 in Supporting Information S1). Precipitation efficiency also determines how that cloud interacts with top of
atmosphere shortwave flux (Figures 2a and 2b: red dots), and the response of clouds to warming (Figure 2a: blue
dots) and anthropogenic aerosol (Figure 2b: blue dots). We find a stronger compensation (or stronger negative
correlation) between the cloud response and albedo susceptibility in aerosol-driven changes in cloud, relative to
that from warming-driven changes (Figure S6 in Supporting Information S1), resulting in an emergent negative
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Figure 3. The surface mean temperature change under shared socioeconomic pathway 1-2.6 (SSP1-2.6) assuming three
different correlations between ERF,; and cloud feedback. (a) The 5-95th percentile range for each correlation scenario based
on 1,000 ensembles. ARG best estimates indicated in black dashed line. (b) Similar to (a) but showing ensembles that match with
observed temperature records. The 5-95th percentile range of temperature change at the end of century is indicated to the right
of the axis, with unconstrained ensembles from (a) shown in vertical solid lines and constrained ensembles from (b) shown in
vertical dashed lines.

correlation between forcing from aerosol-cloud interactions ERF,; and extratropical cloud feedback ACRE,,ming
(Figure 2d). What does this emergent correlation driven by shared processes mean for how we interpret ESMs?

Here we examine what an emergent relationship between ERF,; and cloud feedback means for how we interpret a
random prior distribution of ESMs. For the purposes of illustration, we provide a statistical exploration of how
correlation between ERF,; and cloud feedback affects our ability to predict future temperature trajectory and to
provide observational constraints on future temperature trajectory.

Within the specific configuration for the FalR model (Table S3 in Supporting Information S1), the means of the
simulated temperature predictions with jointly sampled ERF,.; and cloud feedback (with r-value = —0.6, 0, 0.6)
are consistent with the AR6 best estimates (Figure 3). This is not surprising as the FalR model is tuned to match
CESM2 (Watson-Parris, 2025) and the sampled aerosol forcing values are centered on the AR6 best estimate,
leading the mean temperature projections to converge across correlation scenarios.

One emergent feature from our analysis is that a smaller uncertainty in future temperature change is simulated
with FalR model when ERF,; and cloud feedback are anti-correlated. Assuming an imposed correlation of —0.6,
the negative correlation reduces the likely range of temperature change in 2100 by 29%, comparing to the scenario
of positive correlation (Figure 3a). The narrower range of the temperature change in anti-correlation scenario is
expected as large positive ERF,; is compensated with weaker cloud feedback to temperature change, and vice
versa, leading to a relatively less spread in temperature projection. This is consistent with the negative correlation
leading to compensation between the inter-model spreads of equilibrium climate sensitivities (C. Smith
et al., 2021).

Another key insight is that the radiative forcing (through ERF,, ;) have different impact on the prediction of future
temperature change under different scenarios of correlations. When a negative correlation is imposed on ERF,;
and cloud feedback, a stronger (more negative) ERF,; simulates a smaller warming before 2020 and a warmer
future (after 2050) (Figure S8a in Supporting Information S1). The temperature prediction is consistent with the
results in Watson-Parris and Smith (2022). However, the role of ERF,; on future warming shifts when the
correlation between ERF,; and cloud feedback is positive or no correlation. When the imposed correlation is set
to 0.6 or 0, strong ERF,.; shows a consistent cooling throughout the simulation years (Figures S8b and S8c in
Supporting Information S1). This result highlights the importance of making assumptions on the dependence
between forcing and feedback in inferring future warming.

Having explored the role of the range of historical ERF,; in setting future warming in the context of tem-
perature change, another question is how the correlation between our forcing and feedback priors impacts our

SONG ET AL.

9of 13

d “¥T ‘STOT “LOOSHT61

:sdny woiy papeoy

ASUADI'T SUOWIWO)) dANEaI1) a[qedrjdde ayy £q pauioaos a1 sa[o1IE V() {asn JO Sa|NI 10§ AIRIqIT UIUQ AJ[IAN UO (SUONIPUOI-PUE-SULIA} W0 AA[IM" AIeIqraur[uoy/:sdny) suonipuo) pue sud [, oy 23S *[970z/10/0€] U0 A1eiqi aurjuQ A3[IA\ “BIUIoj[e) JO ANSIATUN A 98€L 1 TDSTOT/6T01 01/10P/W0d A3[IM"



V od |
AGU

ADVANCING EARTH
AND SPACE SCIENCES

Geophysical Research Letters 10.1029/2025GL117386

ability to constraining the uncertainty of future warming? Although the prior temperature change uncertainty is
narrower in the case of negative correlation, we find that the uncertainty in the posterior temperature change
shows more spread when ERF,; and cloud feedback are anti-correlated (Figure 3b). Examination of the prior
and posterior ERF,; and cloud feedback distribution shows that ERF,. and cloud feedback are the least
constrained when the correlation is negative. There are 42% of ensembles in FalR2.0 that simulate a temper-
ature trajectory matched with historical temperature records when ERF,; and cloud feedback are negatively
correlated, while only 24% and 28% ensemble members agree with observations under conditions of positive
correlation and no correlation. This indicates although a negative correlation produces a narrower range in
future warming, negative correlations also make it easier to agree with historical record and harder to constrain
future warming.

4. Conclusion

An emergent property from energy conservation is that forcing and feedback tend to be anticorrelated across
fully-coupled climate models that have similar historical warming (Wang et al., 2021). However, we find a similar
correlation in a perturbed parameter ensemble (PPE) where energy conservation is not enforced and members
have no requirement to match a historical temperature trend. This correlation appears to be driven by cloud and
precipitation processes (Gettelman et al., 2024) (Figures 1, 2a and 2b). We trace this negative correlation to
precipitation efficiency in liquid cloud, which drives both aerosol-cloud adjustments through precipitation sup-
pression (Song et al., 2024) (Figure 2a: blue dots) and cloud feedback driven by a strengthened hydrological cycle
(McCoy et al., 2022; Werapitiya et al., 2025) (Figure 2b: blue dots). In addition to modulating liquid cloud re-
sponses to aerosol and warming, precipitation efficiency also modulates the radiative effect of changes in liquid
clouds by setting the mean state LWP (Song et al., 2024) (Figures 2a and 2b: red dots).

We suggest that the compensation between LWP response (ALWP) and albedo susceptibility to LWP
(0a/OLWP) leads to a buffering in cloud radiative responses to both aerosol and warming (ERF,. and
ACRE,,4ming)- The stronger buffering on ERF,; relative t0 ACRE,, e (Figure S6 in Supporting Informa-
tion S1) leads to a negative correlation between ERF,.; and ACRE,, i, (Figure 2d). One feature of the base
model used in the PPE is that CAMG6 exhibits a strong LWP response compared to other CMIP6 models (Gry-
speerdt et al., 2020; Song et al., 2024). Similar behavior is also found in CAMS (Gryspeerdt et al., 2020;
Malavelle et al., 2017). This might raise the concern that our results are specific to the CAM model family.
However, both CMIP5 and CMIP6 models exhibit a vast range of mean-state LWPs, consistent with the CAM6
PPE, and the radiative buffering is observed across these models (McCoy et al., 2022; Song et al., 2024). This
suggests that radiative buffering effect is not an artifact of the PPE framework and is represented in ESMs.
Another caveat of our study is that the analysis focuses on extratropical moisture-converging regions, where
anthropogenic emissions are substantial and the moisture-convergence-driven cloud feedback is most relevant.
While we do not expect the spatial pattern of aerosol emissions to be highly model dependent, the cloud feedback
pattern, which is largely controlled by large-scale circulation, may still vary due to model-dependent processes
and shifts in jet position, especially in free-running simulations.

Precipitation efficiency acting on both the cloud response to warming and aerosol as well as the mean-state cloud
amount result in a negative correlation between forcing and feedback. Given that there is a physical mechanism
driving this correlation, we need to characterize the implications for how we interpret climate models. We
leverage a zero-dimensional energy balance model (FalR2.0) to examine how correlations between ACI forcing
(ERF,;) and cloud feedback affect the uncertainty in future warming, and how the future projections under
different scenarios of correlations (r-value = —0.6, 0 and 0.6) can be constrained by the historical temperature
record. We find that by having a negative correlation between ERF,; and cloud feedback, future warming shows
less uncertainty (Figure 3a), and stronger ERF, ; (more negative) implies a hotter future (Figure S8a in Supporting
Information S1). Instead, more uncertainty in future warming is predicted by FaIR2.0 when ERF,; and cloud
feedback are positively correlated or have no correlation, and stronger ERF,; indicates a cooler future (Figures
S8b and S8c in Supporting Information S1). We also find that although a negative correlation between priors of
ERF,

i and cloud feedback shows less spread in historical temperature trajectory (Figure 3a), it also means that

observations act as a weaker constraint on future warming (Figure 3b).

Given the above, reducing the uncertainty in future warming will likely require integrated analysis of satellite-
derived radiation, cloud water content, precipitation, temperature and aerosol properties. However, it may not
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be possible to fully disentangle their overlapping signals observationally. Determining precipitation efficiency
from satellite observations or laboratory studies may offer an alternative constraint, and future work should
explore whether such diagnostics can help narrow uncertainties in future warming.
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