

1 **A Topological Superconductor Tuned by Electronic Correlations**
2

3 Haoran Lin¹, Christopher L. Jacobs², Chenhui Yan¹, Gillian M. Nolan³, Gabriele Berruto¹, Patrick
4 Singleton¹, Khanh Duy Nguyen¹, Yunhe Bai¹, Qiang Gao¹, Xianxin Wu⁴, Chao-Xing Liu⁵, Gangbin
5 Yan¹, Suin Choi¹, Chong Liu¹, Nathan P. Guisinger⁶, Pinshane Y. Huang³, Subhasish Mandal², and
6 Shuolong Yang^{1,*}
7

8 ¹*Pritzker School of Molecular Engineering, The University of Chicago, Chicago, Illinois 60637, USA*
9

10 ²*Department of Physics and Astronomy, West Virginia University, Morgantown, West Virginia 26506,
USA*

11 ³*Department of Materials Science and Engineering, University of Illinois Urbana-Champaign, Urbana,
Illinois 61801, USA*
12

13 ⁴*Institute of Theoretical Physics, Chinese Academy of Sciences, Beijing 100190, P.R. China*
14

15 ⁵*Department of Physics, Pennsylvania State University, University Park, PA 16802, USA*
16

17 ⁶*Argonne National Laboratory, Lemont, IL 60439, USA*
18

19 *Corresponding author. Email: yangsl@uchicago.edu
20

21 **Abstract:** A topological superconductor, characterized by either a chiral order parameter or a
22 topological surface state in proximity to bulk superconductivity, is foundational to topological
23 quantum computing. A key open challenge is whether electron-electron interactions can tune such
24 topological superconducting phases. Here, we provide experimental signatures of a unique
25 topological superconducting phase in competition with electronic correlations in 10-unit-cell thick
26 FeTe_xSe_{1-x} films grown on SrTiO₃ substrates. When the Te content *x* exceeds 0.7, we observe a
27 topological transition marked by the emergence of a superconducting surface state. Near the FeTe
28 limit, the system undergoes another transition where the surface state disappears, and
29 superconductivity is suppressed. Theory suggests that electron-electron interactions in the odd-
30 parity *xy*-band drives this second topological transition. The flattening and eventual decoherence
31 of *d_{xy}*-derived bands track the superconducting dome, linking correlation effects directly to
32 superconducting coherent transport. Our work establishes many-body electronic correlations as a
33 sensitive knob for tuning topology and superconductivity, offering a pathway to engineer new
topological phases in correlated materials.

34 **Introduction**

35 The interplay between electronic correlations, topology, and superconductivity is central to
36 quantum materials research. In moiré systems, for instance, correlations facilitate integer or
37 fractional topological states¹⁻⁴, while in Cu⁻⁵ and Fe-based⁶ unconventional superconductors they
38 shape superconducting domes. Yet in these strongly correlated systems, competing charge and spin
39 orders⁵ often obscure the underlying mechanisms.

40 Intrinsic topological superconductors, which host a topological insulator (TI) phase in
41 proximity to bulk superconductivity, provide a cleaner platform to study the interplay between
42 correlations, topology, and superconductivity. In compounds such as Fe_xTe_{1-x} (FTS)⁷ and 2M-
43 WS₂⁸, the topologically nontrivial phases are accompanied by strong electronic correlations^{9,10}.
44 This raises a key question: can electronic correlations themselves drive topological transitions and
45 impact superconductivity?

46 We address this problem using multi-layer FTS thin films grown on SrTiO₃ (STO), which
47 combines relatively high T_c among other intrinsic topological superconductor candidates^{8,11,12} and
48 built-in strong correlations. Theory predicts that the topological character of this system arises
49 from a band inversion between the Fe *d*_{xz} band and odd-parity *xy*⁻ band, the latter formed by the
50 hybridization of the Fe *d*_{xy} and chalcogen *p*_z orbitals¹³. The strong correlations in the *xy*⁻ band can
51 collapse the nontrivial topology¹³. However, this regime cannot be easily accessed in bulk FTS^{14,15},
52 where an antiferromagnetic (AFM) and structural transition obscures correlation effects near the
53 FeTe limit^{16,17}, nor in monolayer films, where the 3D topological insulator phase and 2D
54 topological surface state are no longer present^{18,19}. Hence, straining a multi-layer FTS thin film by
55 a C₄-symmetric substrate provides an excellent opportunity to realize the predicted correlation-
56 driven topological phase and correlation-tuned superconductivity.

57 Here we use angle-resolved photoemission spectroscopy (ARPES) and density functional
58 theory with embedded dynamical mean field theory (DFT+eDMFT) calculations to uncover a
59 correlation-driven topological transition and a correlation-tuned superconducting dome in 10 unit-
60 cell-thick (10 UC) FTS thin films. When the Te content *x* crosses 0.7, the first topological transition
61 is signified by the emergence of a superconducting topological surface state (TSS). The nontrivial
62 topology and superconductivity persist up to *x* = 0.95. When *x* reaches 1, a second topological
63 transition occurs where the TSS disappears. Instead, a *d*_{xz,yz} derived electron pocket and a strongly

64 correlated xy -band are confirmed by polarization-dependent ARPES measurements, in agreement
65 with our DFT+eDMFT predictions. Our ARPES and transport results also reveal an intimate
66 relationship between the flattening of the d_{xy} -derived bands and the enhancement in the zero-
67 resistance superconducting transition temperature (T_c^0). T_c^0 is rapidly quenched when the
68 electronic correlations suppress the spectral weight of the d_{xy} -derived bands in 10 UC FeTe. Our
69 results establish the correlation-induced topological transition in FTS multilayer films and suggest
70 a sensitive control of topology and superconductivity using electron-electron interactions.

71

72 **Results**

73 **Superconducting Topological Surface State in Thin-film FTS:** We begin our investigation by
74 showing evidence of topological superconductivity in thin-film FTS: the opening of a
75 superconducting gap on the TSS in a 10 UC $\text{FeTe}_{0.93}\text{Se}_{0.07}$ film grown on STO (Fig. 1). The Te
76 content x is determined by considering both the c -axis lattice constant and the Te:Se flux ratio (fig.
77 S1), cross-checked by inductively coupled plasma mass spectrometry (Supplementary Note 1; fig.
78 S2). Based on matrix element calculations for ARPES (Supplementary Note 2; fig. S3; table S1),
79 we use s -polarized light to enhance sensitivity to the d_{xz} orbital, and p -polarized light for the d_{yz} ,
80 d_{xy} , and p_z orbitals. All of these orbitals contribute to the TSS which is probed by both polarizations
81 (Fig. 1, b and f). Energy distribution curves (EDCs) taken at the Fermi momentum \mathbf{k}_F of the TSS
82 exhibit an enhanced quasiparticle peak when temperature decreases (Fig. 1c). The TSS displays
83 Fermi crossing above ~ 13 K (fig. S4), but shows a superconducting gap below this temperature,
84 as demonstrated by the EDCs symmetrized about the Fermi level (E_F) determined by
85 polycrystalline gold (Fig. 1d). The EDC symmetrization is justified by the fact that 13 K indeed
86 corresponds to the superconducting onset temperature (T_c^{onset}) observed in electrical transport (Fig.
87 2c), and that superconducting gaps are particle-hole symmetric. The band structure revealed by the
88 p -polarized light (the p -spectrum) is more complex (Fig. 1f). The quasi-flat band observed in Fig.
89 1f primarily originates from the superconducting d_{xy}/d_{yz} bulk states (Supplementary Note 3; fig.
90 S5)²⁰. We extract EDCs at the momentum corresponding to the smallest gap value (Fig. 1f). We
91 fit the symmetrized EDCs using the established Norman model²¹ and extract the superconducting
92 gaps for both light polarizations (Fig. 1e). Above ~ 14 K, the experimental data does not allow a
93 robust fitting as the superconducting gap vanishes (Supplementary Note 4; fig. S6). Importantly,
94 the gap extracted from the p -spectrum is on average 90% higher than that from the s -spectrum.

95 This is because the bulk d_{xy}/d_{yz} band has a dominating contribution to the flat-band feature in the
96 p -spectrum (Fig. 1f; fig. S5), whereas the gap extracted from the s -spectrum reflects the
97 superconducting order parameter on the TSS. The gap on the TSS is smaller due to proximity
98 coupling with bulk superconductivity. Our results provide experimental signatures of topological
99 superconductivity and superconducting proximity coupling in multilayer FTS films.

100 **Two Topological Transitions in FTS Thin Films:** The most crucial observation of this work
101 is the occurrence of two topological transitions as we tune the Te:Se ratio. The first topological
102 transition is observed between $x = 0.60$ and $x = 0.79$, where the innermost d_{xz} hole-like band
103 evolves from a parabolic (Fig. 2a(i), b(i)) to a linear shape (Fig. 2a(ii), 2b(ii)). Second derivative
104 plots of the s -spectra confirm the emergence of the TSS at $x = 0.79$ (fig. S7). This first topological
105 transition was predicted by DFT²² based on a single-particle picture and largely consistent with
106 observations in bulk FTS materials⁷ despite a modified critical Te content for the topological
107 transition. The nontrivial topology is well defined even though the inversion symmetry is broken
108 in our films (Supplementary Note 5; fig. S8). The topologically nontrivial phase persists as the Te
109 content increases up to 0.95 (Fig. 2a(ii)-(v), 2b(ii)-(v)). Superconductivity is confirmed by
110 electrical transport in the topologically nontrivial phase (Fig. 2c; fig. S9, S10). As x approaches 1,
111 the band topology undergoes another transition. The clear Dirac dispersions disappear in both the
112 p - and s -spectra, indicating a second topological transition. A vertical streak feature appears at zero
113 momentum of the p -spectrum (Fig. 2a(vi)); an electron pocket is observed in the s -spectrum (Fig.
114 2b(vi)). Since the TSS is a 2D state and has been observed at all out-of-plane momenta (\mathbf{k}_z) by
115 previous studies on bulk FTS crystals²³, the absence of the TSS for 10 UC FeTe films cannot be
116 explained by a change in the probed \mathbf{k}_z , but rather suggests a topologically trivial phase.

117 The second topological transition is unexpected from a single-particle perspective (fig. S11),
118 but can be reconciled with a many-body picture where strong electronic correlations fundamentally
119 modify the band topology¹³. The odd parity xy^- band responsible for the band inversion is of Te p_z
120 and Fe d_{xy} characters. Strong correlations in the d_{xy} orbital are predicted to place the xy^- band
121 entirely below the d_{xz} band along $\Gamma - Z$, hence mitigating the anti-crossing gap between the xy^-
122 and d_{xz} band, and driving the system topologically trivial. This theoretical picture leads to three
123 predictions: the TSS on the $a-b$ plane should disappear; an electron-pocket of d_{xz}/d_{yz} characters
124 should emerge near the zone center (Fig. 3c(v); Supplementary Note 6); the innermost valence
125 band should primarily consist of xy^- characters and become strongly correlated with a dramatically

enhanced self energy (Fig. 3c(v)). These predictions are experimentally verified. The TSS is absent in both the p - and s -spectra (Fig. 2a(vi), 2b(vi)). An electron pocket is clearly observed in the s -spectrum (Fig. 2b(vi)), which substantiates that it has a strong contribution from the d_{xz} orbitals. It is more challenging to identify this electron pocket in the p -spectrum (Fig. 2a(vi)), but a more careful analysis of momentum distribution curves (MDCs) suggests its presence (fig. S13), in agreement with the contribution from the d_{yz} orbitals. Theoretically, in the topologically nontrivial phase the only electron pocket near Γ in the vicinity of E_F is the xy band above $E_F^{22,24,25}$. However, the observed electron pocket in the correlation-driven trivial phase is a hybridized band of both $d_{xz/yz}$ and xy orbital characters (Fig. S12 and S13c). Finally, due to the xy characters in the innermost valence band, it is most clearly resolved by the p -polarized light, and becomes much weaker using the s -polarized light. This is because neither the p_z nor d_{xz} orbital has an appreciable matrix element under the s -polarized light (fig. S3). The large linewidth due to the strong correlation effect leads to the appearance of the vertical streak feature, which is again reproduced in our DFT+eDMFT calculations (Fig. 3c(v)). Importantly, the increasing xy component in the valence band and its increasing strong correlations in the $x = 1$ limit are confirmed by the vanishing spectral weight in the lower Dirac cone as a function of increasing x , extracted by fitting the EDC at -0.025 \AA^{-1} to the sum of two Lorentzian peaks and a featureless background (Fig. 2d; fig. S14). The increasing correlations in the d_{xy} orbital is confirmed by the systematically suppressed hybridization of the bulk d_{xy} and d_{yz} hole-like bands (Fig. 2e; fig. S15), extracted by tracking the corresponding intensity extrema in the second derivative plots of the EDCs.

Orbital-selective Electronic Correlations in FTS: We obtain a full picture of the strong correlation effect in FTS thin films by comparing ARPES data and DFT+eDMFT calculations in an extended momentum and energy range (Fig. 3). This experimental data was taken using unpolarized 21.2 eV photons, allowing us to probe electronic structures from both the $\bar{\Gamma}$ and \bar{M} points (Fig. 3a, b). The first topological transition is still observed between $x = 0.60$ and $x = 0.79$, evidenced by the change of a parabolic d_{xz} band dispersion near $\bar{\Gamma}$ (Fig. 3b(i)) to a Dirac-cone-like feature (Fig. 3b(iii); fig. S16). We make three observations related to strong correlations. First, the d_{xy} band near $\bar{\Gamma}$ – the outermost hole-like band – becomes rapidly flattened as the Te content increases (fig. S16). The effective mass of the d_{xy} band increases from $29 \pm 3 \text{ } m_e$ to $53 \pm 4 \text{ } m_e$ when x goes from 0.60 to 0.93 (Supplementary Note 8; fig. S17), where m_e is the free-electron mass. This strongly correlated band loses spectral weight and coherence in the FeTe limit

157 (Supplementary Note 9; fig. S18, S19). Second, the hybridized $d_{xy/xz}$ electron-like band near \bar{M}
158 also becomes rapidly flattened as a function of the Te content, with its effective mass increased
159 from $9 \pm 2 m_e$ to $39 \pm 9 m_e$ when x goes from 0.60 to 0.93 (fig. S17). Its spectral weight disappears
160 in the FeTe limit (Fig. 3a(vi)). This rapid disappearance reflects the combined effect of strongly
161 correlated d_{xy} and d_{xz} orbitals near \bar{M} , while the d_{xy} orbital attains the highest renormalization (fig.
162 S20). Third, in the FeTe limit the TSS again evolves into a vertical streak feature, which reflects
163 the strongly correlated xy character and correlation-induced topological transition¹³, as was argued
164 above. The appearance of the vertical streak feature in the ARPES data taken with 6 eV (Fig.
165 2a(vi)), 21.2 eV (Fig. 3a(v)), and 23.1 eV photons (fig. S30) demonstrates that this feature is
166 relatively \mathbf{k}_z independent, consistent with theoretical predictions based on the strongly correlated
167 xy band¹³ but contrasting the strongly \mathbf{k}_z -dependent streak feature in bulk FeTe¹⁷.

168 All observations of strong electronic correlations are confirmed by our first-principles
169 DFT+eDMFT calculations (Fig. 3c). Importantly, theoretical calculations for strongly correlated
170 materials remain inherently challenging, and achieving quantitative agreement with experiments
171 at the meV scale is not yet expected at this stage. Here we focus on the general trend of the band
172 structure evolution as electronic correlations are tuned without spin-orbit coupling (SOC). The
173 more detailed comparison between calculations with and without SOC is provided in fig. S21 and
174 S22. The first two correlation-induced spectral features are reproduced by theory: the d_{xy} band near
175 $\bar{\Gamma}$ and the $d_{xy/xz}$ band near \bar{M} are drastically flattened going from substrate-strained FeTe_{0.5}Se_{0.5}
176 (Fig. 3c(i), c(ii)) to substrate-strained FeTe (Fig. 3c(iii), c(iv)). For the former, the calculated
177 effective mass increases from $15.56 m_e$ to $35.20 m_e$. Even with the increased electronic correlations
178 for the d_{xy} orbital, the calculated spectral function for strained FeTe (Fig. 3c(iii), c(iv)) cannot
179 capture the corresponding ARPES spectra for $x = 1$ (Fig. 3a(v), a(vi)). To further explore the
180 impact of stronger electronic correlations, we perform calculations on FeTe with a manually
181 increased chalcogen height of 1.85 Å. The resulting spectral function of FeTe reproduces the other
182 key experimental observations: the d_{xy} band near $\bar{\Gamma}$ and the $d_{xy/xz}$ band near \bar{M} lose spectral weight;
183 the d_{xz} band at $\bar{\Gamma}$ evolves into a vertical streak. The electron pocket derived from the d_{xz}/d_{yz} orbitals
184 is also reproduced (Fig. 3c(v)), which agrees with the ARPES results using 6 eV photons (Fig.
185 2a(vi)). This feature is less obvious from the ARPES spectrum taken with 21.2 eV photons (Fig.
186 3a(v)), possibly due to a different \mathbf{k}_z or a sub-optimal energy resolution. Importantly, it is well-
187 known that the experimental \mathbf{k}_z dependence of the FTS electronic structure is much weaker than

any first-principles predictions^{23,26}. Moreover, FTS compounds with different Te:Se ratios may not have the same inner potential for \mathbf{k}_z determination¹⁵. These complications make it challenging to determine the \mathbf{k}_z for theory-experiment comparison (Supplementary Note 12). Here we presented theoretical calculations for $\mathbf{k}_z = 0$, considering the successful reproduction of the spectral function in the FeTe limit (fig. S23). In fact, the systematic \mathbf{k}_z dependent calculations show that the xy band dispersion is flattened in the strongly correlated limit and completely submerged below the d_{xz}/yz bands (fig. S24), supporting the picture of the correlation-induced second topological transition.

196

197 Discussion

198 The phenomenology of our 10 UC FTS thin films appears fundamentally different from that
199 of bulk FTS crystals. First, a signature of the antiferromagnetic (AFM) transition – a sharp drop in
200 electrical resistivity near 70 K²⁷ – is not present in our FTS films for any Te content (fig. S25). As
201 the AFM transition is intimately linked to a C₄-to-C₂ structural transition²⁸, the absence of the AFM
202 transition likely emerges from the suppression of the structural symmetry breaking due to substrate
203 straining (fig. S26). The absence of the AFM phase is key to maintaining the overall electronic
204 band structure without additional broken-symmetry-induced reconstruction, allowing a clear
205 comparison with theoretical predictions when the electronic correlations are systematically
206 enhanced. We note that such clarity was lacking in a recent study on bulk FTS crystals, where
207 correlation-induced band features could not be observed at $x < 0.04$ and 15 K, possibly due to the
208 competing AFM phase²⁹. Second, absence of the AFM phase is beneficial for superconductivity.
209 Our superconducting phase dome extends to $x = 1$ (Fig. 4), whereas the counterpart for bulk FTS
210 stops at $x = 0.9\sim0.95$ due to the competing phase of AFM^{30,31}.

211 The correlation-driven band flattening also provides a hint for the evolution of
212 superconductivity. While the average chalcogen height has been predicted to be a key factor
213 affecting superconductivity³², this is not the only mechanism dictating our superconducting dome.
214 Near the optimal T_c^0 (Fig. 4), the average chalcogen height in our 10 UC FeTe_{0.93}Se_{0.07} - 1.74 Å
215 (fig. S27) - is close to the value for bulk FeTe^{33,34} but much larger than the value for bulk
216 FeTe_{0.5}Se_{0.5} which exhibits the optimal T_c among other bulk FTS materials³⁴. Moreover, 10 UC
217 FeTe_{0.93}Se_{0.07} and FeTe exhibit negligible differences in the structural parameters (fig. S27), but
218 T_c^0 for 10 UC FeTe is below 2 K while that for 10 UC FeTe_{0.93}Se_{0.07} is 7.9 K (Fig. 4). We argue

that the evolution of the superconducting dome is intimately related to the strong correlation effects of both the d_{xy} band at $\bar{\Gamma}$ and the $d_{xy/xz}$ band at \bar{M} (Fig. 3b(iii), 3b(iv)). Consider a generic electron-boson coupling strength $\lambda \sim N(E_F)D^2$, where $N(E_F)$ is the electronic density of states at E_F and D is a generalized coupling potential. When x increases from 0.60 to 0.93, the d_{xy} -derived bands are flattened both at $\bar{\Gamma}$ and \bar{M} , contributing a rapidly increasing $N(E_F)$. Moreover, D for the case of electron-phonon coupling can also be enhanced by electronic correlations³⁵⁻³⁷. These factors lead to the enhancement of superconductivity. When x increases from 0.93 to 1, the superconducting onset temperature (T_c^{onset}) stays largely unchanged while T_c^0 rapidly diminishes. The trend of T_c^0 near the FeTe limit is consistent with previous transport results³⁸. The superconducting gap measurements at $x = 0.60$ and 1.00 are consistent with this trend (fig. S28 and S29), considering that the gap onset temperature corresponds to T_c^{onset} . In the strong correlation limit, while the enhanced $N(E_F)$ due to flattened bands helps with pairing, the diverging correlation effect leads to a poorly defined quasiparticle state $\Psi(r, t) = \Psi(r) \exp(-iE_B t/\hbar) \exp(-Im(\Sigma)t/\hbar)$ ³⁹. When the imaginary part of the self-energy $Im(\Sigma)$ exceeds the electronic binding energy E_B near E_F , the system cannot be described by traditional weak-coupling theories based on well-defined quasiparticles⁴⁰. The incoherent quasiparticle states thus give rise to short-lived and incoherent pairs, leading to a suppressed T_c^0 . We also note that the quasi-flat d_{xy} band and its narrow bandwidth in 10 UC FeTe_{0.93}Se_{0.07} lead to $\Delta/E_{\text{Fermi}} \sim 0.3$ and $T_c/T_{\text{Fermi}} > 0.09$, where Δ , E_{Fermi} and T_{Fermi} stand for the superconducting gap, the Fermi energy, and the Fermi temperature, respectively. This makes FTS thin films in the FeTe limit potentially comparable to a broader class of flat-band superconductors such as twisted bilayer graphene⁴¹, which are in the Bardeen-Cooper-Schrieffer Bose-Einstein Condensation (BCS-BEC) crossover. In such a regime, the discrepancy between T_c^{onset} and T_c^0 is also expected⁴¹.

Our work demonstrates that strong correlations, superconductivity, and nontrivial topology in epitaxially grown FTS thin films are no longer separate entities. It is feasible to tune the topological superconducting phase by modulating the electron-electron interactions. This can be achieved by engineering the epitaxial strain or by changing the dielectric environment. For instance, creating an STO/FTS/STO sandwich structure⁴² can fully contain the Coulomb interactions within a high-dielectric-constant medium, leading to strongly modified electron-electron and electron-phonon interactions and potentially higher-temperature topological superconductivity.

249

250 **Methods**
251 Sample growth
252 For the ARPES measurements, 0.05% wt Nb-doped SrTiO₃(100) substrates from SHINKOSHA
253 CO., LTD were used. They were cut into 10 mm × 2.5 mm rectangles. After ultrasonic cleaning in
254 Acetone and Isopropyl Alcohol, the substrates were annealed in ultra-high vacuum at ~1000 °C
255 for about 30 minutes. The FeTe_xSe_{1-x} thin films were synthesized at a substrate temperature of 270
256 °C by co-evaporating Fe, Te, and Se in an MBE chamber. For all the FeTe_xSe_{1-x} thin films, the
257 temperature of Fe and Te were kept at 1180 °C and 265 °C, respectively. Te content was controlled
258 by varying the Se temperature from 110 °C to 135 °C. All films were post-annealed at the growth
259 temperature for 1 hour before ARPES measurements. The growth rate and sample quality were
260 calibrated by scanning tunneling microscopy (STM) measurements (fig. S31).
261
262 For the transport measurements, insulating SrTiO₃(100) substrates from SHINKOSHA CO., LTD
263 were used. They were cut into 10 mm × 5 mm rectangles. After ultrasonic cleaning in Acetone and
264 Isopropyl Alcohol, the substrates were etched in buffered oxide etch (BOE) for 1 minute and were
265 then annealed at 1000 °C with an O₂ flow of 0.5 L/min for 3 hours.
266
267 ARPES measurements
268 ARPES measurements were typically carried out at 20 K on the multi-resolution photoemission
269 spectroscopy platform established at the University of Chicago⁴³. Helium-lamp-based ARPES
270 measurements were performed using 21.2 eV He-I α light. Laser-based ARPES measurements were
271 performed with a spatial resolution of 10 × 15 μm^2 and a typical energy resolution of ~4 meV
272 using 206-nm pulses with a repetition rate of 80 MHz. In the superconducting gap measurements,
273 the energy resolution was further optimized to ~ 2.4 meV and the sample temperature was varied
274 between 8 and 25 K.
275
276 STEM measurements
277 FeTe_xSe_{1-x} samples with Te capping were prepared for cross-sectional STEM imaging using
278 standard focused ion beam (FIB) lift-out procedures in a Thermo Fisher Scientific Helios 600i
279 DualBeam FIB-SEM. A cryo-can was used during the thinning process to reduce redeposition.
280 These FIB cross-sectional samples were stored in an inert atmosphere glovebox between sample
281 preparation and STEM imaging. FeTe_xSe_{1-x} cross sectional samples were imaged in a Thermo
282 Fisher Scientific Themis Z aberration-corrected STEM operated at 300 kV with a convergence
283 angle of 25.2 mrad. Scale for each atomic resolution image was calibrated with the bulk STO
284 spacing of the sample substrate.
285
286 STM measurements
287 Samples were transferred from the University of Chicago to the Center for Nanoscale Materials
288 utilizing a homebuilt vacuum suitcase. The vacuum suitcase was compatible with the Omicron
289 VT-STM, which allowed for characterization of samples that remained in ultrahigh vacuum
290 conditions after initial growth. Imaging was done with a standard electrochemically etched W tip.
291 A topographic image of 0.8 UC FTS is illustrated in fig. S31. Sample bias of +2.0 V and a tunneling
292 current setpoint of 100 pA were used during the scanning.
293
294 DFT+eDMFT calculations

295 We used a fully self-consistent DFT+eDMFT implementation^{44,45}, where the charge density,
296 impurity level, chemical potential, self-energy, and the lattice and impurity Green's Function were
297 computed self-consistently. The DFT+eDMFT functional had a form of the exact Klein
298 functional^{46,47}, with the approximation of the correlation self-energy to be truncated to the local
299 part of each correlated atom in the unit cell⁴⁷. In addition, the less correlated chalcogen atoms and
300 interstitial charge were treated on the DFT level. The double-counting between DFT and DMFT
301 was subtracted exactly⁴⁸. The resulting non-perturbative self-energy, which the Klein functional
302 requires, was in practice calculated by solving the quantum impurity problem in the presence of a
303 self-consistent electronic bath (mean-field environment). The imaginary axis self-energy was
304 calculated using the continuous-time quantum Monte Carlo method from local properties of the
305 Fe ion and was added to the DFT Kohn-Sham Hamiltonian⁴⁷. To represent the lattice problem, we
306 used the WIEN2k package⁴⁹, which uses the full potential augmented plane wave method. To
307 obtain the local Green's function, required by the impurity solver, we used projection to the very
308 localized orbitals contained within the muffin-tin spheres of correlated atoms⁴⁴. This
309 projection/embedding was done on correlated orbitals within ± 10 eV of the Fermi-energy, which
310 can capture spectral weight of all electrons in the solid. A Monkhorst-Pack k-point mesh of
311 $15 \times 15 \times 10$ and the Local Density Approximation (LDA) exchange-correlation was employed at
312 the DFT level, while at the DFT+eDMFT level we used a total of 5 million Monte Carlo steps, a
313 Coulomb's interaction (U) of 5.0 eV, a Hund's coupling (JH) of 0.8 eV, and a temperature of 116
314 K (100 β) to model the effects of alloying tellurium and selenium on the FTS system. The values
315 of U and J were computed using the constrained-DMFT method and had been used previously and
316 agreed with experiments^{32,50}. To represent 10 UC films, we modeled the FeTe_{0.5}Se_{0.5} and FeTe
317 systems in their bulk phases. FeTe_{0.5}Se_{0.5} was modeled by having separate sheets of selenium and
318 tellurium. The in-plane lattice parameters of FeTe_{0.5}Se_{0.5} and FeTe were set to the experimental
319 value of 3.88 Å. For FeTe_{0.5}Se_{0.5}, we optimized the Se/Te positions using eDMFT, which
320 incorporated the effects of the electron's entropy^{51,52}. For FeTe, we performed calculations using
321 both the eDMFT-optimized Te height of 1.73 Å, and a manually tuned height of 1.85 Å to
322 investigate the strong correlation effect. We used the maximum entropy method to analytically
323 continue the self-energy from the imaginary to the real axis. We then computed the spectral
324 functions [A(k, ω)] shown in Fig. 3c. Calculations incorporating the spin-orbit coupling (SOC) are
325 shown in figs. S21 and S22.

326

327 Tight-binding calculations

328 We adopted the eight-band effective model to simulate the band structure of multilayer FTS thin
329 films in the topologically nontrivial regime¹¹. The adopted onsite energy of the d_{xy} orbital was
330 modified to $m_0^3 = 0.001$ eV and the out-of-plane lattice constant was 6.27 Å.

331

332 Electrical transport measurements

333 10 UC FTS thin films were grown using the recipe described in the Sample growth section. A
334 capping layer was deposited by keeping the Te flux for ~ 5 minutes after film growth. Electrical
335 contacts for transport measurements were established using small indium dots, which were
336 manually applied to the samples. The average distance between adjacent dots was ~ 0.5 mm.
337 Electrical transport measurements were conducted using a Physical Property Measurement System
338 (PPMS). An excitation current of approximately 1 μ A was applied for the resistivity measurements.
339

340 Inductively Coupled Plasma Mass Spectrometry (ICP-MS)

341 For ICP-MS measurement, each sample was treated with 750 μ L of hydrochloric acid (HCl, \sim 38
342 wt%) and 250 μ L of nitric acid (HNO₃, \sim 70 wt%), then left for at least three days to ensure
343 complete dissolution. The resulting supernatant was then diluted with a 3% nitric acid solution for
344 subsequent ICP-MS analysis. All measurements were performed using either the Thermo iCAP Q
345 ICP-MS or Thermo iCAP RQ ICP-MS. The calibration curves demonstrated excellent linearity,
346 with coefficients of determination (R^2) of at least 0.9999 for all elements of interest, ensuring high
347 analytical accuracy and precision.

348

349 **Data availability:** Source data are provided with this paper.

350

351 **Code availability:** Results can be reproduced using standard packages. Details about the
352 implementation of DFT+eDMFT are described in the Methods section. Codes used to produce
353 figures can be made available upon request.

354

355 **References**

- 356 1. Cai, J. *et al.* Signatures of fractional quantum anomalous Hall states in twisted MoTe₂.
357 *Nature* **622**, 63–68 (2023).
- 358 2. Zeng, Y. *et al.* Thermodynamic evidence of fractional Chern insulator in moiré MoTe₂.
359 *Nature* **622**, 69–73 (2023).
- 360 3. Park, H. *et al.* Observation of fractionally quantized anomalous Hall effect. *Nature* **622**, 74–
361 79 (2023).
- 362 4. Choi, Y. *et al.* Correlation-driven topological phases in magic-angle twisted bilayer graphene.
363 *Nature* **589**, 536–541 (2021).
- 364 5. Keimer, B., Kivelson, S. A., Norman, M. R., Uchida, S. & Zaanen, J. From quantum matter
365 to high-temperature superconductivity in copper oxides. *Nature* **518**, 179–186 (2015).
- 366 6. Mazin, I. I., Singh, D. J., Johannes, M. D. & Du, M. H. Unconventional Superconductivity
367 with a Sign Reversal in the Order Parameter of LaFeAsO_{1-x}F_x. *Phys. Rev. Lett.* **101**, 057003
368 (2008).
- 369 7. Zhang, P. *et al.* Observation of topological superconductivity on the surface of an iron-based
370 superconductor. *Science* **360**, 182–186 (2018).

371 8. Li, Y. W. *et al.* Observation of topological superconductivity in a stoichiometric transition
372 metal dichalcogenide 2M-WS₂. *Nat Commun* **12**, 2874 (2021).

373 9. Ma, X. *et al.* Correlation-corrected band topology and topological surface states in iron-
374 based superconductors. *Phys. Rev. B* **106**, 115114 (2022).

375 10. Li, Y. *et al.* Evidence of strong and mode-selective electron–phonon coupling in the
376 topological superconductor candidate 2M-WS₂. *Nat Commun* **15**, 6235 (2024).

377 11. Zhang, P. *et al.* Multiple topological states in iron-based superconductors. *Nature Phys* **15**,
378 41–47 (2019).

379 12. Guan, S.-Y. *et al.* Superconducting topological surface states in the noncentrosymmetric bulk
380 superconductor PbTaSe₂. *Science Advances* **2**, e1600894 (2016).

381 13. Kim, M., Choi, S., Brito, W. H. & Kotliar, G. Orbital-Selective Mott Transition Effects and
382 Nontrivial Topology of Iron Chalcogenide. *Phys. Rev. Lett.* **132**, 136504 (2024).

383 14. Huang, J. *et al.* Correlation-driven electronic reconstruction in FeTe_{1-x}Se_x. *Commun Phys* **5**,
384 29 (2022).

385 15. Liu, Z. K. *et al.* Experimental observation of incoherent-coherent crossover and orbital-
386 dependent band renormalization in iron chalcogenide superconductors. *Phys. Rev. B* **92**,
387 235138 (2015).

388 16. Liu, Z. K. *et al.* Measurement of Coherent Polarons in the Strongly Coupled
389 Antiferromagnetically Ordered Iron-Chalcogenide Fe 1.02 Te using Angle-Resolved
390 Photoemission Spectroscopy. *Phys. Rev. Lett.* **110**, 037003 (2013).

391 17. Kim, Y. *et al.* Kondo interaction in FeTe and its potential role in the magnetic order. *Nat
392 Commun* **14**, 4145 (2023).

393 18. Shi, X. *et al.* FeTe_{1-x}Se monolayer films: towards the realization of high-temperature connate
394 topological superconductivity. *Science Bulletin* **62**, 503–507 (2017).

395 19. Li, F. *et al.* Interface-enhanced high-temperature superconductivity in single-unit-cell FeTe_{1-x}Se_x films on SrTiO₃. *Phys. Rev. B* **91**, 220503 (2015).

396 20. Jia, J. *et al.* Absence of BCS-BEC crossover in FeSe_{0.45}Te_{0.55} superconductor. *Chinese Physics B* **33**, 077404 (2024).

397 21. Norman, M. R., Randeria, M., Ding, H. & Campuzano, J. C. Phenomenology of the low-energy spectral function in high-T_c superconductors. *Phys. Rev. B* **57**, R11093–R11096 (1998).

401 22. Wang, Z. *et al.* Topological nature of the FeSe_{0.5}Te_{0.5} superconductor. *Phys. Rev. B* **92**, 115119 (2015).

404 23. Li, Y.-F. *et al.* Orbital Ingredients and Persistent Dirac Surface State for the Topological Band Structure in FeTe_{1-x}Se_x. *Phys. Rev. X* **14**, 021043 (2024).

406 24. Cvetkovic, V. & Vafek, O. Space group symmetry, spin-orbit coupling, and the low-energy effective Hamiltonian for iron-based superconductors. *Phys. Rev. B* **88**, 134510 (2013).

408 25. Wu, X., Qin, S., Liang, Y., Fan, H. & Hu, J. Topological characters in FeTe_{1-x}Se_x thin films. *Phys. Rev. B* **93**, 115129 (2016).

410 26. Lohani, H. *et al.* Band inversion and topology of the bulk electronic structure in FeSe_{0.45}Te_{0.55}. *Phys. Rev. B* **101**, 245146 (2020).

412 27. Jiang, J. *et al.* Distinct in-plane resistivity anisotropy in a detwinned FeTe single crystal: Evidence for a Hund's metal. *Phys. Rev. B* **88**, 115130 (2013).

414 28. Li, S. *et al.* First-order magnetic and structural phase transitions in Fe_{1+y}Se_xTe_{1-x}. *Phys. Rev. B* **79**, 054503 (2009).

416 29. Kim, Y. *et al.* Fragility of Topology under Electronic Correlations in Iron Chalcogenides.
417 Preprint at <https://doi.org/10.48550/arXiv.2507.17656> (2025).

418 30. Hu, J., Liu, T. J., Qian, B. & Mao, Z. Q. Coupling of electronic and magnetic properties in
419 $\text{Fe}_{1+y}(\text{Te}_{1-x}\text{Se}_x)$. *Phys. Rev. B* **88**, 094505 (2013).

420 31. Liu, T. J. *et al.* From $(\pi, 0)$ magnetic order to superconductivity with (π, π) magnetic
421 resonance in $\text{Fe}_{1.02}\text{Te}_{1-x}\text{Se}_x$. *Nature Mater* **9**, 718–720 (2010).

422 32. Yin, Z. P., Haule, K. & Kotliar, G. Kinetic frustration and the nature of the magnetic and
423 paramagnetic states in iron pnictides and iron chalcogenides. *Nature Mater* **10**, 932–935
424 (2011).

425 33. Viennois, R., Giannini, E., van der Marel, D. & Černý, R. Effect of Fe excess on structural,
426 magnetic and superconducting properties of single-crystalline $\text{Fe}_{1+x}\text{Te}_{1-y}\text{Se}_y$. *Journal of Solid
427 State Chemistry* **183**, 769–775 (2010).

428 34. Joseph, B. *et al.* Evidence of local structural inhomogeneity in $\text{FeSe}_{1-x}\text{Te}_x$ from extended x-
429 ray absorption fine structure. *Phys. Rev. B* **82**, 020502 (2010).

430 35. Mandal, S., Cohen, R. E. & Haule, K. Strong pressure-dependent electron-phonon coupling
431 in FeSe. *Phys. Rev. B* **89**, 220502 (2014).

432 36. Gerber, S. *et al.* Femtosecond electron-phonon lock-in by photoemission and x-ray free-
433 electron laser. *Science* **357**, 71–75 (2017).

434 37. Zou, Q. *et al.* Correlation Enhanced Electron-Phonon Coupling in $\text{FeSe}/\text{SrTiO}_3$ at a Magic
435 Angle. Preprint at <https://doi.org/10.48550/arXiv.2506.22435> (2025).

436 38. Sato, Y. *et al.* Molecular beam epitaxy of superconducting $\text{FeSe}_x\text{Te}_{1-x}$ thin films interfaced
437 with magnetic topological insulators. *Phys. Rev. Mater.* **8**, L041801 (2024).

438 39. Grimvall, G. The electron-phonon interaction in metals. (1981).

439 40. Scalapino, D. J., Schrieffer, J. R. & Wilkins, J. W. Strong-Coupling Superconductivity. I.
440 *Phys. Rev.* **148**, 263–279 (1966).

441 41. Chen, Q., Wang, Z., Boyack, R., Yang, S. & Levin, K. When superconductivity crosses over:
442 From BCS to BEC. *Rev. Mod. Phys.* **96**, 025002 (2024).

443 42. Coh, S., Lee, D.-H., Louie, S. G. & Cohen, M. L. Proposal for a bulk material based on a
444 monolayer FeSe on SrTiO₃ high-temperature superconductor. *Phys. Rev. B* **93**, 245138
445 (2016).

446 43. Yan, C. *et al.* An integrated quantum material testbed with multi-resolution photoemission
447 spectroscopy. *Review of Scientific Instruments* **92**, 113907 (2021).

448 44. Haule, K., Yee, C.-H. & Kim, K. Dynamical mean-field theory within the full-potential
449 methods: Electronic structure of CeIrIn₅, CeCoIn₅, and CeRhIn₅. *Phys. Rev. B* **81**, 195107
450 (2010).

451 45. Haule, K. Structural predictions for Correlated Electron Materials Using the Functional
452 Dynamical Mean Field Theory Approach. *J. Phys. Soc. Jpn.* **87**, 041005 (2018).

453 46. Klein, A. Perturbation Theory for an Infinite Medium of Fermions. II. *Phys. Rev.* **121**, 950–
454 956 (1961).

455 47. Kotliar, G. *et al.* Electronic structure calculations with dynamical mean-field theory. *Rev.*
456 *Mod. Phys.* **78**, 865–951 (2006).

457 48. Haule, K. Exact Double Counting in Combining the Dynamical Mean Field Theory and the
458 Density Functional Theory. *Phys. Rev. Lett.* **115**, 196403 (2015).

459 49. Blaha, P. *et al.* *WIEN2k: An Augmented Plane Wave Plus Local Orbitals Program for*
460 *Calculating Crystal Properties*. (Techn. Universitat, 2019).

461 50. Mandal, S., Zhang, P., Ismail-Beigi, S. & Haule, K. How Correlated is the FeSe/SrTiO₃
462 System? *Phys. Rev. Lett.* **119**, 067004 (2017).

463 51. Haule, K. & Pascut, G. L. Forces for structural optimizations in correlated materials within a
464 DFT+embedded DMFT functional approach. *Phys. Rev. B* **94**, 195146 (2016).

465 52. Haule, K. & Birol, T. Free Energy from Stationary Implementation of the DFT+DMFT
466 Functional. *Phys. Rev. Lett.* **115**, 256402 (2015).

467 **Acknowledgments:** We thank Zhi-Xun Shen, Rafael Fernandes, Peter Littlewood, and David
468 Awschalom for helpful discussions. MBE and ARPES measurements were supported by NSF via
469 Grant No. DMR-2145373 (S.Y.). Transport measurements were done at facilities supported by
470 NSF via Grant No. DMR-2011854 (S.Y.). Fabrication of electrical contacts for transport
471 measurements was supported by NSF via Grant CMMI-2240489 (S.Y.). S.M. and C.L.J.
472 acknowledge the support from the Air Force Office of Scientific Research by the Department of
473 Defense under Award No. FA9550-23-1-0498 (S.M.) of the DEPSCoR program. S.M. and C.L.J.
474 benefited from the Frontera supercomputer at the Texas Advanced Computing Center (TACC) at
475 The University of Texas at Austin, which is supported by National Science Foundation Grant No.
476 OAC-1818253 (S.M.). S.M. also acknowledges the support from NSF OAC-2311558 (S.M.).
477 STEM measurements were supported by the Air Force Office of Scientific Research under award
478 number FA9550-20-1-0302 (P.Y.H.). STEM measurements were carried out in part in the
479 Materials Research Laboratory Central Facilities at the University of Illinois at Urbana-Champaign.
480 ICP-MS measurements were supported by the U.S. DOE Basic Energy Sciences under Grant No.
481 DE-SC0023317 (C.L. and S.Y.). X.W. acknowledges support from the National Key R&D
482 Program of China (Grant No. 2023YFA1407300) (X.W.) and the National Natural Science
483 Foundation of China (Grant No. 12447103) (X.W.). STM measurements performed at the Center
484 for Nanoscale Materials, a U.S. Department of Energy Office of Science User Facility, was
485 supported by the U.S. DOE, Office of Basic Energy Sciences, under Contract No. DE-AC02-
486 06CH11357 (N.P.G.).

487
488 **Author contributions:** H.L., C.Y., and S.Y. conceived and designed the experiment. H.L. and
489 C.Y. grew the thin films and performed the ARPES experiments with assistance from Q.G., G.B.,
490 K.D.N., and Y.B. H.L., P.S., and Y.B. performed the electrical transport measurements. G.M.N.
491 and P.Y.H. performed the STEM measurement. N.P.G., C.Y. and H.L. performed the STM
492 measurement. C.J. and S.M. performed the DFT+eDMFT calculation. X.W. and C.-X.L.
493 performed the tight-binding calculation. G.Y., S.C, and C.L. performed the ICP-MS measurements.
494 H.L. and S.Y. analyzed and interpreted the experimental data. All authors participated in
495 discussions and in writing of the manuscript.

496
497 **Competing interests:** The authors declare no competing interests.

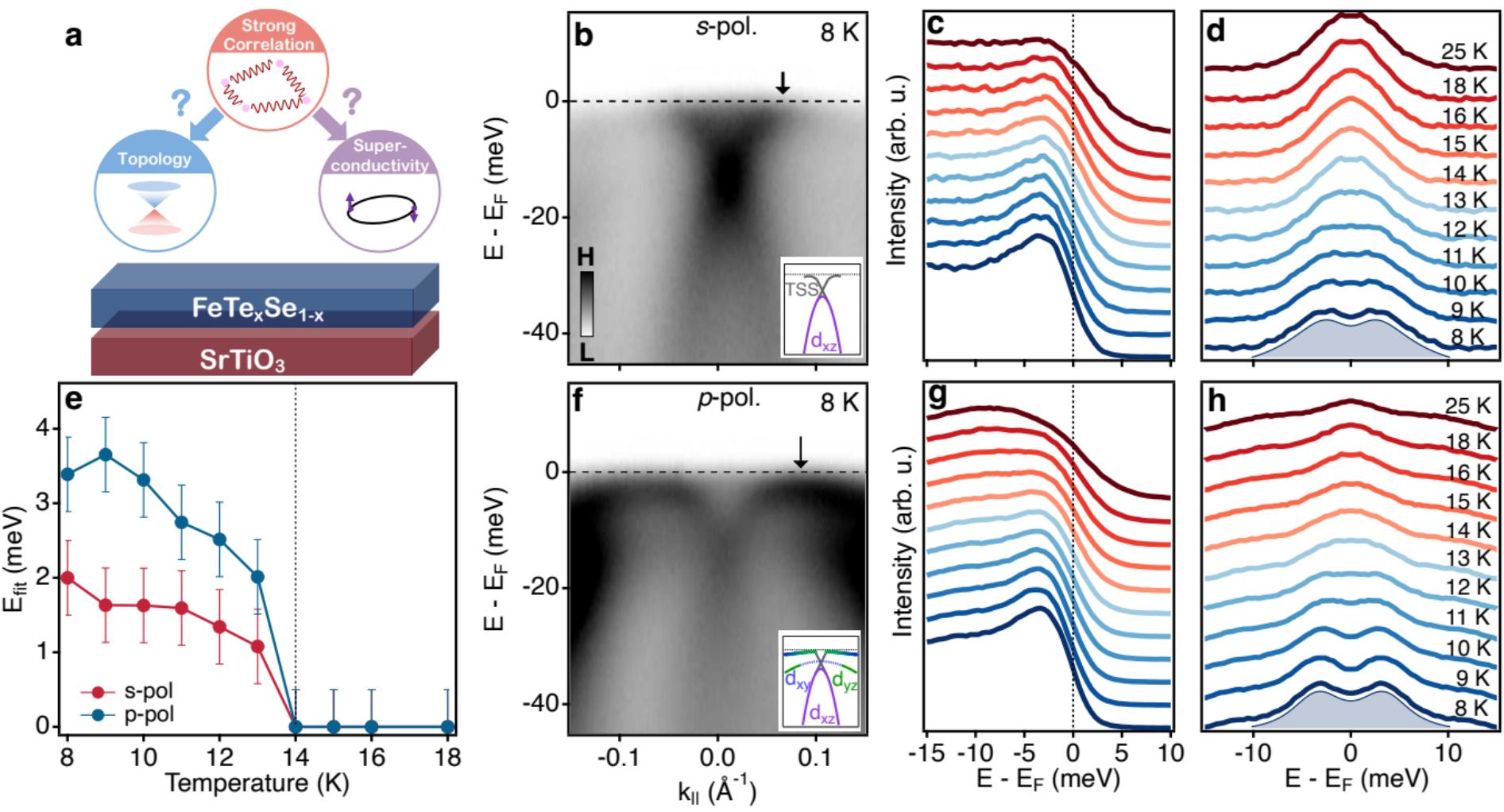
498

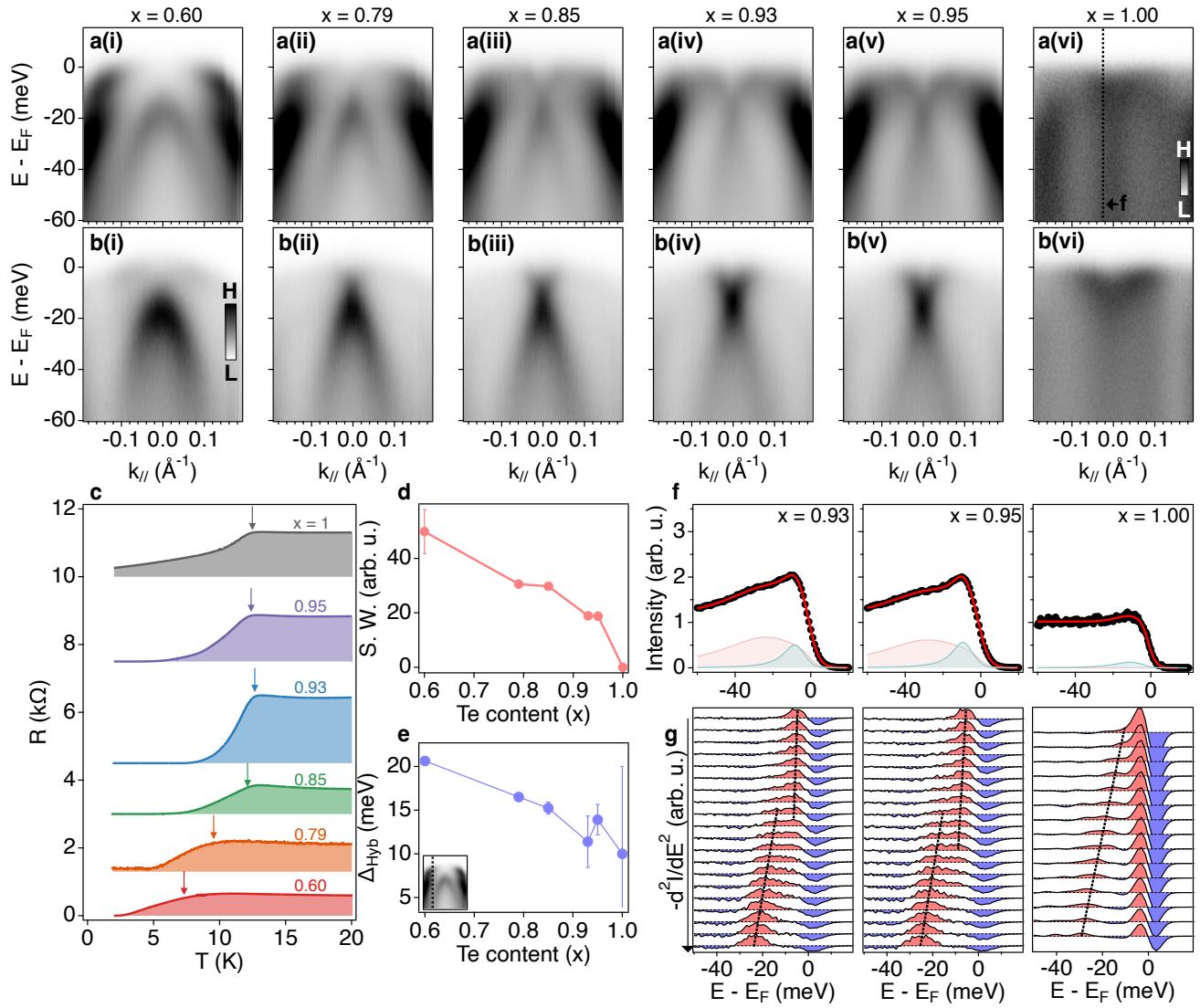
499 **Figure captions:**

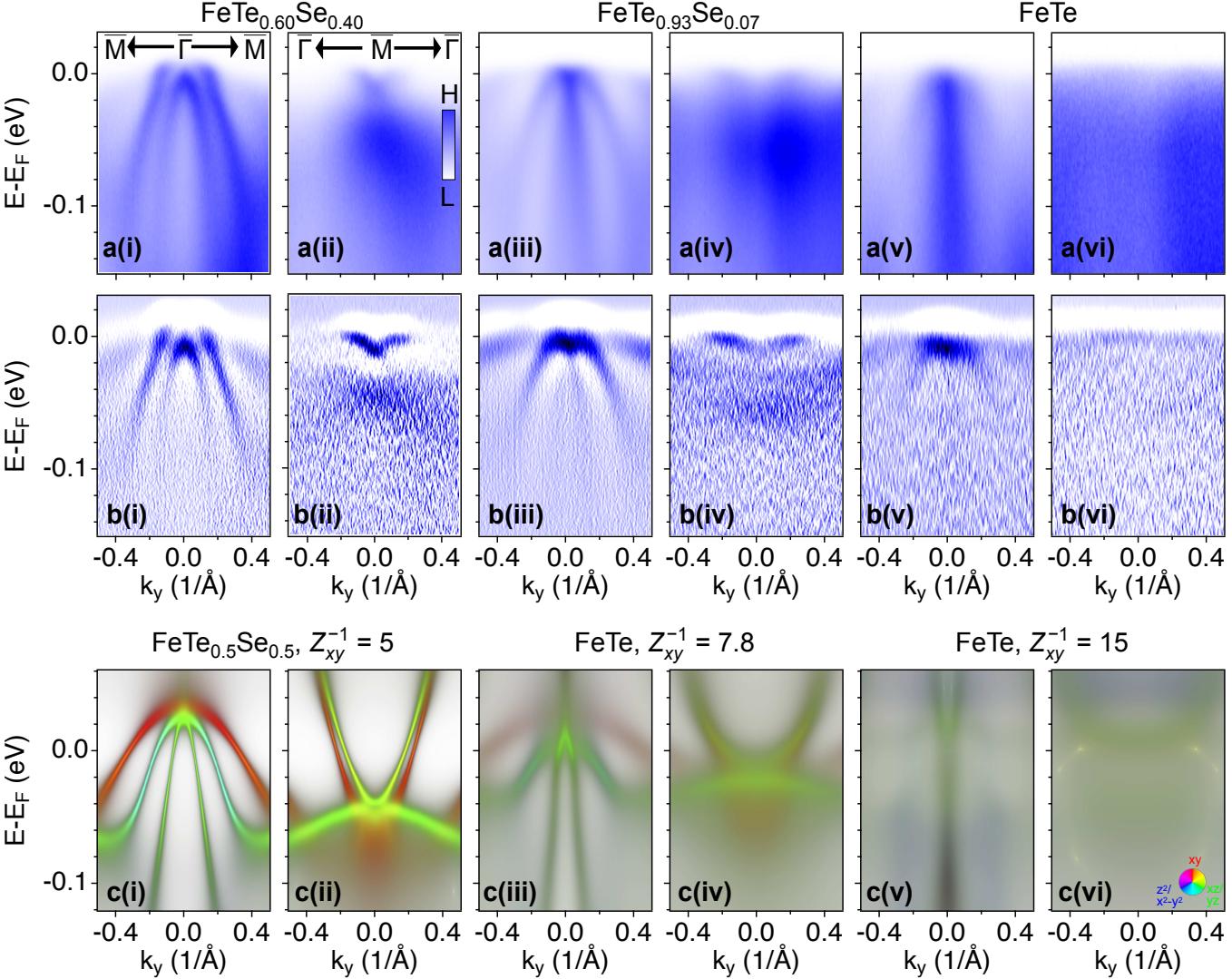
500 **Fig. 1. Superconducting gap measurements on 10 UC $\text{FeTe}_{0.93}\text{Se}_{0.07}$.** (a) Schematic illustration
 501 of the goal of this study: how strong electronic correlations impact band topology and
 502 superconductivity in thin-film $\text{FeTe}_x\text{Se}_{1-x}$. (b) ARPES spectrum on 10 UC $\text{FeTe}_{0.93}\text{Se}_{0.07}$ measured
 503 at 8 K along $\overline{\Gamma} - \overline{X}$ using *s*-polarized 6 eV photons. The black arrow indicates the momentum at
 504 which energy distribution curves (EDCs) are taken. Inset shows the schematic of the polarization-
 505 selected band structure. (c) Selected EDCs at various temperatures. (d) EDCs symmetrized around
 506 the zero energy. (e) Temperature dependence of the extracted superconducting gap E_{fit} for the two
 507 polarization schemes, determined from the symmetrized EDCs in (d) and (h). Above 14 K, the
 508 quality of fits using either a single- or double-Lorentzian model becomes indistinguishable,
 509 indicating that the gap has effectively closed (fig. S6). Within this framework, the gap extracted at
 510 14 K using the established Norman model²¹ should also be indistinguishable from zero. We thus
 511 define our effective error bars based on this criterion. (f, g, h): Same as (b, c, d), but using *p*-
 512 polarized 6 eV photons.

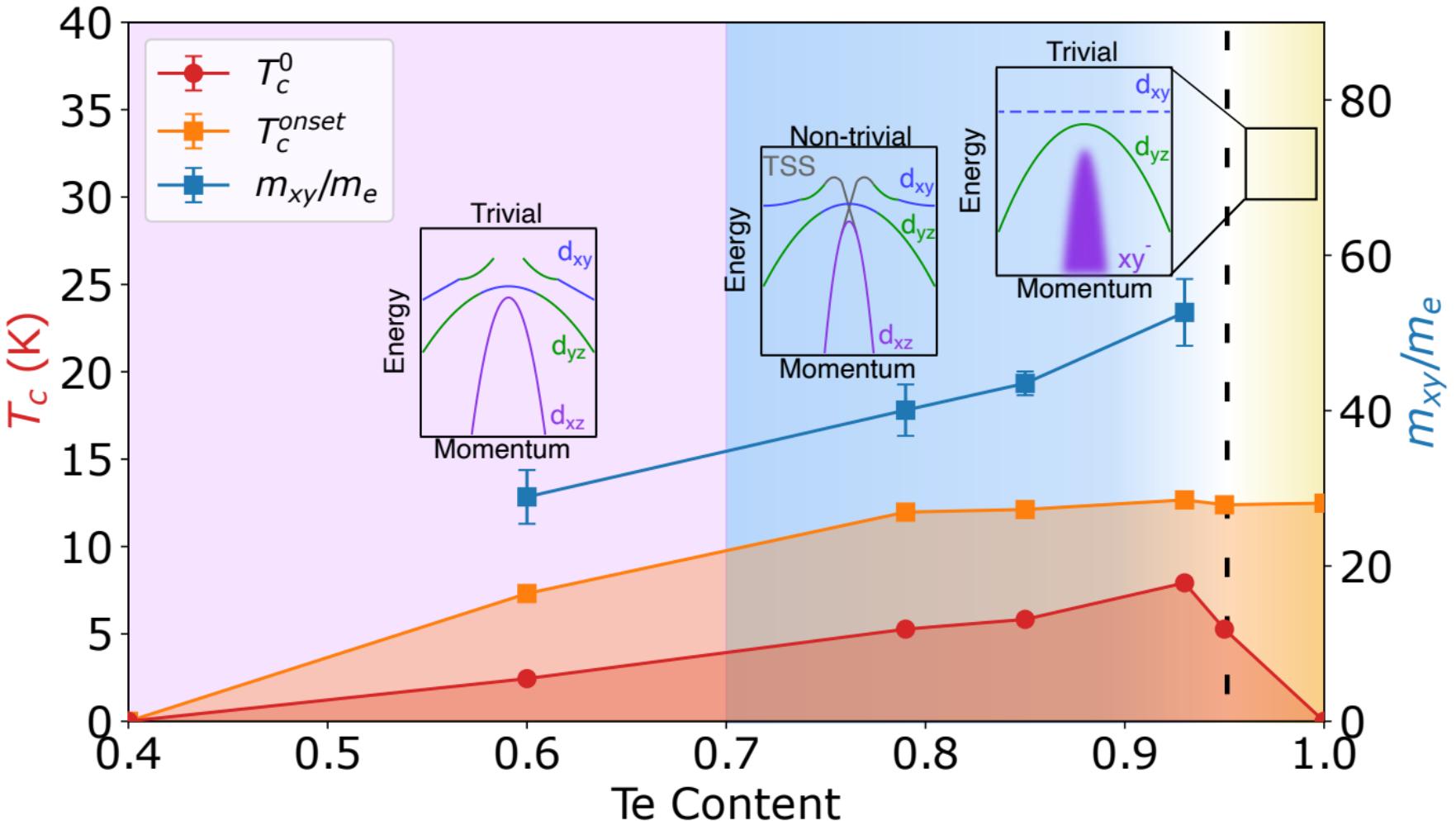
513

514 **Fig. 2. Doping evolution of band topology and superconductivity.** (a) Evolution of the ARPES
 515 spectra as a function of the Te content (x) near the $\overline{\Gamma}$ point using *p*-polarized 6 eV laser. (b) Same
 516 as (a) but using *s*-polarized 6 eV photons. (c) Resistance-vs-temperature curves for FTS thin films.
 517 The resistance values of each curve have been vertically offset for clarity. (d) Fitted spectral weight
 518 (S. W.) of the lower Dirac cone as a function of the Te content. (e) Fitted hybridization gap (Δ_{Hyb})
 519 between the d_{xy} and d_{yz} bands as a function of the Te content. The error bars in panels (d) and (e)
 520 represent the statistical uncertainty derived from the fitting procedure. (f) Black circles are EDCs
 521 taken at -0.025 \AA^{-1} . Red curves are fits to the EDCs (see Supplementary Note 7). Red and green
 522 shaded areas represent the components corresponding to the lower and upper Dirac cones,
 523 respectively. (g) Inverted second derivative curves corresponding to momentum-dependent EDCs
 524 in the range between -0.065 (top) and -0.165 \AA^{-1} (bottom). Dashed lines are guides to the eye
 525 indicating the band dispersion.


526


527 **Fig. 3. Dramatic changes in the band structure due to orbital-selective strong correlations.**
528 (a) Evolution of the ARPES spectra as a function of the Te content near the $\bar{\Gamma}$ point and the \bar{M} point
529 using 21.2 eV photons. (b) Corresponding 2D curvature plots of the raw data in (a). (c) Calculated
530 spectral functions for bulk $\text{FeTe}_{0.5}\text{Se}_{0.5}$ and FeTe with different inverse spectral weights for the d_{xy}
531 orbital (Z_{xy}^{-1}) using the density functional theory (DFT) in combination with the embedded
532 dynamical mean field theory (eDMFT). Z_{xy}^{-1} of FeTe is tuned by the Te height (Methods).


533


534 **Fig. 4. Phase diagram of 10 UC $\text{FeTe}_x\text{Se}_{1-x}$ thin films.** The onset transition temperature (T_c^{onset})
535 and the temperature (T_c^0) at which the resistance reaches 1% of the normal state resistance at 20 K
536 are plotted against Te content, x . Error bars indicate one-standard-deviation (1σ) uncertainties of
537 the fitting results. For T_c^{onset} , the uncertainties are smaller than the marker size. The blue curve
538 shows the effective mass of the d_{xy} band as a function of x . Near the FeTe limit, another topological
539 transition occurs, and the system becomes trivial again. Concurrently, this region also exhibits a
540 suppression of superconductivity.

541

