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ABSTRACT

Programmable metamaterials have seen increased interest in
recent years due to their suitability for a wide range of applica-
tions along with the high level of control that they offer over their
structural properties. In particular, significant interest has been
generated for their application in vibration control as they can be
updated and tuned without having to completely rebuild an entire
section. However, their complex behavior can make modelling
them difficult and time consuming. In recent years, machine
learning has emerged as a powerful tool to predict behavior of
metamaterials and help reduce the amount of testing time. While
prior work demonstrated the efficacy of machine learning on
metamaterials with fewer permutations, minimal focus has been
placed on its applications for large datasets. This work aims to
bridge this gap and demonstrate the possibility of using machine
learning algorithms to predict complex metamaterial behavior
which is trained on a relatively small dataset. Discussion is also
given to a novel approach to collecting experimental data for
similar applications.

Keywords: Metamaterials, Machine Learning, Pro-
grammable Structures, Material Stiffness
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1. INTRODUCTION

Metamaterials are defined as structures which combine pre-
cise design and material properties to yield properties not typi-
cally achievable. Commonly, these include optics, magnetism,

*Corresponding author: will1904@purdue.edu, jgibert@purdue.edu
Documentation for asmeconf . cls: Version 1.41, January 31, 2026.

and mechanical response [1-5]. In recent years, metamaterials
have seen increased use in the fields of energy harvesting, vibra-
tion isolation, mechanism design, optical cloaking, and countless
others owing to their ability to be readily designed for a vari-
ety of applications [6—8]. Of particular interest is the use of
metamaterials for vibration damping. These systems may be
designed to help damp mechanical vibrations or buffer acoustic
vibrations [9]. Programmable metamaterials refer to metamate-
rial structures which may be adapted for a changing environment;
rather than being fixed in their function, internal or external stim-
uli may be used to change some aspect of the configuration to
produce a modified response [10—14]. In the context of vibra-
tion damping, this can be advantageous owing to the potential
altering of the damping profile over time due to viscoelastic ma-
terial degradation. While programmable metamaterials enable
additional capabilities not possible with traditional metamateri-
als, they can also introduce modeling difficulties because of their
complex governing properties. In response to this, some recent
work has investigated the use of artificial intelligence (AI) or
machine learning (ML) to predict metamaterial behavior without
experimentally studying its behavior for all configurations.

Recently, there has been a growing interest in using artificial
intelligence (Al) to understand the relationship between metama-
terial structures and their output behaviors. A common feature of
metamaterial investigations is the need to collect large datasets to
sufficiently characterize these highly complex systems. Moham-
madnejad et al. explored this challenge by implementing a hybrid
data collection approach for training an artificial neural network
(ANN), using experimental data to validate a larger finite element
(FE)-generated dataset [15]. Their hybrid method was applied to
solve an inverse problem; given a stress-strain curve, the ANN
was able to predict the architecture of a semi-auxetic metamate-
rial. Sengodan etal. and Yang et al. both computationally created
data sets for their respective metastructures and were able to sig-
nificantly reduce computational time of a CNN model data points
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by using principal component analysis (PCA) [16, 17]. Studies
that focus primarily on using simulation-based approaches for
data mining are excellent for high-ordered systems, however, due
to software availability, computational power, and lack of ex-
perimental data for model validation, an alternative data-mining
method should be investigated.

In this investigation two novel ideas are introduced, the first
of which is a proposed data mining collection method using
an automated mechanical device for a programmable stiffness
metamaterial. The second is the employment of a constraint-
based algorithm for data sampling to achieve a semi-controlled
response in large order metamaterial systems. The hypothesis
being that using a constrained optimization algorithm can pre-
condition the data and outperform stochastic methods in cre-
ating the desired metamaterial affect—a buckling failure mode.
The significance of this lies in the potential to enable precise,
application-specific tuning of metamaterial behavior, thereby ad-
vancing their integration into adaptive structures, soft robotics,
and energy-absorbing systems. To test this hypothesis, a physics-
informed algorithm was implemented and its performance was
evaluated against Monte Carlo methods using two complemen-
tary approaches. A statistical analysis was conducted to compare
the distributions of various material properties in the datasets
generated by each method. Further, the predictive accuracy of
two ML models was compared on a "forward problem". In this
forward problem, the algorithm is given a binary string repre-
senting the metamaterial configuration and returns the predicted
force / displacement curve. The following sections detail the ex-
perimental setup, algorithmic implementation, and comparative
results that support this investigation.

2. EXPERIMENTAL DESIGN

This experimental design will cover the manufacturing of the
physical device used for the large data set creation, the algorithms
used for data set generation, the quantitative process done for post

processing data, and lastly the methodology used for the modeling
of the CNN.

2.1. Physical Test Bed

The mechanical metamaterial under investigation is a hetero-
geneous structure consisted of a thin-walled elastomeric matrix
forming periodic diamond-shaped unit cells that can be reinforced
by selective placement of rigid inclusions, allowing programma-
bility of not only the linear global stiffness but also the compre-
hensive constitutive relationship under large deformation. While
the empty matrix exhibits a monotonic quasi-linear response un-
der compression, connected domains of stiffened unit cells may
induce buckling collapses of neighboring zones of empty unit
cells, which creates local negative-stiffness regions on the load-
ing curve. The design is formulated using the map from the
digital representation of the inclusion patterns, i.e., binary arrays
indicating unit cell states as filled ("1") or empty ("0"), to the
nonlinear force-displacement response.

The examination of artificial-neural-network-aided design
with experimental data is attempted using a finite prototype of
the above architecture with 105 unit cells. An image of the test
bed for data collection is shown in Figure 1.

FIGURE 1: IMAGE OF DATA COLLECTION DEVICE

2.2. Dataset Generation

For systems with a large number of degrees of freedom, the
workload associated with data collection can rapidly grow. For
a system of this size, the number of possible permutations can
quickly reach trillions or higher. Because of the sheer number of
patterns, physically sampling or modeling a significant fraction
of these would be prohibitively costly in time. To combat this,
thorough identification of the problem which is being attempted
must be completed. For this programmable metamaterial, of par-
ticular interest is the buckling behavior which arises due to the
interspersed collection of voids and filled cells. By controlling
the placement of filled cells, it is hypothesized that the buckling
behavior can be precisely controlled to introduce nonlinear stift-
ness at specific points during the compression of the structure.
With this goal in mind, an algorithm was created to form patterns
which were made to induce buckling. To begin, a user-selected
number of N seeds is randomly placed throughout the grid. This
number is subjective and will control the number of buckling
paths which may occur in the pattern. From each of these seed
cells, the filled pattern will spread to adjacent unfilled cells. This
behavior will continue until one of two conditions is met: either
the filled cells reach the edge of the structure, or filling a cell
will result in it contacting an already filled cell. Once there are
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no additional cells to fill based on these criteria, the structure is
considered complete. A complete structure visually appears to
have cracks running along its face. This pattern allows the un-
filled cells to, at times, compress more readily than the filled cells
which induces a buckle. In focusing the generation of data to
identify patterns, the required amount of data to captured trends
is believed to decrease. This can be advantageous and allow a
model to be trained on a portion of data which represents only a
small fraction of the total number of possibilities.

In this investigation the code would produce a pattern through
either a Monte Carlo sample or the aforementioned constrained
algorithm and linear actuators would push an inclusions from a
’storage array’ into an open cell in the ’testing array’. This same
process would happen in reverse if an inclusion needed to be
removed based on the automatically supplied distribution code.
The testing array would then have a predetermined compression
load applied and relaxed. This coupled with a load cell would
produce the stress-strain curves for this investigation. It is worth
noting that the entire hysteresis curves were not used in data
analysis. To reduce computational expense only the loading phase
was used and not the unloading half of the experiments. Further,
an assumption is made that the material is not plastically deformed
under cyclic loading due to a compression load. This assumption
is based on the material properties of the silicone rubber used
to create the mold; due to its elasticity, these rubbers typically
exhibit yield strains at multiple times their lengths, far above what
is experienced during the compressive tests studied here [18].

2.3. Data Analysis

The analysis was conducted to examine the relationship be-
tween the cell distribution and its resulting force-displacement
curve under axial compression. Two different algorithms were
used to occupy the cells. One is described in Section 2.2 and the
other one is a stochastic placement, both in number and position
of the occupied cells. The dataset produced by the algorithm
contains 26642 samples, where as the random dataset consists of
5642 samples. The objective was to identify a metric capable
of categorizing data from varying cell distribution patterns that
yield similar force-displacement responses. This was useful be-
cause it gave us insight into features that create a buckling curve,
which in turn is valuable information for the forward approach
discussed below. The analysis focuses on the force-displacement
behavior, buckling phenomena, and spatial distribution patterns
observed across the two datasets.

2.4. Dataset Structure

Each subsequent test is composed of two files with one being
inclusion patterns and the other being the force and displacement
data of the compression test. Each sample is compressed until
it reaches 20 N of force; thus, the independent variable is
compression force and the dependent variable is compression
distance.

The inclusion patterns are represented as a 105 character
long binary string for each cell in the lattice structure being 19
rows tall and alternating between five and six cells wide. In said
string, each O represents an empty cell and each 1 indicates an

occupied cell.

To evaluate the similarities between different force-
displacement curves, two different metrics were selected based
on fundamental aspects of the polymer structure. These metrics
were developed to capture distinct characteristics of the response
curve and to uncover patterns that could enhance the understand-
ing of buckling behavior within the structure, as well as the factors
influencing the overall shape of the curve.

A. Area Under the Curve Energy storage due to strain is
commonly studied and parameterized using the strain en-
ergy density. For uniaxial strain, the strain energy density
can be calculated by evaluating the integral of the stress-
strain curve to find its contained area [19]. While the ex-
periment performed herein focuses on force-displacement
data, a simple scaling factor would relate it to a stress-
strain curve. Thus, for qualitative comparison, strain en-
ergy density may be used appropriately. The area under
the force-displacement curve was calculated to get a met-
ric that covers the amount of work that was done on the
system. Because the compression stops at 20 N for each
sample, this metric is driven by the stiffness of each pattern
configuration.

B. Number of Force Peaks The secondary value of interest
is the number of peaks exhibited in the force displacement
curve. When the structure buckles, it will undergo an either
temporary or permanent reduction in its force carrying
ability which will be reflected in the force-displacement
curve. Thus, each local peak in this curve corresponds to a
buckling event and knowledge of this buckling can inform
further design decisions. Using this metric, structures of
different patterns can be categorized into bins of their peak
count. Ultimately, the goal is to identify if there are certain
structure types which are more or less prone to buckling.

2.5. Forward Problem

For this model, the input was the previously discussed array
comprised of ones and zeros. It is noted that the construction of
the metamaterial alternates rows of five and six cells. To sim-
plify processing, the pattern was normalized to fit a rectangle
with additional imaginary cells being added to fill out the gaps in
shorter rows. The final size of the input is 19 rows by 11 columns.
The model output was a 1D vector with values representing the
normalized displacement exerted during compression. This nor-
malized force produces a value between zero and one; to provide
a useful force measurement in Newtons, a basic deep neural net-
work (DNN) was trained in parallel on the same data to predict
a scaling value which represents the maximum displacement of
the structure. This scaling value is applied to the CNN model
to produce a final force vector which can be compared to the
experimental test cases. The structure of the neural network is
discussed in more detail in Section 3.4

3. RESULTS & DISCUSSION
The analysis of the metamaterial structure datasets reveal
key findings regarding the mechanical response and cell distri-
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bution patterns of the samples. The results are derived from
a combination of histogram analyses [3.1], force-displacement
behavior [3.2], and heatmap pattern evaluation 3.3]. Together,
these approaches provide an extensive understanding of how cell
distribution patterns influence buckling, energy absorption and
general deformations in the tested structure.

3.1. Histogram Analysis

A detailed understanding of the geometric and mechanical
features across the generated dataset is essential for the interpre-
tation of the results and the following training of the machine
learning model. Here, histograms were used to show the distri-
bution of two key metrics across the dataset; area under the curve
and number of peaks. The number of bins in each histogram were
selected using the Freedman—Diaconis rule to ensure an unbiased
resolution of the distribution.

The histogram in Figure 2 captures the amount of buckling
within the force-displacement curves across the whole dataset.
The plot is very discrete, showing that the maximum amount
of peaks found in the dataset never exceeds seven peaks. This
confirms that our dataset is not exhibiting excessive noise or
other artifacts causing peaks that do not stem from buckling in
the structure.

The peak of the distribution shows that most samples ex-
hibit either one or two peaks. This suggests that the majority of
structures in the dataset undergo only a single dominant buckling
event, while a minority portion of the samples display more com-
plex responses with multiple peaks. The clear discretization by
peak count allows for analyses of simple versus more complex
mechanical behavior. Having a low amount of samples with more
than four peaks reveals either the rarity of intricate configurations,
or possibly a selection bias during the generation of the datasets.

Number of Peaks Distribution

10000 A
8000 -

6000

- i
2000

Sample Count

Number of Peaks

FIGURE 2: DISTRIBUTION OF PEAKS ACROSS THE WHOLE
DISPLACEMENT RANGE - ALGORITHM DATASET
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FIGURE 3: DISTRIBUTION OF PEAKS ACROSS THE WHOLE
DISPLACEMENT RANGE - RANDOM DATASET

The normalized area under the curve histogram shown in Figure
4 is notably narrow around high normalized values of approxi-
mately 0.7. This indicates that despite diversity in peak count
and stiffness, the majority of samples are capable of absorbing a
substantial amount of mechanical energy, represented by the area
under the force-displacement curve (E = F - s). This indicates
consistent mechanical performance and a robust dataset that
does not include outliers.

The lack of samples with a low normalized area suggests that
many of the curves are close to the mean, as seen in Figure
6. This subsequently highlights that structures exhibiting sig-
nificantly more complex force-displacement curves — and con-
sequently larger or smaller areas compared to our test cases —
are rare within the dataset. This scarcity may result from in-
herent physical design constraints or from limitations in the cell
placement algorithm, which ensured that no more than 64 cells
remained unoccupied; as a result, fully or nearly empty structures
were not explored during the experiment.
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FIGURE 4: DISTRIBUTION AREA UNDER THE CURVE - AL-
GORITHM DATASET
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3.2. Force-Displacement Behavior

Due to the large amount of experimental data available, it
was crucial to find a way to narrow down the batch size to
a manageable amount for analysis. Two primary approaches
were considered for categorizing the data. The first approach
is to group by overall cell count in the structure, which leaves
out the information that a specific pattern would exhibit on the
mechanical response. The second approach was to inspect each
of the 19 rows individually, then creating sub-groups based on the
number of occupied cells within each row. Using this method,
only the occupancy in the row of interest was considered, while
any patterns in the remaining rows were not taken into account.

92104 Ued PIZIeWION

FIGURE 6:

DISTRIBUTION OF MEAN
DISPLACEMENT CURVES ACROSS THE NUMBER OF
FILLED CELLS - ALGORITHM DATASET

FORCE-

Figures 6 and 7 present a three-dimensional visualization of mean
normalized force-displacement curves (z-axis) as a function of
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FIGURE 7:

DISTRIBUTION OF MEAN
DISPLACEMENT CURVES ACROSS THE NUMBER OF
FILLED CELLS - RANDOM DATASET

FORCE-

Algorithm Dataset | Random Dataset
Buckling Samples 11071/26642 1996/5642
Percentage 41.6% 35.4%

TABLE 1: BUCKLING IN THE DATASETS

the cell distribution count (number of filled cells - x-axis) and
displacement (x-axis) during the compression test. Each colored
line represents the mean force response for all samples at a given
number of cells occupied, computed across the entire dataset.

As cell distribution increases, curves generally become steeper
near the origin and retain higher force values for longer before
declining to a plateau. The drop off after the initial rise also
becomes more abrupt in higher cell counts; this may indicate
that higher cell counts exhibit more buckling due to their denser
cell structures. Moreover, it can be said that the curves display
a more complex behavior the more occupied the structure is.
This is mostly recognizable in the transitional region near the
center of the displacement where the curve goes from a smooth
transition to developing more pronounced peaks. However, there
are significant outliers. It is believed that these outliers arise from
a smaller number of samples with larger numbers of filled cells.

Table [1] shows the amount of buckling found in both of the
datasets, using a peak height of >0.01 and a minimum distance
between two peaks of 10 data points.

3.3. Heatmap and Occupancy Patterns

Heatmaps of the cell distributions provide a visual overview of
how cells are distributed within the dataset, and therefore provide
a way to gauge the pattern placement algorithm on equal distri-
bution.

The distribution patterns are not random but are the result of the
pattern placement algorithm discussed in Section 2.2.

Figure 8a presents a heatmap representing the frequency of
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FIGURE 8: COMPARISON OF CELL DISTRIBUTIONS ACROSS DATASETS.

distribution for each cell across the entire structure with all 105
cells. The color hereby indicating how often a given cell is filled
across all samples.

Note that the actual design involved diamond shape inclusions
and cells that alternated between being 5 and 6 cells wide. That
is the reason, there is one extra, never occupied cell in each row,
compensating for the offset.

The most prominent feature is the extremely high distribu-
tion count found at the four corner cells, indicating these
sites are filled in almost every configuration. This is likely
a result of the pattern placing algorithm. With respect to
the algorithm, the central region of the grid (columns 2-5,
rows 2-19) is characterized by an even distribution of mod-
erate cell count, slightly increasing in cell count towards the
edges. This further undermines the dataset variety in mechanical
responses, as there is no real bias to be seen outside of the corners.

3.4. Forward Problem

The forward problem was first tested using a deep neural net-
work. While this yielded accurate force-displacement curves
during training, the model performed poorly on a test data set
suggesting that the training data had been overfit. Changing the
parameters of this model had minimal effect on the outcome,
suggesting a limited ability of the model to extrapolate to new
data. With this in mind, the model was changed to a CNN. The
pipeline of the CNN is shown in Figure 9.

When trained on the algorithm dataset, the CNN performance im-
proved but continued to have significant errors. A representative
output of the model is shown in Figure 10.

Generally, the CNN has been found to capture the general shape
of the curve well while failing to adequately capture the buckled
peaks in the data. Early additional efforts towards refining the
CNN parameters have shown some success in improving the per-
formance around these points with a reference output shown in
Figure 11. With this improved model, buckling is much better
represented though the displacements at which buckling occurs
are slightly shifted. These improvements demonstrate the ability
of the model to predict complex behavior and lay the ground-
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FIGURE 10: EXAMPLE PREDICTION FROM THE 1ST GENER-
ATION CNN

work for additional efforts. Further work is ongoing to continue
refinement and merge the displacement scaling model with this
updated CNN.

Work done on similar structures using DNN / CNN models have
shown improved results compared to those identified here. Crit-
ically, the previously studied structures had fewer cells and were
structurally different from the study here. Takagi et al studied
a 4x4 metamaterial with cross-shaped inserts and were able to
achieve estimated fits with an average R value of 0.995 + 0.005,
distinctly better than the results obtained from the models dis-
cussed here [20]. In a similar work, Ma et al studied a similar
structure focused on the "reverse problem" of providing a target
curve with the model output being the expected pattern. Ma’s
work showed similar results to the CNN model previously dis-
cussed, with the general shape being accurately captured but a
decreased ability to differentiate every peak. No existing liter-
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FIGURE 11: EXAMPLE NORMALIZED PREDICTION FROM
THE 2ND GENERATION CNN

ature was identified which matched the number of cells or the
rectangular shape of the structure which has been studied here.

4. CONCLUSION

The effectiveness of a fully automated data collection mechanism
has been demonstrated. This approach enables a "set-and-forget"
system for data acquisition, where the primary constraint on data
collection speed lies in the performance of the linear actuators.
If budgetary constraints are minimal, this limitation can be
mitigated by deploying multiple autonomous units to perform
parallel data collection. Furthermore, this methodology provides
a straightforward framework for algorithmic control, enabling
iterative analysis of metamaterials in a manner analogous to
finite element analysis (FEA) but with the added benefit of
generating physical, empirical data. In addition, by eliminating
the need for manual intervention, the dataset will be less prone
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to human error. This is particularly important for programmable
metamaterials, as experimental repeatability is crucial for
optimizing design parameters and ensuring applicability beyond
a laboratory setting.

A statistical analysis approach was also employed to identify un-
derlying trends. This enabled a more targeted investigation of
the features influencing buckling behavior, which is particularly
valuable when designing Al algorithms for controlled buckling
in metamaterials. The use of a machine learning algorithm on a
metamaterial with this many unique permutations does not appear
to have been previously presented in the literature. The ability of
the CNN previously discussed to generalize the behavior of these
structures is valuable particularly for its ability to generalize large
datasets with only a small fraction of the possible permutations
of the system in the training set. Prior work with similar metama-
terials has utilized smaller grids with fewer total arrangements.
This work strengthens the results found through those efforts and
demonstrates that similar trends can be extrapolated for larger,
non-square metamaterial arrangements. Future work will focus
on evaluating material deformation resulting from cyclic load-
ing, with the aim of understanding how repeated use influences
the shifting of material properties under consistent insert con-
figurations. Additionally, training a machine learning algorithm
to complete the "inverse problem", where a force-displacement
curve is given and a structure output is produced, would demon-
strate a highly useful ability as it could be used to generate specific
force-displacement curves for damping or other applications.
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