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Abstract

Contrastive learning has served as a powerful framework in the early development
of vision–language models (VLMs), demonstrating remarkable effectiveness in
learning generalizable representations and establishing itself as the foundation for
many state-of-the-art systems. However, despite these advances, its theoretical
understanding remains limited, particularly under imbalanced data distributions
that are prevalent in real-world settings. Such imbalance can degrade represen-
tation quality and induce biased model behavior, yet a rigorous characterization
of these effects is still lacking. In this work, we develop a theoretical framework
to analyze the training dynamics of contrastive learning with Transformer-based
encoders under imbalanced data. Our results reveal that neuron weights evolve
differently across three stages of training, with distinct dynamics for majority
features, minority features, and the noise. We further show that minority features
diminish neurons’ representational capacity, increase the need for more complex
architectures, and impair the separation of ground-truth features from noise. These
findings offer new theoretical insights into how data imbalance shapes learning in
contrastive frameworks and serve as an early step towards principled modifications
for developing more robust and unbiased representations.

1 Introduction

Contrastive learning has emerged as a powerful paradigm in representation learning, effectively
leveraging unlabeled data without relying on human-annotated labels. Within this framework, samples
with similar semantic meaning are treated as positive pairs, while those with different semantics
are considered negative pairs. By pulling positive pairs closer together and pushing negative pairs
farther apart in the representation space, contrastive learning enables models to capture rich and
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discriminative features. Compared with supervised learning, the resulting representations are often
more robust and less sensitive to noise [25, 6, 27, 10]. This approach has demonstrated remarkable
success across a wide range of applications and has been particularly influential in multi-modal
learning [14, 11], driving major advances in the early development of vision-language models [19].

Despite its strengths, contrastive learning faces challenges when applied to real-world datasets with
class imbalance. In such scenarios, majority classes dominate the sample space, while minority
classes with limited samples are underrepresented in both positive and negative pair formation.
This imbalance can hinder the learning process, causing the model to under-capture discriminative
features associated with minority classes, ultimately degrading representation quality. Several studies
have attempted to address the challenge of contrastive learning under imbalanced data. One line of
research focuses on sample re-weighting strategies, which aim to balance the influence of minority
and majority class samples [2, 8, 12, 22, 20]. Another line of work explores data resampling methods,
such as oversampling minority data or undersampling majority data, to achieve a more balanced
training distribution [3, 7, 17, 21]. However, both approaches rely heavily on accurate estimation of
re-weighting or re-sampling ratios, which is an aspect that is often difficult to characterize precisely
and typically depends on human intuition or heuristic methods.

Despite the progress made by these approaches, most efforts have been largely empirical, relying
on heuristic methods to alleviate the imbalance problem. While these techniques often provide
performance gains in practice, they do not explain why or how imbalance undermines the quality of
learned representations. Recent work has begun to develop theoretical understandings of contrastive
learning, primarily addressing questions such as its superiority over traditional generative approaches
like GANs [9], the necessity of data augmentation for effective representation learning [24], and
its ability to produce representations that reduce the sample complexity of downstream tasks [5].
Nonetheless, these studies have not considered the implications of imbalanced data distributions.

Most existing studies on contrastive learning focus on empirical performance, while its theoretical
foundations, especially for feature learning, remain less understood. In this work, we provide a
theoretical analysis of how neurons learn feature representations through contrastive training. We
study a simplified but representative setting: a Transformer-MLP framework with a single-head
attention mechanism followed by an MLP with bilateral ReLU activations. To make the analysis
clear, we use a structured data model where each input includes majority and minority features with
different frequencies. This setup highlights the key role of feature frequencies and helps us describe
their impact on training dynamics and how neurons learn features. In turn, the model allows us to
formalize how contrastive learning enhances majority features and drives neurons to learn purer
feature representations. Overall, our paper makes two main contributions:

First, we develop a theoretical framework to characterize the training dynamics of contrastive
learning under Transformer-based encoders with an imbalanced data distribution. Our results
show that neuron weights evolve differently when learning majority features, minority features, and
noise across the three stages of training.

Second, we quantitatively characterize how the presence of minority features influences neurons’
learning capacity and, consequently, representation learning. Our analysis shows that neurons
learn majority features more quickly, while minority features are acquired more slowly. Moreover, in
the presence of minority features, capturing effective representations requires a more complex neural
network, and the neurons’ ability to distinguish ground-truth features from noise becomes degraded.

2 Problem Formulation

Contrastive Learning Framework. Let X = [x(1), . . . , x(L)] ∈ Rd1×L be an input sequence with
L tokens. The goal of contrastive learning is to learn a mapping h(·) : Rd1×L → Rm that outputs a
meaningful embedding from the input sequence.

Let (Xn, Xn′) denote a positive pair (e.g., derived from the same objective or sharing semantic
meaning), and let N denote a set of corresponding negative samples (e.g., random samples). The
InfoNCE loss with temperature parameter τ > 0 is defined as:

ℓ(f,Xn, Xn′ ,N) := − log

(
esimf (Xn,Xn′ )/τ∑

x∈{Xn′}∪N esimf (Xn,x)/τ

)
, (1)
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where the similarity function is given by simf (Xn, Xn′) :=
〈
f(Xn), StopGrad

(
f(Xn′)

)〉
, and

StopGrad(·) acts as the identity in forward pass while blocking gradients in backpropagation.

Then, the learning objective is to minimize an empirical risk with ℓ2-regularizer over a batch of size
K, i.e.,

L̂aug(ft) = L̂(ft) +
λ

2
∥w∥2F =

1

K

K∑
k=1

ℓ
(
f ;Xk, Xk′ ,Nk

)
+

λ

2
∥w∥2F , (2)

where w is the neural network parameters.

Model Architecture: Transformer-MLP. We employ a simplified single-head self-attention
mechanism on top of an MLP layer. Each input sequence is passed through the attention layer, where
every token serves as a query. Then, it is followed by a bilateral ReLU (BReLU) activation in the
MLP layer, where BReLUb(s) = ReLU(s − b) − ReLU(−s − b). Specifically, the embedding
function f is expressed as

f(Xn) =
(
h1(Xn), . . . , hm(Xn)

)⊤ ∈ Rm,

with hi(Xn) =

L∑
r=1

BReLU
b
(t)
i

(
⟨w(t)

i ,Attention(WQx
(r)
n ,WKXn,WV Xn)⟩

)
.

(3)

In this early stage of our analysis, we fix attention layer weights to identity matrices and focus on the
MLP layer weights. Note that the analysis of this model still differs substantially from a standard
feedforward network because the preceding self-attention aggregates information across tokens.

3 Theoretical Analysis

3.1 Key Insights of the Findings

(K1). Training dynamics of contrastive learning based on the Transformer-MLP framework.
The theory shows that the learning process can be divided into three stages. In the first stage, neuron
weights in feature directions start to increase, while their components in non-feature directions stay
almost unchanged. In the second stage, the alignment with feature directions keeps growing, and
the learned features become purer, while non-feature directions remain suppressed. In the final
stage, each neuron aligns with a specific set of features Ni, on which it already had some degree of
alignment at initialization.

(K2). Theoretical characterizations of how imbalanced data in affecting the neuron’s learning
ability. In the first stage of training, neurons start to increase along feature directions, and the speed
of this growth depends on the feature frequency ϵj . Features with larger ϵj grow faster, so neurons
align with them more quickly. Features with smaller ϵj grow more slowly, and neurons may need
more time to capture them. In the second stage, this difference becomes more visible, as neurons that
follow features with larger ϵj keep increasing their alignment, while features with smaller ϵj continue
to evolve at a slower pace.

(K3). The effect of the ratio ϵmin/ϵmax on the final learning state. In the final stage of training,
the feature frequency ratio ϵmin/ϵmax controls how neurons distribute their weights across different
features. For minority features, ϵj = ϵmin, so the ratio directly determines the size of the coefficient
αi,j . When the ratio ϵmin/ϵmax is small, each αi,j for minority features becomes very small. As a
result, the set Ni becomes larger, meaning that each neuron aligns with more features that had some
degree of initialization alignment. However, the contribution from each feature is weaker, so the
neuron ends up mixing many features together in a more mixed way. In contrast, when the ratio
ϵmin/ϵmax is larger, the coefficients αi,j become stronger. In this case, the set Ni becomes smaller,
and each neuron aligns with fewer features. This makes the final representation more concentrated,
and the features learned by each neuron are purer.

3.2 Formal Theoretical Results

Theorem 3.1 describes two main effects of gradient descent in the first stage of training: (i) In the
feature directions, the neuron weights increase rapidly as shown in (4), while in the non-feature
directions they are suppressed as shown in (5) during training. (ii) The growth of a neuron’s weight in
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Table 1: Summary of main notations

η Learning rate λ Regularization parameter
τ Temperature coefficient K Batch size

w
(t)
i The Neuron i after t steps of GD Mj The feature vector of feature j

N Set of negative samples B The set of Xn′ and negative samples
ϵmin frequency of minority feature ϵmax frequency of majority feature
ϵj Feature frequency for feature j Ni Set of features for ordinary neuron i

Mj Set of ordinary neurons for feature j M⋆
j Set of lucky neurons for feature j

a feature direction Mj depends on the frequency ϵj as shown in (4). Larger ϵj leads to faster growth,
while smaller ϵj results in slower growth, making the feature harder to capture in the early stages of
training. In short, the feature frequency ϵj directly controls how much the inner product ⟨w(t)

i ,Mj⟩
increases under gradient descent.

Theorem 3.1 (Stage 1). During the first training stage, the update of neuron weights w(t)
i at time T1

can be bounded as follows.

|⟨w(T1)
i ,Mj⟩| ≥ |⟨w(0)

i ,Mj⟩|(1 + ϵjCz log d)− Õ
(∥w(T1)

i ∥2
poly(d)

)
(4)

|⟨w(T1)
i ,M⊥

j ⟩| ≤ |⟨w(0)
i ,M⊥

j ⟩|+ Õ
(∥w(T1)

i ∥2
poly(d)

)
(5)

Theorem 3.2 describes the gradient descent dynamics in the second stage of training, focusing on
how neurons behave in different directions. (i) For neurons that belong to M⋆

j , their inner product
with the feature vector keeps increasing as shown in (6) (ii) In contrast, along the noise direction
(M⊥

j ), the growth stays almost unchanged as shown in (7). In particular, the value of ϵj determines
how quickly neurons in the feature directions evolve during training.

Theorem 3.2 (Stage 2). During the second training stage, the update of neuron weights w(t)
i at time

T2 can be bounded as follows. For each j ∈ [d], if i ∈ M⋆
j , then:

|⟨w(T2)
i ,Mj⟩| ≥ Ω(1)∥w(T2)

i ∥2 (6)

If along the orthogonal non-feature direction M⊥
j :

|⟨w(T2)
i ,M⊥

j ⟩| ≤ |⟨w(T1)
i ,M⊥

j ⟩|+ Õ
(∥w(T2)

i ∥2
poly(d)

)
. (7)

Theorem 3.3 describes the feature learning behavior of neurons in the final stage. Specifically, we
prove that: (i) Each neuron weight vector wi eventually aligns with a set of features Ni. This set
corresponds to the features that already had some degree of alignment with wi at initialization. (ii)
The size of Ni depends on the ratio ϵmin/ϵmax. A smaller ratio enlarges |Ni|, leading neurons to
encode more mixed features, whereas a ratio closer to one yields smaller |Ni|, so neurons capture
purer features that benefit representation learning. (iii) For each feature Mj , the number of neurons
that contain some degree of initialization component along Mj admits an upper bound. Moreover,

there are at least Ω(dω1) neurons with Ni = {j}, where ω1 = Cm −
(

ϵmax

ϵmin

)2
(1 + γc0), indicating

imbalanced data leads to less number of neurons in learning the purified feature.
Theorem 3.3 (Stage 3: Neuron–Feature Alignment in Contrastive Learning). Let m = dCm

be the number of neurons and τ = polylog(d). Suppose we train the neural net ft via contrastive
learning, and consider iterations T ∈ [T3, T4] with T3 = d1.01

η and T4 = d1.99

η . Then the following
guarantees hold:

1

T

∑
t∈[T ]

Laug(ft) ≤ o(1),
1

T

∑
t∈[T ]

L(ft) ≤ o(1). (8)
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Moreover, for each neuron i ∈ [m] and t ∈ [T3, T4], the weight will learn the following set of features:

w
(t)
i =

∑
j∈Ni

αi,jMj +
∑
j /∈Ni

α′
i,jMj +

∑
j∈[d1]\[d]

βi,jM
⊥
j , (9)

where αi,j ∈
[

ϵj
ϵmax

τ
Ξ2

,
ϵj

ϵmax
τ
]
, α′

i,j ≤ o
(

ϵj
ϵmax

1√
d

)
∥w(t)

i ∥2, |βi,j | ≤ o
(

1√
d1

)
∥w(t)

i ∥2. Furthermore,

the size of Ni is bounded by |Ni| = O
(
d1−(

ϵmin
ϵmax

)
2·(1−γc0)

)
. Finally, for each dictionary atom Mj ,

there are at least Ω(dω1) neurons i ∈ [m] such that Ni = {j}.

4 Numerical Experiments
Following our learning setup, we validate our theoretical insights on synthetic data with parameters
m = 30 and d = 9 (Details can be found in supplementary materials). In Figure 1, the x-axis
represents the feature index, and the y-axis represents the neuron index, where we only plot the first
13 neurons to save space. Each entry corresponds to the projection of a neuron’s weight onto the
direction of the associated feature; larger values indicate stronger alignment between the neuron and
that feature. The first five features (columns 1–5) are majority features, while the last four (columns
6–9) are minority features. As the figure illustrates, neurons exhibit significantly larger projections
onto majority features. Nearly every neuron is strongly associated with at least one majority feature.
At the same time, each majority feature is represented by at least one neuron, and in such cases, the
projection onto that feature is substantially larger than onto all others, meaning the feature dominates
the neuron’s representation. This demonstrates that majority features are easier to learn and tend to
be represented by multiple neurons, in contrast to the minority features.
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Figure 1: Squared cosine projection of the first 13 neurons (wi) on 9 dictionary atoms (Mj). The first
five atoms are majority features, and the last four are minority features.

5 Conclusion

This work takes a step toward a principled understanding of how imbalanced data shapes the dynamics
of contrastive learning in Transformer-based encoders. Our analysis shows that imbalance harms
performance: minority features reduce neurons’ representational capacity, increase the demand for
more complex architectures, and hinder the separation of ground-truth features from noise. Looking
ahead, a promising direction is to investigate how these insights can inspire the design of more
principled methods or help explain the effectiveness of existing approaches in addressing imbalance
in contrastive learning.
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A Preliminaries

Data Model: Sparse Coding. For the necessity of theoretical proof, we adopt the sparse coding
model [15, 16, 4, 23, 16, 18, 26, 13, 1] as a conceptual modeling of real-world data. Specifically, for
a paired data (Xn, Xn′), the data structure is

Xn =
[
Mz(1)n + ξ(1)n , Mz(2)n + ξ(2)n , . . . , Mz(L)

n + ξ(L)
n

]
Xn′ =

[
Mz

(1)
n′ + ξ

(1)
n′ , Mz

(2)
n′ + ξ

(2)
n′ , . . . , Mz

(L)
n′ + ξ

(L)
n′

] (10)

Here, each z
(i)
n ∈ Rd represents the latent signal at the ℓ-th token, ξ(i)n denotes the additive noise, and

M = [M1, . . . ,Md] ∈ Rd1×d is the dictionary matrix. For each index, z(i)n,j = 0 indicates that the

corresponding feature is absent in the token, while z
(i)
n,j ̸= 0 indicates that the feature is present.

For a positive pair, we assume they share the same group of features when counting over all tokens
in the sample, whereas negative samples are independent. That is to say,

∑L
ℓ=1 z

(ℓ)
n and

∑L
ℓ=1 z

(ℓ)
n′

share the same support in a positive pair, while z
(ℓ)
n and z

(ℓ)
n′ remain independent in a negative pair.

We first recall a useful concentration property. Whenever the Frobenius norm of the weight matrix
satisfies:

∥w(t)∥2F =
∑
i∈[m]

∥w(t)
i ∥22 ≤ poly(d), (11)

the following estimate can be obtained by applying Bernstein concentration inequalities.

Fact A.1 (Approximation of empirical gradients by population gradients). Suppose that ∥w(t)∥2F ≤
poly(d). Then there exists some K = poly(d) such that, with high probability, the difference between
the empirical gradients and the population gradients is bounded for every iteration t:∥∥∥∇wi

Ôbj(ft)−∇wi
Obj(ft)

∥∥∥
2
≤ ∥w(t)

i ∥2
poly(d1)

, ∀i ∈ [m]. (12)

To facilitate the calculation of the gradient of the loss function L(ft, Xn,Bℓ) with respect to the
weights {w(t)

i }i∈[m], we introduce the following notation. We denote by ℓ′p,t(Xn,B) the positive
logit, and by ℓ′s,t(Xn,B) the negative logits:

ℓ′p,t(Xn,B) :=
exp

(
Simft(Xn, Xn′)/τ

)∑
x∈B exp

(
Simft(Xn, x)/τ

) (13)

ℓ′s,t(Xn,B) :=
exp

(
Simft(Xn, Xn,s)/τ

)∑
x∈B exp

(
Simft(Xn, x)/τ

) (14)

The population gradients of L(ft) with respect to the weight w(t)
i at iteration t is given by (note that

the similarity measure Simft makes use of the StopGrad operation):

∇wi
L(ft) = E

(ℓ′p,t − 1)hi(Xn′)

L∑
r=1

1|⟨wi,z
(r)
X ⟩|≥bi

z
(r)
X +

∑
Xn,s∈N

ℓ′s,thi(Xn,s)

L∑
r=1

1|⟨wi,z
(r)
X ⟩|≥bi

z
(r)
X


(15)
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B Lemmas

Definition B.1 (Characterization of Neurons). We choose constants

c1 =

(
ϵmax

ϵmin

)2

· 2(1 + γc0), c2 =

(
ϵmin

ϵmax

)2

· 2(1− γc0), γc0 ∈ (0, 0.001)

We define the following sets of neurons, which will be useful for analyzing the stochastic gradient
descent trajectory in later sections:

For each j ∈ [d], we define the set of ordinary neurons Mj ⊆ [m] as:

Mj :=

{
i ∈ [m] : ⟨w(0)

i ,Mj⟩2 ≥ c2 log d

d

∥∥MM⊤w
(0)
i

∥∥2
2

}
, ∀j ∈ [d] (16)

For each j ∈ [d], we define the set of lucky neurons M⋆
j ⊆ [m] as:

M⋆
j :=


i ∈ [m] : ⟨w(0)

i ,Mj⟩2 ≥ c1 log d

d

∥∥MM⊤w
(0)
i

∥∥2
2
,

⟨w(0)
i ,Mj′⟩2 ≤ c2 log d

d

∥∥MM⊤w
(0)
i

∥∥2
2
, ∀j′ ∈ [d], j′ ̸= j

 , ∀j ∈ [d]

(17)
Lemma B.1. At initialization (t = 0), the following properties hold:

(a) With high probability, for every i ∈ [m],

∥w(0)
i ∥22 ∈

[
σ2
0d1

(
1− Õ

(
1√
d1

))
, σ2

0d1

(
1 + Õ

(
1√
d1

))]
. (18)

(b) With high probability, for every i ∈ [m],

∥MM⊤w
(0)
i ∥22 ∈

[
σ2
0d
(
1− Õ

(
1√
d

))
, σ2

0d
(
1 + Õ

(
1√
d

))]
. (19)

(c) Let m = dCm be the number of neurons and we note ω1 = Cm −
(

ϵmax

ϵmin

)2
(1 + γc0), ω2 =

Cm −
(

ϵmin

ϵmax

)2
(1− γc0). With probability at least 1− o

(
1
d4

)
, for each j ∈ [d],

|M⋆
j | ≥ Ω(dω1) =: Ξ1, |Mj | ≤ O(dω2) =: Ξ2. (20)

(d) For each i ∈ [m], define

Λi :=
{
j ∈ [d] : |⟨w(0)

i ,Mj⟩| ≤ σ0

d

}
⊆ [d]. (21)

Then
|Λi| = O

(
d

polylog(d)

)
. (22)

(e) For any j′ ̸= j, we have
|Mj′ ∩Mj | ≤ O(log d), (23)

with probability at least 1− o(1/d4).

(f) For each i ∈ [m], there are at most O(1) indices j ∈ [d] such that i ∈ Mj , and at most
O(2−

√
log dd) indices j ∈ [d] such that

|⟨w(0)
i ,Mj⟩| ≥ Ω(σ0 log

1/4 d). (24)

Lemma B.2 (Pre-activation size I). Let z(r)X = 1
L

(
Mz̃

(r)
n + ξ̃

(r)
n

)
∼ DzX , wi ∈ Rd1 . Define

z
(r)\j
X = 1

L

(∑
j′ ̸=j, j′∈[d] Mj′ z̃

(r)
n,j′ + ξ̃

(r)
n

)
. Then the following results hold:

(a) Naive Chebyshev bound: For any λ > 0,

Pr
z̃
(r)\j
n , ξ̃

(r)
n

((
⟨wi, z

(r)\j
X ⟩+ 1

L ⟨wi,Mj⟩z̃(r)n,j

)2
>

λ∥wi∥2
2

√
log d

d

)
≤ O

(
1
λ

)
. (25)
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The same tail bound applies to ⟨wi, z
(r)
X ⟩, ⟨wi,

z
(s)
Y −z

(r)
X

2 ⟩, and ⟨wi, ξ̃
(r)
n ⟩.

(b) High probability bound for sparse signal:

Pr

(
⟨wi,Mz̃(r)n ⟩2 > ∥wi∥22 ·max

j∈[d]
∥Mj∥2∞ log4 d

)
≲ e−Ω(log2 d). (26)

(c) High probability bound for dense signal: Let Z = ⟨wi, ξ̃
(r)
n ⟩. Then

Pr
(
Z2 ≥ ∥wi∥2

2 log4 d
d

)
≲ e−Ω(log2 d). (27)

Lemma B.3 (Pre-activation size II). Suppose the following conditions hold:

⟨w(t)
i ,Mj⟩2 ≥ Ω

(
(b

(t)
i )2

)
for at most O(1) indices j ∈ [d], (28)

⟨w(t)
i ,Mj⟩2 ≥ Ω

(
(b

(t)
i )2√
log d

)
for at most O

(
e−Ω(

√
log d)d

)
indices j ∈ [d], (29)

∥w(t)
i ∥22 ≤ O

(
d(b

(t)
i )2

log d

)
. (30)

Then, for any λ ≥ 0.0001,

Pr
(∣∣⟨w(t)

i , z
(r)
X ⟩
∣∣ ≥ λb

(t)
i

)
≲ e−Ω(log1/4 d), (31)

and

Pr

(∣∣∣〈w(t)
i ,

z
(r)
X +z

(s)
X

2

〉∣∣∣ ≥ λb
(t)
i

)
≲ e−Ω(log1/4 d). (32)

Lemma B.4 (Pre-activation size III). Let i ∈ [m]. Suppose there exists a set Ni ⊆ [d] with
|Ni| = O(1) such that

⟨w(t)
i ,Mj⟩2 ≤ O

(
(b

(t)
i )2

polylog(d)

)
, ∀j /∈ Ni, (33)

and

∥w(t)
i ∥22 ≤ O

(
d(b

(t)
i )2

polylog(d)

)
. (34)

Then, for any λ ∈ [0.01, 0.99],

Pr

∣∣∣∣∣∣
∑
j /∈Ni

⟨w(t)
i ,Mj⟩z̃(r)n,j + ⟨wi, ξ̃

(r)
n ⟩

∣∣∣∣∣∣ ≥ λb
(t)
i

 ≲ e−Ω(log2 d). (35)

10



C Theorem 3.1

Lemma C.1 (Positive gradient, stage I). Let hi,t(·) denote the i-th neuron at iteration t ≤ T1 (so
that b(t)i = 0). Then the following hold:

(a) For each j ∈ [d],

E[hi,t(Xn′) ⟨∇wihi,t(Xn),Mj⟩] =
1

L2
⟨w(t)

i ,Mj⟩E[ẑn′,j′′ ẑn,j ] (36)

(b) For each j ∈ [d1] \ [d],

E
[
hi,t(Xn′) ⟨∇wi

hi,t(Xn),M
⊥
j ⟩
]
= 0 (37)

Lemma C.2 (Logits near initialization). Let wi ∈ Rd1 for each i ∈ [m]. Suppose∑
i∈[m]

∥∥∥w(t)
i

∥∥∥2
2
≤ o
(
τ
d

)
. (38)

Then, with high probability over the randomness of Xn, Xn′ , and N, it holds that

∣∣∣ℓ′p,t(Xn,B)− 1
|B|

∣∣∣ · ∣∣∣ℓ′s,t(Xn,B)− 1
|B|

∣∣∣ ≤ Õ


∑

i∈[m]

∥∥∥w(t)
i

∥∥∥2
2

τ |B|

 (39)

Recall that

T1 = Θ

(
d log d

η log log d

)
(40)

is defined as the iteration when∥∥∥w(t)
i

∥∥∥2
2

≥ (1 + ϵminCz log d)
2
∥∥∥w(0)

i

∥∥∥2
2
, ∀i ∈ [m], (41)

and such a T1 is indeed of order Θ
(

d log d
η log log d

)
.

The gradient descent update for the projection of w(t)
i onto Mj can be written as

⟨w(t+1)
i ,Mj⟩ = ⟨w(t)

i ,Mj⟩ − η⟨∇wiObj(ft),Mj⟩ ± ∥w(t)
i ∥2

poly(d1)

= (1− ηλ)⟨w(t)
i ,Mj⟩+ η EXn,Xn′

[
(1− ℓ′p,t(Xn,B)) · hi,t(Xn′) ⟨∇wihi(Xn),Mj⟩

]
− η

∑
Xn,s∈N

E
[
ℓ′s,t(Xn,B)hi,t(Xn,s) ⟨∇wi

h(Xn),Mj⟩
]

± ∥w(t)
i ∥2

poly(d1)

(42)

For the positive term: we can use Lemma C.1 and Lemma C.2 to obtain that:

E
[
(1− ℓ′p,t(Xn,B)) · hi,t(Xn′) ⟨∇wi

hi,t(Xn),Mj⟩
]
=

1

L2
⟨w(t)

i ,Mj⟩E[ẑn′,j ẑn,j ] (43)

For the negative term: Here, the bound needs to be verified because Lemma C.2.

E

[∑
X∈N

ℓ′s,t hi,t(X)⟨∇wih(Xn),Mj⟩

]
(1)
=
∑
X∈N

E
[(

ℓ′s,t − 1
|B|

)
hi,t(X)⟨∇wih(Xn),Mj⟩

]
(2)
≤
∑
X∈N

E
[∣∣∣ℓ′s,t − 1

|B|

∣∣∣ · |hi,t(X)| ·
∣∣⟨∇wi

h(Xn),Mj⟩
∣∣]

(3)
≤ Õ

(∑
i∈[m] ∥w

(t)
i ∥22

τd
· ∥w(t)

i ∥2

)
(44)
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Putting all the above calculations together, we have

⟨w(t+1)
i ,Mj⟩ =

(
1− ηλ+ ϵj

ηCz log log d

d

)
⟨w(t)

i ,Mj⟩

± Õ

(
η
∑

i∈[m] ∥w
(t)
i ∥22

τd
· ∥w(t)

i ∥2

)
± Õ

(
∥w(t)

i ∥2
poly(d1)

) (45)

Prior to the induction step, we establish, by a similar method, the stochastic gradient descent update
of wi along the dense feature direction M⊥

j . Specifically, we obtain the following update equation:

⟨w(t+1)
i ,M⊥

j ⟩ = ⟨w(t)
i ,M⊥

j ⟩ − η⟨∇wi
Obj(ft),M

⊥
j ⟩

= (1− ηλ)⟨w(t)
i ,M⊥

j ⟩+ η E
[
(1− ℓ′p,t)hi,t(x

++
p )⟨∇wihi,t(x

+
p ),M

⊥
j ⟩
]

− η
∑

xn,s∈N

E
[
ℓ′s,t hi,t(xn,s)⟨∇wi

h(x+
p ),M

⊥
j ⟩
]
+

∥w(t)
i ∥2

poly(d1)

= (1− ηλ)⟨w(t)
i ,M⊥

j ⟩ ± Õ

(
η
∑

i∈[m] ∥w
(t)
i ∥22

τd
· ∥w(t)

i ∥2

)
± Õ

(
∥w(t)

i ∥2
poly(d1)

)
(46)

Proof of Theorem 3.1. For j ∈ [d] and i ∈ [m], at iteration T1 the following bounds hold:

(a) Lower bound:

|⟨w(T1)
i ,Mj⟩| ≥ |⟨w(0)

i ,Mj⟩|
(
1− ηλ+ ϵj

ηCz log log d

d

)T1

− Õ

(
ηT1∥w(T1)

i ∥2
d1

)
(47)

(b) Upper bound:

|⟨w(T1)
i ,Mj⟩| ≤ |⟨w(0)

i ,Mj⟩|
(
1 + ϵj

ηCz log log d

d
+ Õ

( η

d2

))T1

+ Õ

(
ηT1∥w(T1)

i ∥2
d1

)
(48)

(c) Orthogonal component:

|⟨w(T1)
i ,M⊥

j ⟩| ≤ |⟨w(0)
i ,M⊥

j ⟩|+O(T1η) ·max
t≤T1

O

(
∥w(t)

i ∥2
d1

)
(49)

The proof follows by iterating the gradient descent update for wi along the signal direction Mj and
its orthogonal complement, while controlling the error terms at each step. By substituting T1 into the
recurrence, the bounds in 3.1follow directly.
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D Theorem 3.2

In this part, we analyze how each feature Mj may be captured by certain subsets of neurons, a
process that is influenced by the stochastic nature of initialization.

Lemma D.1. For all iterations t ∈ (T1, T2], the neurons i ∈ [m] satisfy the following properties:

(a) For j ∈ [d], if i ∈ M⋆
j , then ∣∣∣⟨w(t)

i ,Mj⟩
∣∣∣ ≥√1 + γc0 b

(t)
i (50)

(b) For j ∈ [d], if i /∈ Mj , then ∣∣∣⟨w(t)
i ,Mj⟩

∣∣∣ ≤√1− γc0 b
(t)
i (51)

and furthermore, ∣∣∣⟨w(t)
i ,Mj⟩

∣∣∣ ≤ Õ

(
∥w(t)

i ∥2√
d

)
(52)

(c) For each i ∈ [m], there are at most O(2−
√
log dd) many j ∈ [d] such that

⟨w(t)
i ,Mj⟩2 ≥ (b

(t)
i )2√
log d

(53)

(d) For each i ∈ [m], and for all j ∈ [d1] \ [d],∣∣∣⟨w(t)
i ,M⊥

j ⟩
∣∣∣ ≤ Õ

(
∥w(t)

i ∥2√
d1

)
(54)

(e) For all i ∈ [m],

∥w(t)
i ∥22 ≤ d(b

(t)
i )2

log d
(55)

Definition D.1 (Notations). For simpler presentation, we define the following notations: given
zX = 1

L (Mz̃n + ξ̃n) ∼ DzX , zY = 1
L (Mz̃n′ + ξ̃n′) ∼ DzY , we let (for each j ∈ [d]):

z
\j
X :=

1

L

∑
j′ ̸=j
j′∈[d]

Mj′ z̃n,j′ + ξ̃n

 , z
\j
Y :=

1

L

∑
j′ ̸=j
j′∈[d]

Mj′ z̃n′,j′ + ξ̃n′

 (56)

S
(r)\j
i,t := ⟨w(t)

i , z
(r)\j
X ⟩, S

(s)\j
i,t := ⟨w(t)

i , z
(s)\j
Y ⟩ (57)

S
(r,s)\j
i,t := 1

2

(
S
(r)\j
i,t + S

(s)\j
i,t

)
, S̄

(r,s)\j
i,t := 1

2

(
S
(s)\j
i,t − S

(r)\j
i,t

)
(58)

α
(t)
i,j := ⟨w(t)

i ,Mj⟩, ᾱ
(r,s)(t)
i,j :=

〈
w

(t)
i ,

z̃
(s)
n′,j − z̃

(r)
n,j

z̃
(r)
n,j + z̃

(s)
n′,j

Mj

〉
(59)

Whenever the neuron index i ∈ [m] is clear from the context, we drop the subscript i and the time
index t for notational simplicity.
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Lemma D.2 (Gradient for sparse features). Suppose D.1 holds at iteration t ≥ 0. For j ∈ [d], we
denote events

A1 :=
{
S
\j
i,t ≥ b

(t)
i − α

(t)
i,jCz̃

}
,

A2 :=
{
S̄
\j
i,t ≥ b

(t)
i − ᾱ

(t)
i,jCz̃

}
,

A3 :=
{∣∣∣S̄\j

i,t + ᾱ
(t)
i,jCz̃

∣∣∣ ≥ 1
2

(
α
(t)
i,jCz̃ − b

(t)
i

)}
,

A4 :=
{
S
\j
i,t ≥ 1

2

(
α
(t)
i,jCz̃ − b

(t)
i

)}
;

(60)

and quantities L1, L2, L3, L4 as

L1 :=

√√√√E[|S̄\j
i,t|2(1A1 + 1A2)]

E[⟨w(t)
i , ξ̃⟩2]

, L2 := Pr(A1), L3 :=

√√√√E[|S̄\j
i,t|2(1A3 + 1A4)]

E[⟨w(t)
i , ξ̃⟩2]

, L4 := Pr(A3)

(61)
Then we have the following results:

(a) (all features) For all i ∈ [m], if α(t)
i,j ≥ 0, we have (when α

(t)
i,j ≤ 0 the opposite inequality holds)

E

[
hi(Xn′)

L∑
r=1

1|⟨wi,z
(r)
X ⟩|≥bi

z̃
(r)
n,j

]
≤ 1

L
α
(t)
i,j · E

[
L∑

s=1

z̃
(s)
n′,j

L∑
r=1

z̃
(r)
n,j1|⟨w(t)

i ,
zX+zY

2 ⟩|≥bi+|⟨w(t)
i ,zX− zX+zY

2 ⟩|

]

±
(
α
(t)
i,j +O

(√
E|ᾱ(t)

i,j |2
))

· E

[
L∑

s=1

L∑
r=1

∣∣∣ z̃(r)
n,j+z̃

(s)

n′,j
2

∣∣∣|z̃(r)n,j |

]
·O(L1 + L2)

(62)

(b) (lucky features) If α(t)
i,j > b

(t)
i , we have

E

[
hi(Xn′)

L∑
r=1

1|⟨wi,z
(r)
X ⟩|≥bi

z̃
(r)
n,j

]
≤ 1

L

(
α
(t)
i,j − b

(t)
i

)
· E

[
L∑

s=1

z̃
(s)
n′,j

L∑
r=1

z̃
(r)
n,j1|⟨w(t)

i ,
zX+zY

2 ⟩|≥bi+|⟨w(t)
i ,zX− zX+zY

2 ⟩|

]

±
(
α
(t)
i,j +O

(√
E|ᾱ(t)

i,j |2
))

· E

[
L∑

s=1

L∑
r=1

∣∣∣ z̃(r)
n,j+z̃

(s)

n′,j
2

∣∣∣|z̃(r)n,j |

]
·O(L3 + L4)

(63)
If α(t)

i,j < −b
(t)
i , then the opposite inequality holds with (α

(t)
i,j − b

(t)
i ) replaced by (α

(t)
i,j + b

(t)
i )

Lemma D.3 (Gradient from dense signals). Let i ∈ [m] and j ∈ [d]. Suppose D.1 holds for the
current iteration t. Then∣∣∣∣∣E

[
hi(Xn′)

L∑
r=1

1|⟨w(t)
i ,z

(r)
X ⟩|≥b

(t)
i
⟨ξ̃(r)n ,Mj⟩

]∣∣∣∣∣ ≤ Õ

(
∥w(t)

i ∥2
d2

)
· Pr
(
hi,t(Xn′) ̸= 0

)
(64)

For dense features M⊥
j , j ∈ [d1] \ [d], we have a similar result:∣∣∣∣∣E

[
hi(Xn′)

L∑
r=1

1|⟨w(t)
i ,z

(r)
X ⟩|≥b

(t)
i
⟨ξ̃(r)n ,M⊥

j ⟩

]∣∣∣∣∣ ≤ Õ

(
∥w(t)

i ∥2
d
√
d1

)
· Pr
(
hi,t(Xn′) ̸= 0

)
(65)

The second stage is defined as the iterations t ≥ T1 but t ≤ T2, where

T2 = Θ

(
d log d

ϵmaxη log log d

)
(66)

is defined as the iteration when one of the neuron i ∈ [m] satisfies∥∥∥w(T2)
i

∥∥∥2
2
≥ d

∥∥∥w(T1)
i

∥∥∥2
2

(67)

Now we separately discuss three cases:
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(a) When i ∈ M⋆
j , if z̃(s)n′,j and z̃

(r)
n,j ̸= 0, say

z̃
(s)

n′,j+z̃
(r)
n,j

2 = C
(r,s)
z̃ , we simply have

E

[
L∑

s=1

z̃
(s)
n′,j

L∑
r=1

z̃
(r)
n,j1∣∣⟨wi,

z
(r)
X +z

(s)
Y

2 ⟩
∣∣≥bi+

∣∣⟨wi,z
(r)
X −

z
(r)
X +z

(s)
Y

2 ⟩
∣∣
]

=E

[
L∑

s=1

z̃
(s)
n′,j

L∑
r=1

z̃
(r)
n,j

]
· Pr
(∣∣⟨w(t)

i ,
z
(r)
X +z

(s)
Y

2 ⟩
∣∣ ≥ bi +

∣∣⟨w(t)
i , z

(r)
X − z

(r)
X +z

(s)
Y

2 ⟩
∣∣)

=ϵj
L2Cz log log d

d

(
1− 1

polylog(d)

)
.

(68)

For Mj such that i ∈ M⋆
j , at iteration t+ 1:

⟨w(t+1)
i ,Mj⟩ = ⟨w(t)

i ,Mj⟩ − η⟨∇wi
Obj(ft),Mj⟩ ±

η∥w(t)
i ∥2

poly(d1)

= ⟨w(t)
i ,Mj⟩(1− ηλ)± η∥w(t)

i ∥2
poly(d1)

+ ηE

[
(1− ℓtp,t)hi,t(Xn′)

L∑
r=1

1|⟨wi,z
(r)
X ⟩|≥bi

⟨z(r)X ,Mj⟩

]

− ηE

[∑
X∈N

ℓts,thi,t(X)

L∑
r=1

1|⟨wi,z
(r)
X ⟩|≥bi

⟨z(r)X ,Mj⟩

]

= ⟨w(t)
i ,Mj⟩(1− ηλ)± η∥w(t)

i ∥2
poly(d1)

+ η
1

L
E

[
(1− ℓtp,t)hi,t(Xn′)

L∑
r=1

1|⟨wi,z
(r)
X ⟩|≥bi

(
z̃
(r)
n,j + ⟨ξ̃(r)n ,Mj⟩

)]

− η
1

L
E

[∑
X∈N

ℓts,thi,t(X)

L∑
r=1

1|⟨wi,z
(r)
X ⟩|≥bi

(
z̃
(r)
n,j + ⟨ξ̃(r)n ,Mj⟩

)]

≥
(
⟨w(t)

i ,Mj⟩ − sign
(
⟨w(t)

i ,Mj⟩
)
· b(t)i

)
·
(
1 + ϵj

ηCz log log d

d

(
1− η

polylog(d)

))
(69)

Next we compare this growth to the growth of bias b(t+1)
i . Since we raise our bias by

b
(t+1)
i = max

{
b
(t)
i

(
1 +

η

d

)
, b

(t)
i

∥w(t+1)
i ∥2

∥w(t)
i ∥2

}
(70)

We have to prove
|⟨w(t+1)

i ,Mj⟩|
|⟨w(t)

i ,Mj⟩|
≥ ∥w(t+1)

i ∥2
∥w(t)

i ∥2
, i ∈ M⋆

j (71)

We argue as follows: from previous calculations we have∑
j′∈[d], j′ ̸=j

⟨w(t+1)
i ,Mj′⟩2 +

∑
j′∈[d1]\[d]

⟨w(t+1)
i ,M⊥

j′⟩2

≤
∑

j′∈[d], j′ ̸=j

⟨w(t)
i ,Mj′⟩2

(
1 + ϵj′

O(η)

dpolylog(d)

)2

+
∑

j′∈[d1]\[d]

⟨w(t)
i ,M⊥

j′⟩2 + Õ
(η
d

)
e−Ω(log1/4 d)∥w(t)

i ∥22

(72)
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Therefore by adding ⟨w(t+1)
i ,Mj⟩2 to the LHS we have

∥w(t+1)
i ∥22 ≤ ∥w(t)

i ∥22
(
1 + ϵmax

O(η)

d · polylog(d)

)2

+

(
|⟨w(t+1)

i ,Mj⟩|
|⟨w(t)

i ,Mj⟩|
− O(η)

d · polylog(d)

)
|⟨w(t)

i ,Mj⟩|2

(73)

which implies

∥w(t+1)
i ∥22

∥w(t)
i ∥22

≤
(
1 + ϵmax

O(η)

d · polylog(d)

)2

+

(
|⟨w(t+1)

i ,Mj⟩|
|⟨w(t)

i ,Mj⟩|

)
|⟨w(t)

i ,Mj⟩|2

∥w(t)
i ∥22

(74)

Therefore,

|⟨w(t+1)
i ,Mj⟩|

|⟨w(t)
i ,Mj⟩|

≥ ∥w(t+1)
i ∥2

∥w(t)
i ∥2

(75)

as desired.

(b) When i /∈ Mj , we can similarly obtain that

E

[
L∑

s=1

z̃
(s)
n′,j

L∑
r=1

z̃
(r)
n,j1∣∣⟨wi,

z
(r)
X +z

(s)
Y

2 ⟩
∣∣≥bi+

∣∣⟨wi,z
(r)
X −

z
(r)
X +z

(s)
Y

2 ⟩
∣∣
]
≤ ϵj

L2Cz log log d

d

(
1

polylog(d)

)
= O

(
ϵj

L2

d · polylog(d)

)
(76)

And similarly we can compute the gradient descent dynamics as follows: For j ∈ [d] such that

|⟨w(t)
i ,Mj⟩| ≥

∥w(t)
i ∥2d√
d1

, we have (assume here ⟨w(t)
i ,Mj⟩ > 0, the opposite is similar)

⟨w(t+1)
i ,Mj⟩ = ⟨w(t)

i ,Mj⟩ − η⟨∇wiObj(ft),Mj⟩+
η∥w(t)

i ∥2
poly(d1)

≤ ⟨w(t)
i ,Mj⟩

(
1− ηλ+ ϵj

O(η)

d · polylog(d)

)

±O

(
η
∑

i′∈[m] ∥w
(t)
i′ ∥22∥w

(t)
i ∥2

dτ

)
± Õ

(
η∥w(t)

i ∥2
d2

)

≤ ⟨w(t)
i ,Mj⟩

(
1 + ϵj

O(η)

d · polylog(d)

)
+ Õ

(
η∥w(t)

i ∥2
d2

)
(77)

It is also worth noting that similar calculations also lead to a lower bound:

|⟨w(t+1)
i ,Mj⟩| ≥ |⟨w(t)

i ,Mj⟩|(1− ηλ)− Õ

(
η
∥w(t)

i ∥2
d2

)
(78)

(c) Next we consider the learning dynamics for the dense features.
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We can use D.3 to calculate its dynamics by

⟨w(t+1)
i ,M⊥

j ⟩ = ⟨w(t)
i ,M⊥

j ⟩(1− ηλ)± η∥w(t)
i ∥2

poly(d1)

+ ηE

[
(1− ℓ′p,t)hi,t(Xn′)

L∑
r=1

1|⟨wi,z
(r)
X ⟩|≥bi

⟨z(r)X ,M⊥
j ⟩

]

− η
∑
X∈N

E

[
ℓ′s,thi,t(X)

L∑
r=1

1|⟨wi,z
(r)
X ⟩|≥bi

⟨z(r)X ,M⊥
j ⟩

]

= ⟨w(t)
i ,M⊥

j ⟩(1− ηλ)± η∥w(t)
i ∥2

poly(d1)

+ ηE

[
(1− ℓ′p,t)hi,t(Xn′)

L∑
r=1

1|⟨wi,z
(r)
X ⟩|≥bi

⟨ξ̃(r)n ,M⊥
j ⟩

]

− η
∑
X∈N

E

[
ℓ′s,thi,t(X)

L∑
r=1

1|⟨wi,z
(r)
X ⟩|≥bi

⟨ξ̃(r)n ,M⊥
j ⟩

]

= ⟨w(t)
i ,M⊥

j ⟩(1− ηλ) + Õ

(
η∥w(t)

i ∥2
d
√
d1

)
· Pr(hi,t(Xn′) ̸= 0)

≤ ⟨w(t)
i ,M⊥

j ⟩+O

(
η∥w(t)

i ∥2
d
√
d1

e−Ω(log1/4 d)

)

(79)

In the proof above, we have depended on the crucial assumption that T2 :=

min
{
t ∈ N : ∃i ∈ [m] s.t. ∥w(t)

i ∥22 ≥ d∥w(T1)
i ∥22

}
is of order Θ

(
d log d

ϵmaxη log log d

)
. Now we

verify it as follows. If i ∈ M∗
j for some j ∈ [d] (which also means j′ /∈ Ni for j′ ̸= j), we have

|⟨w(t)
i ,Mj⟩| ≥ |⟨w(T1)

i ,Mj⟩|
(
1 + Ω

(
ϵj
η log log d

d

))t−T1

≥ d

√
2 log d

d
∥w(T1)

i ∥2 for some t = O

(
d log d

ϵjη log log d

) (80)

Thus for some t = O
(

d log d
ϵjη log log d

)
, we have |⟨w(t)

i ,Mj⟩|2 ≥ d∥w(T1)
i ∥22, which proves that T2 ≤

O
(

d log d
ϵmaxη log log d

)
.

Conversely, we also have for all t ≤ O
(

d log d
ϵjη log log d

)
∑

j′∈[d]:j′ ̸=j

⟨w(t)
i ,Mj′⟩2 +

∑
j′∈[d1]\[d]

⟨w(t)
i ,M⊥

j′⟩2

≤ ∥w(T1)
i ∥22

(
1 + ϵj′

O(η)

d polylog(d)

)t−T1

+max
t′≤t

O

(
η(t− T1)

d

)
e−Ω(log1/4 d)∥w(t′)

i ∥22

≤ o
(
d ∥w(T1)

i ∥22
)

(81)

Except for the principal direction Mj (i.e., the alignment direction of neuron i ), the total growth of

squared weights along all other directions remains far below the target scale d ·
∥∥∥w(T1)

i

∥∥∥2
2
. And also

|⟨w(t)
i ,Mj⟩| ≤ |⟨w(T1)

i ,Mj⟩|
(
1 + ϵj

Czη log log d

d

(
1− 1

polylog(d)

))t−T1

≤ O

(√
log d
d ∥w(T1)

i ∥2
)(

1 + ϵj
Czη log log d

d

(
1− 1

polylog(d)

))t−T1
(82)
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Therefore we at least need
d log

(
Ω
(√

d
√

d
log d

))
ϵmaxηCz log log d (1− o(1)) iteration to let any neuron i ∈ [m] reach

∥w(t)
i ∥22 ≥ d∥w(T1)

i ∥2, which proves that T2 = Θ
(

d log d
ϵmaxη log log d

)
Proof of Theorem 3.2. When all ∥w(t)

i ∥2 ≤ 2∥w(T1)
i ∥2: The iteration complexity for a neuron

i ∈ [m] to reach ∥w(t)
i ∥2 ≥ 2∥w(T1)

i ∥2 is no smaller than

T ′
i,1 := max

{
Ω
(

d log d
η log log d

)
, T2

}
. (83)

For j ∈ [d1] \ [d] we have∑
j∈[d1]\[d]

⟨w(T ′
i,1)

i ,M⊥
j ⟩2 ≤

∑
j∈[d1]\[d]

⟨w(T1)
i ,M⊥

j ⟩2 +O

(
η(T ′

i,1 − T1)

d

)
e−Ω(log1/4 d) max

t′∈[T1,T ′
i,1]

∥w(t′)
i ∥22

≤ (1 + o(1))
∥∥∥M⊥(M⊥)⊤w

(T1)
i

∥∥∥2
2

(84)

If i ∈ M∗
j , there exist t ≤ T2 such that ∥w(t)

i ∥2 ≥ 2∥w(T2)
i ∥2, we have

|⟨w(T ′
i,1)

i ,Mj⟩|2 ≥ ∥w(T ′
i,1)

i ∥22 −
∑

j∈[d], j /∈Ni

⟨w(T ′
i,1)

i ,Mj⟩2 −
∑

j∈[d1]\[d]

⟨w(T ′
i,1)

i ,M⊥
j ⟩2

≥ 2∥w(T1)
i ∥22 − (1 + o(1))∥w(T1)

i ∥22
≥ (1− o(1))∥w(T1)

i ∥22

(85)

which proves the claim.

At this substage, we have: If i ∈ M∗
j , then from similar calculations as above, we can prove by

induction that starting from t = T ′
i,1, it holds:

|⟨w(t+1)
i ,Mj⟩| ≥ |⟨w(t)

i ,Mj⟩|
(
1 + Ω

(
ϵj
η log log d

d

))
≥ ∥w(t)

i ∥2
(
1 + Ω

(
ϵj
η log log d

d

)) (86)

∑
j′∈[d], j′ ̸=j

⟨w(t+1)
i ,Mj′⟩2 ≤

∑
j′∈[d], j′ ̸=j

⟨w(t)
i ,Mj′⟩2

(
1 + ϵj

O(η)

d polylog(d)

)2

(87)

∑
j∈[d1]\[d]

⟨w(t+1)
i ,M⊥

j ⟩2 ≤
∑

j∈[d1]\[d]

⟨w(t)
i ,M⊥

j ⟩2
(
1 +

O(η)

d polylog(d)

)2

(88)

which implies

|⟨w(t+1)
i ,Mj⟩| ≥ |⟨w(t)

i ,Mj⟩| ·
∥w(t+1)

i ∥2
∥w(t)

i ∥2
≥ (1− o(1)) ∥w(t+1)

i ∥2

(89)

Theorem 3.2 (6) is proved. As for Theorem 3.2 (7), we can revisit case (c) from the three situations
discussed earlier and then proceed by iteration.
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E Theorem 3.3

At the final stage, we show that sparse activation of neurons naturally leads to convergence toward
sparse solutions, thereby guaranteeing sparse representations. For all t ≥ T2:
Lemma E.1. For all iterations t, the neurons i ∈ [m] satisfy the following properties:

(a) For j ∈ [d], if i ∈ M⋆
j , then ∣∣⟨w(t)

i ,Mj⟩
∣∣ ≥ Ω(1) ∥w(t)

i ∥2 (90)

(b) For i ∈ [m], we have
∥w(t)

i ∥2 ≤ O(1) (91)

(c) For each j ∈ [d],

F̂
(t)
j :=

∑
i∈Mj

⟨w(t)
i ,Mj⟩2 ≤ O((

ϵj
ϵmax

)2τ log3 d) (92)

(d) Let j ∈ [d] and i ∈ M⋆
j , then there exists C = Θ(1) such that∣∣⟨w(t)

i ,Mj⟩
∣∣ ≥ C max

i′∈Mj

∣∣⟨w(t)
i′ ,Mj⟩

∣∣ (93)

(e) For i /∈ Mj , it holds ∣∣⟨w(t)
i ,Mj⟩

∣∣ ≤ O

(
ϵj

ϵmax

1√
dΞ5

2

)
∥w(t)

i ∥2 (94)

(f) For any i ∈ [m] and any j ∈ [d1] \ [d], it holds∣∣⟨w(t)
i ,M⊥

j ⟩
∣∣ ≤ O

(
1√

d1 Ξ5
2

)
∥w(t)

i ∥2 (95)

(g) For all i ∈ [m], the bias satisfies

b
(t)
i ≥ polylog(d)√

d
∥w(t)

i ∥2 (96)

Definition E.1 (Optimal Learner). We define a learner network that we deem as the “optimal” feature
map for this task. Let κ > 0, we define θ⋆ := {θ⋆i }i∈[m] as follows:

θ⋆i =


√
τ κ

|M⋆
j |

Mj · sign
(
⟨w(T2)

i ,Mj⟩
)
, if i ∈ M⋆

j ,

0, if i /∈
⋃

j∈[d] M⋆
j

(97)

Furthermore, we define the optimal feature map f⋆
t as follows. For i ∈ [m], the i-th neuron of ft,θ

given weight θi ∈ Rd1 is

ft,θ,i(Xn) =

L∑
r=1

[(
⟨θi, z(r)X ⟩ − bi

)
1⟨w(t)

i ,z
(r)
X ⟩≥bi

−
(
−⟨θi, z(r)X ⟩ − bi

)
1−⟨w(t)

i ,z
(r)
X ⟩≥bi

]
. (98)

Finally, we write ft,θ as the concatenation

ft,θ(·) =
(
ft,θ,1(·), . . . , ft,θ,m(·)

)⊤
(99)

Lemma E.2 (Optimality). Let {θ⋆i }i∈[m] and ft,θ be defined as in Definition E.1. When Lemma E.1,
define the pseudo loss function

L̃(ft,θ⋆ , ft) := E

[
−τ log

(
e⟨ft,θ⋆ (Xn),ft(Xn′ )⟩/τ∑
x∈B e⟨ft,θ⋆ (Xn),ft(x)⟩/τ

)]
(100)
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Then by choosing κ = Θ(Ξ2), and assuming∑
i∈M⋆

j

|⟨w(t)
i ,Mj⟩| ≥ Ω

(√
τ

Ξ2

)
, (101)

we obtain the following loss guarantee:

L̃(ft,θ⋆ , ft) ≤ O
(

1
log d

)
(102)

Proof of Theorem 3.3. We start with the proof of convergence Theorem 3.3 (8).

Denote w(t) = (w
(t)
1 , . . . , w

(t)
m ), since our update is

w(t+1) = w(t) −∇wObj(ft) +
1

poly(d1)
, (103)

we have

η⟨∇wObj(ft), w
(t) − θ⋆⟩ = η2

2 ∥∇wObj(ft)∥2F + 1
2∥w

(t) − θ⋆∥2F − 1
2∥w

(t+1) − θ⋆∥2F + η2

poly(d1)

≤ η2 poly(d) + 1
2∥w

(t) − θ⋆∥2F − 1
2∥w

(t+1) − θ⋆∥2F + η2

poly(d1)
(104)

The proof of the above equation is as follows:

⟨x, y⟩ = 1
2

(
∥x∥2 + ∥y∥2 − ∥x− y∥2

)
(105)

Let x = a− c, y = a− b, and substitute into the above equation.

⟨a− c, a− b⟩ = 1
2

(
∥a− c∥2 + ∥a− b∥2 − ∥b− c∥2

)
(106)

Here we substitute the following three quantities into the three point identity:

a = w(t), b = θ⋆, c = w(t+1) = w(t) − η∇wObj(ft)± η
poly(d1)

(107)

Thus, the original equation is proved. As for the inequality,

∥∇wObj(ft)∥2F =

m∑
i=1

∥∇wi
Obj(ft)∥2 (108)

Each term is O(1), and since m = poly(d), the overall complexity is poly(d).

Now we will use the tools from online learning to obtain a loss guarantee: define a pseudo objective
for parameter θ

Õbjt(θ) := L̃(ft,θ, ft) + λ
2

∑
i∈[m]

∥θi∥22

= E
[
−τ log

(
e⟨ft,θ(Xn),ft(Xn′ )⟩/τ∑
x∈B e⟨ft,θ(Xn),ft(x)⟩/τ

)]
+ λ

2

∑
i∈[m]

∥θi∥22
(109)

Which is a convex function over θ since it is linear in θ (for a fixed ft, we can consider L̃(ft,θ, ft) to
be convex with respect to θ, because ft,θ(x) is linear, and softmax + log is a convex composition; the
regularization term is convex).

Moreover, we have
Õbjt(w

(t)) = Obj(ft), (110)

and
∇θiÕbjt(w

(t)
i ) = ∇wi

Obj(ft) (111)
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Thus we have
η⟨∇wObj(ft), w

(t) − θ⋆⟩ = η⟨∇θÕbjt(w
(t)), w(t) − θ⋆⟩

(1)

≥ Õbjt(w
(t))− Õbjt(θ

⋆)

≥ Õbjt(w
(t))− E

[
−τ log

(
e⟨ft,θ⋆ (Xn),ft(Xn′ )⟩/τ∑
x∈B e⟨ft,θ⋆ (Xn),ft(x)⟩/τ

)]
− λ

2

∑
i∈[m]

∥θ⋆i ∥22

(2)

≥ Õbjt(w
(t))−O

(
1

log d

)
−
∑
i∈[m]

O(λ∥θ⋆i ∥22)

≥ Obj(ft)−O
(

1
log d

)
(112)

(1) is because the surrogate objective function Õbjt is a convex function with respect to θ, so
we can use a first-order convex lower bound: f(θ) − f(θ′) ≤ ⟨∇f(θ), θ − θ′⟩. (2) is because∑

i∈[m] λ∥θ⋆i ∥22 =
∑

j∈[d]

∑
i∈M⋆

j
λ∥θ⋆i ∥22 =

∑
j∈[d]

∑
i∈M⋆

j
λ τκ2

|M⋆
j |2

=
∑

j∈[d] λ
τκ2

|M⋆
j |

= λτκ2

|M⋆
j |

Now choosing κ = Θ(Ξ2) ≤ 1
λd (so that

∑
i∈[m] λ∥θ⋆i ∥22 < 1

log d ), and by a telescoping summation,
we have

1

T

T3+T−1∑
t=T3

(
Obj(ft)−O

(
1

log d

))
≤ 1

T

T3+T−1∑
t=T3

η⟨∇wObj(ft), w
(t) − θ⋆⟩

≤ O(∥w(T3) − θ⋆∥2F )
Tη

=
O
(
∥w(T3)∥2F + ∥θ⋆∥2F − 2Tr((w(T3))⊤θ⋆)

)
Tη

≤
O
(
∥w(T3)∥2F + ∥θ⋆∥2F

)
Tη

≤
O
(
m∥w(T3)

i ∥22
)

Tη

≤ O
(

mΞ2

Tη

)
(113)

Since Tη ≥ mΞ10
2 , this proves the claim.

For Theorem 3.3 (9), we have

w
(t)
i =

∑
j∈Ni, j∈[d]

⟨w(t)
i ,Mj⟩Mj +

∑
j /∈Ni, j∈[d]

⟨w(t)
i ,Mj⟩Mj +

∑
j∈[d1]\[d]

⟨w(t)
i ,M⊥

j ⟩M⊥
j

≤
∑

j∈Ni, j∈[d]

⟨w(t)
i ,Mj⟩Mj +

∑
j /∈Ni, j∈[d]

O

(
ϵj

ϵmax

∥w(t)
i ∥2√
dΞ5

2

)
Mj +

∑
j∈[d1]\[d]

O

(
∥w(t)

i ∥2√
d1 Ξ5

2

)
M⊥

j

=
∑

j∈Ni, j∈[d]

αi,jMj +
∑

j /∈Ni, j∈[d]

α′
i,jMj +

∑
j∈[d1]\[d]

βi,jM
⊥
j

(114)

Under the condition of |Mj | ̸= 0 (if |Mj | = 0, then it is not a target within Ni, and thus it becomes
meaningless), and due to Lemma E.1: The proof is complete. For each feature Mj , there are
at most o(m/d) many i ∈ [m] such that j ∈ Ni: It follows from the proof of Lemma B.1 that
P[i ∈ Mj ] =

1
dΩ(1) , and at least Ω(dω1) many i ∈ [m] such that Ni = {j}: From Lemma B.1, we

recall that |M⋆
j | ≥ Ω(dω1) If a neuron belongs to M⋆

j , then it must not belong to Mj′
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