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Abstract—DC microgrids have widely adopted hierarchical
control architecture through distributed generation units (DGUs)
to enhance reliability and scalability. However, this makes the
system vulnerable to false data injection attacks (FDIAs), which
can disrupt system stability or shift the operating point. While
observers are commonly used to detect FDIAs, some FDIAs can
be stealthy, or observers lack sufficient sensitivity for reliable
identification. To address this, we propose a quickest change
detection (QCD) method based on an unknown input observer
(UIO) estimation error model to detect the FDIAs that are
stealthy to the UIOs. The Ergodic CuSum algorithm is designed
and can be efficiently updated using estimation error observa-
tions. The approach is validated through Simulink and real-time
simulations.

Index Terms—Microgrid, Observer, Attack, CuSum, Detection.

I. INTRODUCTION

Modern dc microgrids commonly adopt a hierarchical con-

trol architecture [1], which relies on the exchange of mea-

surement data to ensure coordinated operation. However, this

reliance on communication networks introduces vulnerabilities

to cyber attacks. Among various attack types, false data injec-

tion attacks (FDIAs) are among the most frequently reported in

dc microgrids [2], [3]. By compromising communicated data,

FDIAs can disrupt control coordination and shift the desired

operation of the microgrid system [4]. As a result, timely and

accurate detection of FDIAs is essential to ensure the system’s

security and reliability.

Detection strategies for FDIAs have primarily focused on

analyzing the system’s current and voltage signals to identify

abnormal behavior during an attack. Machine learning (ML)

based approaches have been explored in [5]–[7], where mea-

surement data under various operating conditions are used to

This work was supported by the National Science Foundation under Grant
ECCS 2339434.

train models for FDIA detection and mitigation. These ML-

based methods are advantageous when accurate system models

are unavailable, as they can infer system behavior directly from

measurements. However, ML-based methods require large

datasets covering both normal and various attack scenarios,

and the training models can be complex to implement in dc

microgrid systems. Another common approach in microgrids

involves deploying observers within the system to provide

a secure state estimation and attack detection [8]–[11]. In

[10], an advanced sliding mode observer is proposed for

FDIA detection and resilient control. Data-driven observers

are designed to detect the FDIAs in dc microgrids without

using the accurate system parameters in [11]. However, certain

FDIAs can be carefully designed to shift the system to a

different operating point while maintaining overall stability,

and can bypass observer-based detectors [12], [13]. To solve

the low sensitivity of observers to the potential FDIAs, in [13],

a proactive perturbation is applied to enable the UIO-based

locators to identify the deception FDIAs. In [14], a Kalman

filter-based detection method is developed for detecting the

FDIA that can bypass the traditional residual detection method.

In recent research, quickest change detection methods are

explored for detecting attacks in power systems [15]–[17],

and this type of method aims to determine a change of the

observed statistics as quickly as possible based on the online

observations and specific decision rules while controlling the

false alarm rate. A Markov chain-based analytical model is

developed for the smart grid system, enabling real-time detec-

tion of FDIAs using a new normalized Rao-CuSum algorithm

[15]. In [16], an adaptive nonparametric CuSum-based detector

is proposed to detect FDIAs and coordinated cyber-physical

attacks in the smart grid system. In [17], the state estimation is

performed using the Kalman filter, and a generalized CuSum

algorithm is employed for the attack detection in the smart grid

system. Although the generalized likelihood ratio test (GLRT)
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Fig. 1. Electrical scheme of the DGU and power line (i, j).

can handle unknown parameters, it becomes computationally

expensive when dealing with complex system models [18].

Another challenge in implementing the QCD framework lies

in defining the pre- and post-change models and efficiently

computing the probability density based on system observa-

tions. To reduce the computation load, an Ergodic CuSum

algorithm was proposed in [19] for autoregressive models,

utilizing a forward variable to compute the probability density

at each time step efficiently. However, this method has not

been studied for FDIA detection in dc microgrids.

To address the above challenges, this paper proposes a novel

Ergodic CuSum-based framework for detecting FDIAs that

are stealthy to observer-based detectors. The QCD problem

is formulated using the estimation error dynamics of a UIO,

combining the UIO’s advantage of requiring fewer sensors

with the strong detection capability of the CuSum algorithm.

Probability density functions for pre- and post-change models

are derived based on the key lemmas from [19], and an Ergodic

CuSum algorithm is then developed to detect FDIAs. This

approach enables practical deployment in real dc microgrid

systems. The rest of this paper is organized as follows. In

Section II, the model of dc microgrid system and the UIO

design are introduced. The FDIA model and Cusum algorithm

are demonstrated in Section III. The Simulink simulation

results and real-time simulation test results are presented in

Sections IV and V. Finally, the conclusion of this paper is

presented in Section VI.

II. DC MICROGRID MODEL AND OBSERVER DESIGN

A. Discrete-time DGU model

The considered microgrid is modeled by a set of distribution

generation units (DGUs), which are connected through a set of

resistive and inductive power lines. We consider that the power

lines will have different lengths and thicknesses, thus the line

inductance and resistance can vary. Each DGU is modeled as

a dc voltage source, which is connected to a dc–dc converter.

The DGU is assumed to supply a local dc load, which is

modeled as a current load input. The diagram of a DGU is

presented in Fig. 1. A cooperative current consensus-based

controller [20] is used to regulate the current, and a cyber

layer is introduced for DGUs to share the measurements. The

communication link (j, i) represents data transmission from

DGU j to i, and we define communicated current as I(j,i).

The controller with primary and secondary layers is presented

in Fig. 2. The current regulator computes the local DGU’s

current consensus with its neighbors to generate a correction

term ηi, defined as:

ηi =

∫

Īiavg =

∫

∑

j∈Ni

ci (Itj − Iti) , (1)

where ci is the consensus gain and Ni denotes the set of

neighboring DGUs for DGU i. The correction term ηi is added

with the global reference voltage Vref and a droop control term

to form the final local voltage reference. By comparing this

local reference with the local voltage Vi and feeding the error

into the voltage controller (can be a PI controller or integrator),

a state variable νi is generated for the feedback controller.

The states and inputs in each DGU are xi = [Vi Iti νi ηi]
T

and ui = [Inet + ILi Vref

∑

j∈Ni
I(j,i) ]

T . ILi represents the

load current, and Inet is the current from neighbors through

physical lines. I(j,i) is the current from communication net-

work. Then the continuous-time model of DGU i can be

derived as:

xi(t+ 1) = Aixi(t) +Biui(t)

yi(t) = Cixi(t).
(2)

The matrices in the model are the following:

Ai =









0 1
Ci

0 0
k1−1
Li

k2−Ri

Li

k3

Li
0

−1 −rdroop,i 0 1
0 −Nici 0 0









Bi =









− 1
Ci

0 0

0 0 0
0 1 0
0 0 ci









,

(3)

where k1, k2, and k3 are the feedback controller gains and Ni

represents the total number of neighboring DGUs for DGU

i. The droop gain is defined as rdroop,i. The forward Euler

method is used for system discretization, and the discrete-time

model of DGU i is:

xi(t+ 1) = Ad
i xi(t) +Bd

i ui(t)

yi(t) = Cd
i xi(t).

(4)

B. UIO Design

UIO is designed to track communicated states based on

the discrete-time model in (4) by considering inputs within

that DGU as unknown inputs. We consider full output mea-

surement is available from the DGU and define y(j,i) as the

communication from DGU j to DGU i. The designed UIO

model for communication link (j, i) is expressed as:

z(j,i)(t+ 1) = F(j,i)z(j,i)(t) +K(j,i)y(j,i)(t)

x̂(j,i)(t) = z(j,i)(t) +H(j,i)y(j,i)(t)

ŷ(j,i)(t) = Cd
i x̂(j,i)(t),

(5)

where x̂(j,i) are the estimated states and ŷ(j,i) are the estimated

outputs/measurements. The estimation error dynamics can be
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Fig. 2. An example dc microgrid system model with ring network. The network is composed of four interconnected DGUs (four communication links), and
the dc source input to each DGU is a generator based on the buck converter using the cooperative controller.

derived using (4) and (5):

e(j,i)(k + 1) = xj(k + 1)− x̂(j,i)(k + 1)

= xj(k + 1)− x̂(j,i)(k + 1)

= Ad
jxj(k) +Bd

j uj(k)− [F(j,i)z(j,i)(k)

+K(j,i)y(j,i)(k) +H(j,i)C
d
j (A

d
jxj(k) +Bd

j uj(k))]

= (Ad
j −H(j,i)C

d
jA

d
j −K

(j,i)
1 Cd

j )e(j,i)(k)

+ (Ad
j −H(j,i)C

d
jA

d
j −K

(j,i)
1 Cd

j − F(j,i))z(j,i)(k)

+ [(Ad
j −H(j,i)C

d
jA

d
j −K

(j,i)
1 Cd

j )H(j,i) −K
(j,i)
2 ]y(j,i)(k)

+ (I −H(j,i)C
d
j )B

d
j uj(k).

(6)

K(j,i) = K
(j,i)
1 +K

(j,i)
2 . Similar to [21], in order to decouple

the influence of unknown inputs uj on the observer, the

following conditions should be satisfied:

(I −H(j,i)C
d
j )B

d
j = 0 (7)

F(j,i) = Ad
j −H(j,i)C

d
jA

d
j −K

(j,i)
1 Cd

j (8)

K
(j,i)
2 = F(j,i)H(j,i). (9)

Using (7)-(9), the error dynamics in (6) can be reduced to:

e(j,i)(k + 1) = F(j,i)e(j,i)(k). (10)

The gain K
(j,i)
1 should be selected such that all eigenvalues

of F(j,i) lie within the unit circle, ensuring that the estimation

error converges to zero. Placing these eigenvalues closer to the

origin enhances the tracking performance. K
(j,i)
1 exists if and

only if the pair (Cd
j , A

∗
(j,i)) is observable, where

A∗
(j,i) = (I −H(j,i)C

d
j )A

d
j . (11)

The FDIA can target any communication link (j, i), altering

the transmitted data as:

y(j,i)(t) = yj(t) + ϕ(j,i)(t− T a
(j,i)), (12)

where T a
(j,i) and ϕ(j,i) denote the attack’s initiation time

and attack vector. In the work, since the current-consensus

controller used in the DGU relies solely on communicated

current measurements, false data is injected only into the

communicated current to influence the control action.

III. CUMSUM ALGORITHM

A. Probability Density Calculation

The pre- and post-change models are formulated from the

observer estimation error models under nominal operation and

FDIA, and we leverage the Gaussian property of the innovation

noise and the measurement noise in the models:

Pre-change: e(i,j)(t) = Fe(i,j)(t− 1) + ω(t)

ye(i,j)(t) = e(i,j)(t) + ν(t).
(13)

Post-change: e(i,j)(t) = Fe(i,j)(t− 1) + ω∗(t)

ye(i,j)(t) = e(i,j)(t) + ν(t),
(14)

where ye(i,j) is the observed signal. In the pre-change model,

ωt ∼ N (0, Rω) is the innovation noise and νt ∼ N (0, I) is

the measurement noise. The covariance matrix in measure-

ment noise νt is an identity matrix I . In the post-change

model, FDIA induces a mean shift in the estimation error,

represented as a nonzero mean vector in the innovation noise

(ω∗ ∼ N (ea, Rω)). The mean value ea can be obtained

from simulation or theoretical calculation. Consider a FDIA

occurs (i, j) at time t0, the pre-and post-change probabil-

ity densities are defined as p
(i,j)
∞ (ye(i,j)(t0), · · · y

e
(i,j)(t)) and

p
(i,j)
t0

(ye(i,j)(t0), · · · y
e
(i,j)(t)) respectively.

For simplicity, in the following derivation, we use et to

denote the estimation error and yet as the observation. We

now define the following forward variable to compute the

likelihood function based on [19]:

αt(et) = p(yet0 , · · · , y
e
t , et). (15)

For the pre-change model, we can have the probability density

expressed with the forward variable α
pre
t (et):

p∞(yet0 , · · · , y
e
t ) =

∫

α
pre
t (et)det. (16)
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Then the forward variable at time t+ 1 can be expressed as:

α
pre
t+1(et+1) =

∫

α
pre
t (et)f1(et+1|et)g1(y

e
t+1|et+1)det. (17)

The forward variable αt(et) is a Gaussian function, and the

proof is provided in [19]. The forward variable satisfies the

following equation:

α
pre
t (et−1) =

c
pre
t−1

√

(2π)K det(Σpre
t−1)

· exp(−
1

2
(et−1 − µ

pre
t−1)

⊤Σ−1
t−1(et−1 − µ

pre
t−1)),

(18)

where Σt and µt are the covariance matrix and mean vector of

the forward variable. The term K is determined by the state’s

dimensions. For time t we can have:

α
pre
t (et) =

∫

α
pre
t−1(et−1)f1(et|et−1)g1(y

e
t |et) det−1 (19)

By solving (19), we can express the forward variable at time

t as:

αpre(et) =
c
pre
t

√

(2π)K det(Σpre
t )

· exp(−
1

2
(et − µ

pre
t )⊤(Σpre

t )−1(et − µ
pre
t )),

(20)

and the parameters Σpre
t−1 and µ

pre
t−1 can be updated as:

Σpre
t = (FΣpre

t−1F
⊤ +Rω)(FΣpre

t−1F
⊤ +Rω + I)−1,

µ
pre
t = (FΣpre

t−1F
⊤ +Rω + I)−1Fµ

pre
t−1

+ (FΣpre
t−1F

⊤ +Rω)(FΣpre
t−1F

⊤ +Rω + I)−1yet .
(21)

Then the ratio of coefficient
c
pre

t

c
pre

t−1

can be obtained:

c
pre
t

c
pre
t−1

=
1

√

(2π)K det(FΣpre
t−1A

⊤ +Rω + I)

· exp(−
1

2
((Fµ

pre
t−1 − yt)

⊤(FΣpre
t−1F

⊤

+Rω + I)−1(Fµ
pre
t−1 − yt))).

(22)

The conditional density of the pre-change model can be

rewritten using the forward variable:

p∞(yet |y
e
1, . . . , y

e
t−1) =

p∞(ye1, . . . , y
e
t )

p∞(ye1, . . . , y
e
t−1)

=

∫

α
pre
t (et)det

∫

αpre(et−1)det−1
=

c
pre
t

c
pre
t−1

,

(23)

Then the additive form for the log likelihood function is

log p∞ (ye1, · · · , y
e
t ) =

t
∑

i=1

log
c
pre
i

c
pre
i−1

. (24)

Similarly, to calculate the conditional probability density of the

post-change model, the mean change ea needs to be considered

when calculating the forward variable:

α
post
t (et) =

∫

α
post
t−1 (et−1)f(et|et−1)g(y

e
t |et) det−1. (25)

The expression for the forward variable at time t can be

expressed as:

α
post
t (et) =

c
post
t

√

(2π)K det(Σpost
t )

· exp(−
1

2
(et − µ

post
t )⊤(Σpost

t )−1(et − µ
post
t )),

(26)

Then the updating rule for the parameters of the forward

variable: α
post
t :

Σpost
t = (FΣpost

t−1 F
⊤ +Rω)(FΣpost

t−1 F
⊤ +Rω + I)−1,

µ
post
t = (FΣpost

t−1 F
⊤ +Rω + I)−1(Fµ

post
t−1 + ea)

+ (FΣpost
t−1 F

⊤ +Rω)(FΣpost
t−1 F

⊤ +Rω + I)−1yet .
(27)

The ratio of coefficient
c
post

t

c
post

t−1

can be obtained:

c
post
t

c
post
t−1

=
1

√

(2π)K det(FΣpost
t−1 F

⊤ +Rω + I)

· exp(−
1

2
((Fµ

post
t−1 − yet − ea)⊤(FΣpost

t−1 F
⊤

+Rω + I)−1(Fµ
post
t−1 − yet − ea))).

(28)

Then, the conditional probability under the post-change model

can be expressed as:

pt0(y
e
t |y

e
t0
, . . . , yet−1) =

pt0(y
e
t0
, . . . , yet )

pt0(y
e
t0
, . . . , yet−1)

=

∫

αt(et)det
∫

αpost(et−1)det−1
=

c
post
t

c
post
t−1

.

(29)

The log likelihood function:

log pt0
(

yet0 , · · · , y
e
t

)

=
t

∑

i=t0

log
c
post
i

c
post
i−1

. (30)

By introducing two forward variables, the mean and co-

variance of the forward variable can be updated with the

observation signal from the UIO using (21) and (27). Then

the log-likelihood functions for both the pre-change and post-

change models can be calculated efficiently.

B. Ergodic CuSum Algorithm

Consider t− t0 +1 observations are collected from a UIO,

we define the likelihood ratio Lt:

Lt =
pt0(y

e
t0
· · · yet )

p∞(yet0 · · · y
e
t )
. (31)

Then the log-likelihood ratio is:

logLt = log pt0
(

yet0 , · · · , y
e
t

)

− log p∞ (ye1, · · · , y
e
t ) . (32)

Using (24) and (30), we can get an additive form for updating

the Lt based on the previous step:

logLt =

t
∑

i=t0

log
c
post
i

c
post
i−1

−
t

∑

i=1

log
c
pre
i

c
pre
i−1

= logLt−1 + log(
c
post
t

c
post
t−1

)− log(
c
pre
t

c
pre
t−1

).

(33)
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For each step, with the observation yet from the system, the

parameters of the forward variable and logLt can be updated

recursively. Then we design the Ergodic CuSum statistic as:

Dt = max
0≤i≤t

(logLt − logLi)

= max (0, Dt−1 + logLt − logLt−1) .
(34)

Under nominal operation, system observations are more likely

to follow the pre-change distribution, causing the calculated

statistic Dt to remain near zero or show no significant varia-

tion. However, when an FDIA occurs, Dt begins to increase

continuously. Based on the CuSum statistic’s behavior, the

Ergodic CuSum algorithm is designed to detect FDIAs on

communication link (i, j) as follows:

No FDIA : D(i,j) < T

FDIA detected : D(i,j) ≥ T,
(35)

where T is a threshold. A FDIA point/time τ can be detected

whenever

τ = inf {t : Dt ≥ T} . (36)

In the Ergodic CuSum algorithm, the CuSum statistic grows

continuously over time. This property simplifies the design of

the detection threshold T , as the statistic D(i,j) will eventually

exceed it. In contrast, most observer-based methods produce

estimation errors that converge to a steady state, making

threshold selection more challenging.

IV. SIMULATION VERIFICATION

The dc microgrid system shown in Fig. 2 is used to validate

the proposed CuSum-based detection method in MATLAB

Simulink, with simulation parameters provided in Table I. The

simulation time step is set to 10 µs. The nominal dc output

voltage of each DGU is 200 V, while the input voltage of the

generator converters is 270 V. With a load current of 3 A,

each DGU delivers an output power of 600 W. Eight UIOs

are designed to cover the eight communication links in the

system, and eight corresponding CuSum-based detectors are

then developed to detect potential FDIAs. The squared norm

of the residuals (||r(j,i)||
2
2 = ||e(j,i)||

2
2) generated by the UIOs,

along with the CuSum statistics D(j,i), are collected for FDIA

detection and comparison.

A. Load Change Test

During normal operation, the voltage and current at each

DGU are regulated to 200 V and 3 A with the current

consensus-based controller. To test the performance of the

proposed detection framework under nominal conditions, a

load change is applied at DGU 1 at t = 1.5 s. As shown

in Fig. 3, the coordinated control among the DGUs maintains

equal current sharing. The residuals generated by the UIOs

and the CuSum detection signals D(j,i) remain unaffected,

confirming that no false alarms are triggered during the normal

load variation.

TABLE I
SYSTEM PARAMETERS

DGU i Ci(mF) Li (mH) Ri(Ω) Pi(W )
1 3 3 1.1 600

2 4 3 2 600

3 5 4 3.1 600

4 6 5 4 600

Line (i, j) R(i,i)(mΩ) L(i,j) (µH)

(1, 2) 1 10
(1, 4) 2 20
(2, 3) 4 40
(3, 4) 5 50

Fig. 3. Simulation results of normal load change in DGU 1.

B. FDIA at (2, 1)

In the first scenario, a FDIA is introduced at (2, 1). As

shown in Fig. 4, the current sharing among DGUs is disrupted,

and the system shifts to a different operating point. The UIO

residual for link (2, 1) initially increases and then decreases

(close to 0), indicating that UIO is insensitive to the FDIA,

which allows the attack to bypass detection. In contrast, the

CuSum-based detection statistic D(2,1) shows a significant

and sustained increase, clearly identifying the presence and

location of the attack.

C. Multiple FDIAs at (1, 2) and (1, 4)

In the second scenario, two different FDIAs are introduced

at communication links (1, 2) and (1, 4) at different times (Fig.

5). During both attack periods, the UIOs fail to detect the

FDIAs, as indicated by the low increment of the residuals.

In contrast, the CuSum-based detectors respond effectively:

when the FDIA at (1, 4) occurs, the corresponding CuSum-

based detection statistic D(1,4) increases, while other detection

statistics remain unchanged. Subsequently, when the FDIA at

(1, 2) is launched, D(1,2) increases. These results demonstrate

that the proposed algorithm can successfully detect multiple

FDIAs independently without conflict.

Authorized licensed use limited to: University at Buffalo Libraries. Downloaded on January 31,2026 at 22:03:58 UTC from IEEE Xplore.  Restrictions apply. 



Fig. 4. Simulation results of attack at (2, 1).

Fig. 5. Simulation results of attacks at (1, 2) and (1, 4).

V. REAL-TIME SIMULATION TEST

To comprehensively validate the proposed FDIA detection

framework, the system in Fig. 2 with the same component

parameters in Table I is built in the OPAL-RT simulator to

conduct the real-time simulation. The simulation time step

and switching frequency are set to 20 µs and 5 kHz. The dc

microgrid is operating at a voltage reference 200 V and the

desired load current is ranging from 5 A to 8 A. The UIOs and

Cusum-based detectors are built for 8 communication links in

the system. To prevent OPAL-RT analog output saturation, a

high flag signal (1 V) is triggered when D(i,j) exceeds the

threshold of 0.8, indicating the attack detection result.

In the first scenario, a load change occurs in DGU 1,

causing its output current to increase from 5 A to 8 A, as

shown in Fig. 6. During this normal operation, the current

consensus algorithm ensures equal current sharing and power

Fig. 6. Real-time simulation results with load change.

Fig. 7. Real-time simulation results with FDIA at (1, 2).

output across all DGUs. All detection signals from CuSum-

based detectors remain constant, indicating no false alarms are

triggered during the load variation. In the second scenario, an

FDIA is introduced at the communication link (1, 2). As a

result, equal current sharing is disrupted, and the current from

DGU 2 increases significantly, as shown in Fig. 7. Notably,

only the detection signal D(1,2) increases at the time of the

attack, accurately indicating the location of the FDIA.

VI. CONCLUSION

In this paper, a novel detection framework based on the

Ergodic CuSum algorithm is proposed for detecting FDIAs in

cooperative dc microgrids composed of DGUs. The proposed

framework can detect the FDIAs that are stealthy to traditional

observer-based detectors. By utilizing UIOs, the method elim-

inates the need to measure the input signals within DGUs,

thereby reducing sensor requirements and system complexity.

The approach leverages the UIO estimation error model to

formulate the QCD problem, enabling implementation of the

CuSum algorithm in dc microgrid systems. With the use of

the forward variable, the CuSum statistics can be effectively

updated with the observation from the observer. Both MAT-

LAB/Simulink and real-time simulation results validate the

effectiveness of the approach, demonstrating its ability to

accurately detect multiple FDIAs that bypass the observer-

based detector without false alarms.
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