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Abstract—DC microgrids have widely adopted hierarchical
control architecture through distributed generation units (DGUs)
to enhance reliability and scalability. However, this makes the
system vulnerable to false data injection attacks (FDIAs), which
can disrupt system stability or shift the operating point. While
observers are commonly used to detect FDIAs, some FDIAs can
be stealthy, or observers lack sufficient sensitivity for reliable
identification. To address this, we propose a quickest change
detection (QCD) method based on an unknown input observer
(UIO) estimation error model to detect the FDIAs that are
stealthy to the UIOs. The Ergodic CuSum algorithm is designed
and can be efficiently updated using estimation error observa-
tions. The approach is validated through Simulink and real-time
simulations.

Index Terms—Microgrid, Observer, Attack, CuSum, Detection.

I. INTRODUCTION

Modern dc microgrids commonly adopt a hierarchical con-
trol architecture [1], which relies on the exchange of mea-
surement data to ensure coordinated operation. However, this
reliance on communication networks introduces vulnerabilities
to cyber attacks. Among various attack types, false data injec-
tion attacks (FDIAs) are among the most frequently reported in
dc microgrids [2], [3]. By compromising communicated data,
FDIAs can disrupt control coordination and shift the desired
operation of the microgrid system [4]. As a result, timely and
accurate detection of FDIAs is essential to ensure the system’s
security and reliability.

Detection strategies for FDIAs have primarily focused on
analyzing the system’s current and voltage signals to identify
abnormal behavior during an attack. Machine learning (ML)
based approaches have been explored in [5]-[7], where mea-
surement data under various operating conditions are used to
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train models for FDIA detection and mitigation. These ML-
based methods are advantageous when accurate system models
are unavailable, as they can infer system behavior directly from
measurements. However, ML-based methods require large
datasets covering both normal and various attack scenarios,
and the training models can be complex to implement in dc
microgrid systems. Another common approach in microgrids
involves deploying observers within the system to provide
a secure state estimation and attack detection [8]-[11]. In
[10], an advanced sliding mode observer is proposed for
FDIA detection and resilient control. Data-driven observers
are designed to detect the FDIAs in dc microgrids without
using the accurate system parameters in [11]. However, certain
FDIAs can be carefully designed to shift the system to a
different operating point while maintaining overall stability,
and can bypass observer-based detectors [12], [13]. To solve
the low sensitivity of observers to the potential FDIAs, in [13],
a proactive perturbation is applied to enable the UIO-based
locators to identify the deception FDIAs. In [14], a Kalman
filter-based detection method is developed for detecting the
FDIA that can bypass the traditional residual detection method.

In recent research, quickest change detection methods are
explored for detecting attacks in power systems [15]-[17],
and this type of method aims to determine a change of the
observed statistics as quickly as possible based on the online
observations and specific decision rules while controlling the
false alarm rate. A Markov chain-based analytical model is
developed for the smart grid system, enabling real-time detec-
tion of FDIAs using a new normalized Rao-CuSum algorithm
[15]. In [16], an adaptive nonparametric CuSum-based detector
is proposed to detect FDIAs and coordinated cyber-physical
attacks in the smart grid system. In [17], the state estimation is
performed using the Kalman filter, and a generalized CuSum
algorithm is employed for the attack detection in the smart grid
system. Although the generalized likelihood ratio test (GLRT)

Authorized licensed use limited to: University at Buffalo Libraries. Downloaded on January 31,2026 at 22:03:58 UTC from IEEE Xplore. Restrictions apply.



Power line (i,j)

DC/DC
Converter

Fig. 1. Electrical scheme of the DGU and power line (i, j).

can handle unknown parameters, it becomes computationally
expensive when dealing with complex system models [18].
Another challenge in implementing the QCD framework lies
in defining the pre- and post-change models and efficiently
computing the probability density based on system observa-
tions. To reduce the computation load, an Ergodic CuSum
algorithm was proposed in [19] for autoregressive models,
utilizing a forward variable to compute the probability density
at each time step efficiently. However, this method has not
been studied for FDIA detection in dc microgrids.

To address the above challenges, this paper proposes a novel
Ergodic CuSum-based framework for detecting FDIAs that
are stealthy to observer-based detectors. The QCD problem
is formulated using the estimation error dynamics of a UIO,
combining the UIO’s advantage of requiring fewer sensors
with the strong detection capability of the CuSum algorithm.
Probability density functions for pre- and post-change models
are derived based on the key lemmas from [19], and an Ergodic
CuSum algorithm is then developed to detect FDIAs. This
approach enables practical deployment in real dc microgrid
systems. The rest of this paper is organized as follows. In
Section II, the model of dc microgrid system and the UIO
design are introduced. The FDIA model and Cusum algorithm
are demonstrated in Section III. The Simulink simulation
results and real-time simulation test results are presented in
Sections IV and V. Finally, the conclusion of this paper is
presented in Section VL.

II. DC MICROGRID MODEL AND OBSERVER DESIGN
A. Discrete-time DGU model

The considered microgrid is modeled by a set of distribution
generation units (DGUs), which are connected through a set of
resistive and inductive power lines. We consider that the power
lines will have different lengths and thicknesses, thus the line
inductance and resistance can vary. Each DGU is modeled as
a dc voltage source, which is connected to a dc—dc converter.
The DGU is assumed to supply a local dc load, which is
modeled as a current load input. The diagram of a DGU is
presented in Fig. 1. A cooperative current consensus-based
controller [20] is used to regulate the current, and a cyber
layer is introduced for DGUs to share the measurements. The
communication link (j,7) represents data transmission from
DGU j to 7, and we define communicated current as I; ;.
The controller with primary and secondary layers is presented
in Fig. 2. The current regulator computes the local DGU’s

current consensus with its neighbors to generate a correction
term 7);, defined as:

w= [l [ S atis—no. 0

JEN;

where ¢; is the consensus gain and N; denotes the set of
neighboring DGUs for DGU <. The correction term 7); is added
with the global reference voltage Vi and a droop control term
to form the final local voltage reference. By comparing this
local reference with the local voltage V; and feeding the error
into the voltage controller (can be a PI controller or integrator),
a state variable v; is generated for the feedback controller.

The states and inputs in each DGU are x; = [V; Iy; v; n;]”
and w; = [Inet + i Vier 25, Li.0) |¥'. Ir; represents the
load current, and I, is the current from neighbors through
physical lines. I ;) is the current from communication net-
work. Then the continuous-time model of DGU ¢ can be
derived as:

.T,(t + 1) = All'z(t) + B,’Lh(t)

)
yi(t) = Cizi(t).
The matrices in the model are the following:
0 % 0 O —% 0 0
k-1 ka—R; k '
-1 —Tdroop,i 0 1 0 1 0 ’
0 —N;c; 0 0 0 0 ¢
(3)

where k1, ko, and k3 are the feedback controller gains and V;
represents the total number of neighboring DGUs for DGU
i. The droop gain is defined as 7g,o0p,;. The forward Euler
method is used for system discretization, and the discrete-time
model of DGU 7 is:

4
it) = Cla(t). @

B. UIO Design

UIO is designed to track communicated states based on
the discrete-time model in (4) by considering inputs within
that DGU as unknown inputs. We consider full output mea-
surement is available from the DGU and define y; ;) as the
communication from DGU 5 to DGU i. The designed UIO
model for communication link (j,4) is expressed as:

2,0+ 1) = Fiy 2,0 () + Koy ()
B0 (1) = 20,0 () + H(j0 Y0 (1) 5)
6.0y () = Cila .0 (1),

where Z; ;) are the estimated states and §/; ;) are the estimated
outputs/measurements. The estimation error dynamics can be
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Fig. 2. An example dc microgrid system model with ring network. The network is composed of four interconnected DGUs (four communication links), and
the dc source input to each DGU is a generator based on the buck converter using the cooperative controller.

derived using (4) and (5):
eGa(k+1) =a;(k+1) = &g,k +1)
= AYa; (k) + Biu; (k) — [F(j,0) 2. (k)
+ K.y (k) + Hi o Cf (Afx (k) + Bilu; (k)]
= (A = H ) CP AT — K C e 1) ()
+ (Af = Hij o CJAT = KPVCF = Fig) 2 (k)
+ (A9 = Hi iy CIAT — KD CHH gy — KE Ny 0 (k)
+ (I = Hj . Cf) By (k).
(6)
Ky = Kfj’i) + KQ(M). Similar to [21], in order to decouple

the influence of unknown inputs u; on the observer, the
following conditions should be satisfied:

(I = H(;C})Bj =0 ™
Flja = A} = Hj o CAS - KPOCd 8)

(J:8) _
K" = Fj0H). ©)

Using (7)-(9), the error dynamics in (6) can be reduced to:
e, (k+1) = Fnega (k). (10)

The gain Kfj ") should be selected such that all eigenvalues
of F{; ;) lie within the unit circle, ensuring that the estimation
error converges to zero. Placing these eigenvalues closer to the
origin enhances the tracking performance. K" exists if and

only if the pair (C;l, A{; ;) 1s observable, where
* dy gd
Gy = (= Higp G AS. (1)

The FDIA can target any communication link (j, ), altering
the transmitted data as:

Y0 (@) = y;(t) + byt — T ),

where T(“j ) and ¢(;;) denote the attack’s initiation time
and attack vector. In the work, since the current-consensus

(12)

controller used in the DGU relies solely on communicated
current measurements, false data is injected only into the
communicated current to influence the control action.

III. CuMSUM ALGORITHM

A. Probability Density Calculation

The pre- and post-change models are formulated from the
observer estimation error models under nominal operation and
FDIA, and we leverage the Gaussian property of the innovation
noise and the measurement noise in the models:

Pre-change: e(; ;)(t) = Fe( j)(t — 1) 4+ w(t) 13)
y(ei,j)(t) = e(i,j)(t) +v(t).
Post-change: e(; ;)(t) = Fe( j)(t — 1) +w* (1) (14)

y(ei,j)(t) =e@j(t) +v(t),
where Yiij is the observed signal. In the pre-change model,
wy ~ N(0,R,,) is the innovation noise and v; ~ N(0,I) is
the measurement noise. The covariance matrix in measure-
ment noise v, is an identity matrix I. In the post-change
model, FDIA induces a mean shift in the estimation error,
represented as a nonzero mean vector in the innovation noise
(w* ~ N(e* R,)). The mean value e® can be obtained
from simulation or theoretical calculation. Consider a FDIA
occurs (i,7) at time tg, the pre-and post-change probabil-
ity densities are defined as pg;])(y(eiﬁj)(to), G5 (t) and

e (g, 5y (o), -+, ) (1)) respectively.

For simplicity, in the following derivation, we use e; to
denote the estimation error and y; as the observation. We
now define the following forward variable to compute the

likelihood function based on [19]:

at(et) :p(yteov"' 7y57€t)' (15)

For the pre-change model, we can have the probability density
expressed with the forward variable af"“(e;):

Poo(Yty, "+ YE) = /afre(et)det. (16)
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Then the forward variable at time ¢ 4+ 1 can be expressed as:

AP (ers1) = / A" (e0) fa(ersalen) g (v 1 lersr)der. (17)

The forward variable o (e;) is a Gaussian function, and the
proof is provided in [19]. The forward variable satisfies the
following equation:

pre
Ci—1

(2m)K det(S775)

oy (er—1) =

(18)
1 re re

eXP(_*(et I_Hp )T t— 1(€t 1_/‘? 1))

where X, and p, are the covariance matrix and mean vector of
the forward variable. The term K is determined by the state’s
dimensions. For time ¢ we can have:

oy (er) :/Oéfz(etfl)fl(€t|et71)91(yf|€t)detfl (19)

By solving (19), we can express the forward variable at time
t as:

apT'e(et) — ci) =
1 (2m)K det(37"°) (20)
rexp(— (e — P TS T e — ™)),

and the parameters X" and p}” can be updated as:

Y = (FYP'OFT + R)(FYEVSFT + R, + 1)
e = (FYP“FU 4 R, + ) Ful™
+ (FEPSFT + R)(FESFT + R, + 1) Myf

ey
Then the ratio of coefficient séiel can be obtained:
ﬁ B 1
S \/ (27)K det(FSP™ AT + Ry, + 1)
eXp(—*((FﬂfTel — ) (FESFT -
+ Ry + 1) 7HEU™ — ye))).

The conditional density of the pre-change model can be
rewritten using the forward variable:

poo(yf‘yfy o 73/15871) _ poc(yi s 7yf)
poo(y(lgw"’ygfl) (23)

_ Ja(e)der g

- Jarre(ey)de oy TS

Then the additive form for the log likelihood function is

pre

logpoo (yi e 7yt (24)
Similarly, to calculate the conditional probablhty density of the
post-change model, the mean change e needs to be considered
when calculating the forward variable:

APt (e,) = / A% (er—1) f (erler—1)g (uler) dery.  (25)

The expression for the forward variable at time ¢ can be
expressed as:

ost
a‘fost(et): Cf
(2m)K det(£7*) (26)
1 0S 0S 0S8
rexp(—g (er = ") TSP T e — ™),

Then the updating rule for the parameters of the forward
variable: a°%:

Epost (FE‘DOStFT + R )(Fz;fosltFT 4 R 4 I)—l
Mtost (FE]t)oslfFT T R +I) (Fﬂpost a)

+ (FSPSIET 4+ R)(FEPSIET + R, + 1) lye

.
post (27)
The ratio of coefficient zﬁ,ﬁ can be obtained:
t—1
Cpost 1
t _
c?oslt - K post 1~ T
- @2m)K det(FEYTFT + R, + 1)
(28)

eXp(—*((Fu”“t —yf —e) T (FEPYFT

+ R+ D)7HFE — yf =€),
Then, the conditional probability under the post-change model
can be expressed as:

€ €
D v y) = Lol U
Pty (ytoa s ayt—l)
- fat(et)det B C;;)ost (29)
B f arost(e,_y)de,_; - ciagslt'
The log likelihood function:
pos st
logpto (yfov e >yt Z log post . (30)
i=to

By introducing two forward variables, the mean and co-
variance of the forward variable can be updated with the
observation signal from the UIO using (21) and (27). Then
the log-likelihood functions for both the pre-change and post-
change models can be calculated efficiently.

B. Ergodic CuSum Algorithm

Consider t — tg + 1 observations are collected from a UIO,
we define the likelihood ratio L;:

Pro (Yt -+ UE)

L, = - - (31)
poo(ytg < yE)
Then the log-likelihood ratio is:
log Ly = log py, (¥, +¥5) — logpec (yi,- - ,yf) . (32)

Using (24) and (30), we can get an additive form for updating
the L; based on the previous step:

ost Te
c?
log L; = Z log - Cpost Z log =47+ P
i=to (33)
ost pre
=logL: 1+ log( ogt) - IOg( tre )
cr” t—1

Authorized licensed use limited to: University at Buffalo Libraries. Downloaded on January 31,2026 at 22:03:58 UTC from IEEE Xplore. Restrictions apply.



For each step, with the observation y; from the system, the
parameters of the forward variable and log L; can be updated
recursively. Then we design the Ergodic CuSum statistic as:
D, = log Ly — log L;
¢ = max (log L; —log L)
=max (0, D;—1 +log Ly — log L;_1) .

(34)

Under nominal operation, system observations are more likely
to follow the pre-change distribution, causing the calculated
statistic D; to remain near zero or show no significant varia-
tion. However, when an FDIA occurs, D, begins to increase
continuously. Based on the CuSum statistic’s behavior, the
Ergodic CuSum algorithm is designed to detect FDIAs on
communication link (%, j) as follows:

No FDIA : D; ;y < T

(35)
FDIA detected : D(; ;) > T,

where 7' is a threshold. A FDIA point/time 7 can be detected
whenever

T=inf{t: Dy >T}. (36)
In the Ergodic CuSum algorithm, the CuSum statistic grows
continuously over time. This property simplifies the design of
the detection threshold 7', as the statistic D(; ;) will eventually
exceed it. In contrast, most observer-based methods produce
estimation errors that converge to a steady state, making
threshold selection more challenging.

IV. SIMULATION VERIFICATION

The dc microgrid system shown in Fig. 2 is used to validate
the proposed CuSum-based detection method in MATLAB
Simulink, with simulation parameters provided in Table I. The
simulation time step is set to 10 us. The nominal dc output
voltage of each DGU is 200 V, while the input voltage of the
generator converters is 270 V. With a load current of 3 A,
each DGU delivers an output power of 600 W. Eight UIOs
are designed to cover the eight communication links in the
system, and eight corresponding CuSum-based detectors are
then developed to detect potential FDIAs. The squared norm
of the residuals (||r(;.,)|[3 = ||e(;,1)||3) generated by the UIOs,
along with the CuSum statistics D( j.i)» are collected for FDIA
detection and comparison.

A. Load Change Test

During normal operation, the voltage and current at each
DGU are regulated to 200 V and 3 A with the current
consensus-based controller. To test the performance of the
proposed detection framework under nominal conditions, a
load change is applied at DGU 1 at ¢ = 1.5 s. As shown
in Fig. 3, the coordinated control among the DGUs maintains
equal current sharing. The residuals generated by the UIOs
and the CuSum detection signals D(j,i) remain unaffected,
confirming that no false alarms are triggered during the normal
load variation.

TABLE 1
SYSTEM PARAMETERS
DGU : C;(mF) L, m) | R | Bi(W)
1 3 3 1.1 600
2 4 3 2 600
3 5 4 3.1 600
4 6 5 4 600
Line (i,7) || Ru,(m) [ L ) (pH)
1,2) i 10
(1,4) 2 20
(2,3) 1 0
(3,4) 5 50

180 -
05 1 15 2
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15
10 —1In -~ In Iy = = In
Zs
< F
5
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Time (s)

Fig. 3. Simulation results of normal load change in DGU 1.

B. FDIA at (2,1)

In the first scenario, a FDIA is introduced at (2,1). As
shown in Fig. 4, the current sharing among DGUs is disrupted,
and the system shifts to a different operating point. The UIO
residual for link (2,1) initially increases and then decreases
(close to 0), indicating that UIO is insensitive to the FDIA,
which allows the attack to bypass detection. In contrast, the
CuSum-based detection statistic D21y shows a significant
and sustained increase, clearly identifying the presence and
location of the attack.

C. Multiple FDIAs at (1,2) and (1,4)

In the second scenario, two different FDIAs are introduced
at communication links (1, 2) and (1, 4) at different times (Fig.
5). During both attack periods, the UIOs fail to detect the
FDIAs, as indicated by the low increment of the residuals.
In contrast, the CuSum-based detectors respond effectively:
when the FDIA at (1,4) occurs, the corresponding CuSum-
based detection statistic Iy 4) increases, while other detection
statistics remain unchanged. Subsequently, when the FDIA at
(1,2) is launched, D(; 2) increases. These results demonstrate
that the proposed algorithm can successfully detect multiple
FDIAs independently without conflict.
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Fig. 5. Simulation results of attacks at (1,2) and (1,4).

V. REAL-TIME SIMULATION TEST

To comprehensively validate the proposed FDIA detection
framework, the system in Fig. 2 with the same component
parameters in Table I is built in the OPAL-RT simulator to
conduct the real-time simulation. The simulation time step
and switching frequency are set to 20 us and 5 kHz. The dc
microgrid is operating at a voltage reference 200 V and the
desired load current is ranging from 5 A to 8 A. The UIOs and
Cusum-based detectors are built for 8§ communication links in
the system. To prevent OPAL-RT analog output saturation, a
high flag signal (1 V) is triggered when Dy; ;) exceeds the
threshold of 0.8, indicating the attack detection result.

In the first scenario, a load change occurs in DGU 1,
causing its output current to increase from 5 A to 8 A, as
shown in Fig. 6. During this normal operation, the current
consensus algorithm ensures equal current sharing and power

o N
== Load I»vmrom :4:-
L
L
I«
2A/Div.
_ Duz
_ Das
. D
D3y 0:4s/Di
Fig. 6. Real-time simulation results with load change.
L ] X
¥ -
5 I
]
i 1
= |
L. | 2A/Div
= ]
Dua ;
| Attack generated and detected
““Dus !
\
Dun ;
i
WD } 04s/Div

Fig. 7. Real-time simulation results with FDIA at (1,2).

output across all DGUs. All detection signals from CuSum-
based detectors remain constant, indicating no false alarms are
triggered during the load variation. In the second scenario, an
FDIA is introduced at the communication link (1,2). As a
result, equal current sharing is disrupted, and the current from
DGU 2 increases significantly, as shown in Fig. 7. Notably,
only the detection signal Dy 5) increases at the time of the
attack, accurately indicating the location of the FDIA.

VI. CONCLUSION

In this paper, a novel detection framework based on the
Ergodic CuSum algorithm is proposed for detecting FDIAs in
cooperative dc microgrids composed of DGUs. The proposed
framework can detect the FDIAs that are stealthy to traditional
observer-based detectors. By utilizing UIOs, the method elim-
inates the need to measure the input signals within DGUs,
thereby reducing sensor requirements and system complexity.
The approach leverages the UIO estimation error model to
formulate the QCD problem, enabling implementation of the
CuSum algorithm in dc microgrid systems. With the use of
the forward variable, the CuSum statistics can be effectively
updated with the observation from the observer. Both MAT-
LAB/Simulink and real-time simulation results validate the
effectiveness of the approach, demonstrating its ability to
accurately detect multiple FDIAs that bypass the observer-
based detector without false alarms.
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