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The rise in human population and the advent of biological wastewater treatment
has led to increased biosolid production, which requires sustainable solutions to
mitigate potential negative impacts associated with the disposal of biosolids.
Biosolid land application has the potential to decrease reliance on synthetic
fertilizers and improve soil fertility; however, the microbial activity and associated
greenhouse gas (GHG) emissions need to be evaluated to ensure there are no
negative externalities of this approach. To address these issues, this study aimed
to (i) assess the potential of a biosolid-amended soil system to emit nitrous oxide
(N0), (i) quantify actual field GHG emissions from biosolid-amended soils, and
(iii) evaluate a process-based model to predict these soil GHG emissions. This
study performed a comprehensive analysis, including laboratory (potential assays
and gene abundances), field (static chamber GHG measurements), and modeling
(process-based) approaches, to understand the effect of biosolids on soil GHG
emissions. We found that biosolid application increased soil nitrate and organic
matter, and decreased soil pH in the short-term. Together, the changes in soil
conditions promoted more denitrification, which became more complete with
laboratory potential dinitrogen higher than nitrous oxide as the end-product over
time. In the field, GHG emissions were generally higher in biosolid-amended soils,
particularly just after biosolid application. While the predictive model was able to
simulate general trends for field GHG emissions, it often underpredicted the
magnitude of these emissions. Overall, despite initial increases in GHG, biosolids
have the potential as a sustainable amendment to improve soil health and
mitigate GHG emissions in agricultural practices over the long term. This
research contributes to understanding biosolid wuse in promoting
environmental sustainability and offers insights for future agricultural
management strategies.
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Introduction

The last 6 decades have witnessed a significant increase in
greenhouse gas (GHG) emissions, with global net anthropogenic
GHG emission of 59 + 6.6 Gt CO,-eq in 2019, more than 50% higher
than 3 decades earlier (IPCC et al., 2023). Total GHG emissions (in
CO,-eq) are calculated by summing contributions from three
principles GHG-carbon dioxide (CO,), methane (CH,), and
nitrous oxide (N,O) - using their Global Warming Potentials of
1, 25 and 273, respectively, on a 100-year time horizon (IPCC, 2023).
In 2022, U.S. agriculture contributed 9.4% of the total GHG
emissions (in CO,-eq) compared to other economic sectors, and
agricultural soils were the largest contributor of N,O emissions
(EPA, 1990). Furthermore, approximately 70% of N,O emissions are
due to the excessive use of nitrogen fertilizer and soil management
practices, driven by population growth and increased demand for
crop production (Syakila and Kroeze, 2011). Population growth has
also led to an increase in wastewater treatment and associated
treated sewer sludge (i.e., biosolids) that are regulated under
EPA’s 40 CFR Part 503 (O’Dette, 1998).

Biosolids must be properly disposed of to avoid detrimental
environmental effects, including groundwater contamination and
soil degradation (Pappu et al., 2007). In 2022, 16% of biosolids were
disposed of through incineration, 27% through landfilling, and 56%
through land application (EPA, 2022). Incineration generates CO,
emissions, with 12.8 MMT CO,-eq generated in 2021 from
incineration of waste in the U.S. (EPA, 2023). Landfilling was the
third largest contributor to CH,4 emissions in the U.S. in 2017,
accounting for 16.4% of the total emissions (EPA, 2022).
Furthermore, the transportation of biosolids to landfills or
incineration facilities will consume fuel (e.g., diesel) and generate
additional GHG emissions. To avoid these emissions, land
application could be a sustainable alternative for disposing of
biosolids, especially for land used for animal feeding and energy
production, such as corn, hay, or grass, which are the largest
consumers of biosolids application (NBDP and NEBRA, 2022).

Biosolids are organic materials rich in nutrients that can
improve soil health and fertility, sequester carbon in the soil
(Xue et al,, 2015), and decreasing demand for synthetic fertilizers
due to their high nutrient content (Khan and Mitall, 2023; Marchuk
et al, 2023; Sharma et al, 2017). Organic soil amendments are
known to modify soil properties and affect GHG emissions,
although the influence is highly dependent on the amendment’s
chemical composition (Nguyen et al., 2014). Moreover, soil organic
matter and total soil carbon storage have been found to be
significantly increased in lands treated with biosolids (Torri et al.,
2014), particularly with alkaline-treated biosolids (Lin et al., 2024).
However, there is concern about biosolids application with the
potential accumulation of contaminants (e.g., heavy metals,
microplastics, and per- and polyfluorinated alkyl substances)
(Popoola et al,, 2023). A recent study found that heavy metals
immobilization increased with biosolid application, suggesting the
risk of plant uptake is minimal (Sinha et al., 2023). Soil amendments
that enhance fertility may also increase soil microbial activity and
associated GHG emissions, depending on the method of biosolid
application, whether through incorporation or surface spread
(Gutiérrez-Ginés et al., 2023). GHG emissions can be influenced
by the type of biosolids, their ages, and the environmental conditions
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(Lu et al., 2020; Majumder et al., 2014; Roman-Perez et al.,, 2021).
Biosolids account for 40% of wastewater treatment plant emissions,
primarily due to the treatment process and the management of
biosolids through landfilling or incineration (Ritter and Chitikela,
2012). Therefore, it is essential to balance potential soil emissions
induced by land application compared to overall GHG from
transportation, landfilling, and incineration.

Studies have investigated the impact of biosolids on the
environment using field, lab, and/or modeling approaches. A
biosolids field study found that environmental conditions have
more impact on the mitigation of GHG than nutrient addition
(Lu et al,, 2020; Roman-Perez et al,, 2021). A life cycle modeling
approach to address the end use of biosolids revealed that
transportation is the critical factor in determining biosolids’ end
use, aimed at reducing environmental impact (Peters and Rowley,
2009). To our knowledge, no studies have simultaneously
considered field, lab, and modeling approaches to understand the
influence of biosolid amendments and soil properties on GHG
emissions and microbial nutrient cycling. Therefore, in this
study, we measured and modeled direct GHG emissions,
denitrification potential, and gene abundance from soils with and
without the application of biosolids for the month following
application. The specific objectives of this study were to (i) assess
the potential of biosolid-amended systems to emit N,O, (ii) quantify
actual field GHG emissions from biosolid-amended soils, and (iii)
evaluate predictive potential of a process-based model to predict
these soil GHG emissions.

Materials and methods
Site description

The Stillwater Wastewater Treatment Plant in Stillwater,
Oklahoma, recently shifted its biosolid waste management model
to promote system sustainability and decrease its contribution to the
local landfill. They began land applying the class B biosolids
generated from the anaerobic digestors to the fields directly
surrounding the treatment plant. Biosolids are classified under
the U.S. EPA’s 40 CFR Part 503 regulations based on pathogen
reduction, metal concentration, and vector attraction reduction
(O’Dette, 1998; EPA, 1994). Class A biosolids must meet strict
pathogen limits, requiring fecal coliform levels below 1,000 Most
Probable Number (MPN) per gram dry weight, whereas Class B
biosolids, while treated, may contain higher pathogen levels and
require additional land application restrictions to mitigate public
exposure risks (EPA, 1994). The biosolids in this study fall under
Class B but are close to meeting Class A requirements, given their
relatively low fecal coliform concentrations (Supplementary Table
S1). All fields were planted with hay that was sold for animal feed.
The field location for this study was located on the north end of the
property (36.10136, —97.02123; Supplementary Figure S1). The soil
was mainly Coyle loam (fine-loamy, siliceous, active, thermic Udic
Argiustolls). The experimental field first had biosolids applied in
June 2019 and were disked and sprigged in May/June 2020. In the
sampling year, biosolids were freshly applied to only the test field on
11 May 2022, and tilled into the soil. Sampling occurred directly
following the 2022 biosolids application. A control area was selected
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TABLE 1 Soil properties for biosolid-amended soil and control soil on two sampling dates.

Soil® collection date Treatment OM (%) TN (%) pH NO3z™ (ppm) NH4* (ppm)
5/13/2022 Biosolid 4.86 0.28 6.7 227.5 9.15
5/13/2022 Control 344 0.19 7.7 115 46
6/23/2022 Biosolid 451 022 75 10 47
6/23/2022 Control 295 0.16 7.7 45 34

“The tested soils are Loam in texture.

adjacent to the experimental field, but without any historic biosolid
application. The control area was not tilled and allowed natural
vegetation growth with periodic mowing to provide access to field
gas sampling chambers (described in Field Measurements). The
different managements of the control and treatment areas can also
influence differences in microbial activity and nitrogen cycling
patterns, which is a limitation of the current study.

Soil sampling

Soils were sampled from both the experimental field (with
biosolid application) and control (no biosolid application). The
soil was collected randomly at a depth of 20 cm from each
location using an auger (2 3/4 in diameter) and excluded from
the vegetation layer. The soil samples used for soil assays were stored
in plastic bags and kept in the laboratory fridge at 4°C for less than a
month until analysis. The soil for DNA extraction was stored
separately in an ice box and then transferred to the biology
laboratory, where it was kept at —78°C until analysis. Soils were
sampled on two dates in 2022: May 13 (2 days after biosolid
application) and June 23 (more than a month after biosolid
application). A subset of soil samples from each date and
treatment were sent directly after sampling to an external
laboratory, the Soil, Water, and Forage Analytical Laboratory
(SWFAL) in Stillwater, Oklahoma, to be tested for texture,
organic matter (OM), total nitrogen (TN), pH, nitrate (NO;"),
and ammonium (NH,") (Table 1).

Denitrification Assays

Soil samples collected as described above were used in
denitrification enzyme activity assays (DEA) following methods
previously described (Tiedje et al, 1989; Khalifah and Foltz,
2024). Briefly, two sets of triplicate samples were prepared by
adding 25 g of soil into 125 mL Wheaton jars. A nutrient
solution was prepared by adding 5,000 mg D-glucose, as a source
of available carbon (C), and 720 mg of potassium nitrate (KNO3), as
a source of nitrogen (N), to 1,000 mL of deionized water. The
nutrient solution was added to the Wheaton jars at a final
concentration of 2 mg-C and 0.1 mg-N per gram of soil. To test
the effects of available C on denitrification and N,O production,
additional solutions were prepared with 720 mg of KNO; and
varying concentrations of D-glucose to achieve 0C (no D-glucose
added, 0 mg-C g™' soil), 0.5C (2,500 mg of D-glucose, 1 mg-C g*
soil), and 2C (10,000 mg of D-glucose added, 4 mg-C g™ soil). All
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assays were initiated by adding 25 mL of the solution to the Wheaton
bottles. The Wheaton bottles were sealed well, flushed with N, for
2 minutes, and over-pressurized for 10 s. Acetylene gas was injected
with 20 mL volume one set of triplicate samples to measure the total
denitrification by blocking N,O converted to N,. N,O production
was measured with the second set of triplicate samples by injecting
20 mL of N,. The incubation start time was recorded after shaking
the samples for 30 s. Gas samples were collected after 2, 3,4,and 5 h
of incubation time from the jar headspace using a syringe and needle
and transferred along with 10 mL N, to a 10 mL glass vial sealed with
gray butyl rubber septa. The gas samples were analyzed using an
Agilent 8890 Ga Chromatograph (GC) with an electron capture
detector and PAL3 autosampler. Standards and blanks were
analyzed at the start and end of each run, and the standard
curves were generated using all standards. Standard curves for
each GC run were used to determine N,O concentration in
samples from that GC run. Potential denitrification and potential
N,O production rates were determined using the change in N,O
concentrations over time, the ideal gas law, and soil moisture, while
considering the effects of dilution and dissolved N,O. The N,O
production potential was divided by the denitrification potential to
calculate the N,O ratio [as previously described in (Khalifah and
Foltz, 2024)]. The N,O ratio is an indicator of the completion of the
denitrification process, where a value near 1 means a more
incomplete process (more N,O is emitted), while a value near
0 means a more complete process (more N, is emitted). Soil
moisture tests via oven drying were simultaneously completed to
allow assay results to be normalized based on dry weight of soil.

Denitrification genes

Quantitative polymerase chain reaction (qPCR) was used to
assess the abundance of the microbial community using 16SrRNA
and the denitrification pathway using gene targets for nitrite
reductase (nir), nitric oxide reductase (nor), and nitrous oxide
reductase (nos) in the soil samples. DNA extractions were
performed from 0.25 g of soil material using the PowerSoil”
DNA Isolation Kit (QIAGEN Sciences, Germantown, MD) in
duplicate each for the control and experimental (biosolid-
amended) soils. The DNA was quantified using the Qubit HS-
dsDNA kit (Thermo Fisher, Waltham, MA). Targets for qPCR
included nirS, nirK, cnorB, qnorB, and mnosZ. Total reaction
volume was 20 pL with forward and reverse primers (1 uL each
at a final concentration of 500 nM, Integrated DNA Technologies,
Coralville, IA), template DNA (5 uL), 2X SYBR Green Master Mix
(10pL, Bio-Rad, Hercules, California), and PCR-grade water (3 pL).
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TABLE 2 Primer and annealing information for qPCR.

Primer Direction

Name

Target Region

Sequence 5'-3’

10.3389/fenvs.2025.1577071

Annealing
Temp (°C)

nirS-cd3aF Denitrifiers nirS Forward GTS AAC GTS AAG GAR ACS GG 57 Michotey et al. (2000)
nirS-R3cd Reverse GAS TTC GGR TGS GTC TTG A Throback et al. (2004)
nirK876 Denitrifiers nirK Forward ATY GGC GGV CAY GGC GA 57 Henry et al. (2004)
nirK1040 Reverse GCCTCGATCAGRTTRTGGTT
cnorB2F Denitrifiers cnorB Forward GAC AAGNNN TACTGGTGGT 57 Braker and Tiedje (2003)
cnorB7R Reverse GAA NCC CCA NAC NCC NGC
qnorB2F Denitrifiers qnorB Forward GGN CAY CAR GGN TAY GA 57 Braker and Tiedje (2003)
qnorB5R Reverse ACC CAN AGR TGN ACN ACC
CAC CA
nosZ1F Denitrifiers nosZ Forward ATG TCG ATC ARC TGV KCR 62 Kim (2020)
TTY TC
nosZ1R Reverse WCS YTG TTC MTC GAC
AGC CAG
341F 16S rRNA V3-V4 Forward CCT ACG GGN GGC WGC AG 55 Herlemann et al. (2011), Klindworth
et al. (2013)
805R Reverse GAC TAC HVG GGT ATC
TAA TCC

Standard curves were created with gBlocks™ (Integrated DNA
CFX Connect
Thermocycler (Bio-Rad). Thermocycler conditions included an
initial 3-min, 98° denaturation cycle. The two-step amplification
method included 40 cycles of 10 s at 98" and 45 s at the designated
annealing temperature (Table 2). Melt curves were determined at the

Technologies). Samples were run on a

end of the 40 cycles. Primer information is provided in Table 2.

Field measurements

Field soil GHG fluxes were measured on seven dates from May
to June 2022, between 8a.m. and 12p.m. Cylindrical polyvinyl
chloride (PVC) chamber bases and tops with vents were
constructed following published guidance (Parkin and Venterea,
2010). To test the influence of chamber dimensions on emission
estimates, we constructed three different chambers (8-in, 10-in, and
12-in diameter; Supplementary Figure S2). Sampling chambers were
set up across the two areas, control and experimental (biosolid-
amended soil), to measure and compare GHG fluxes between the
management conditions and assess the difference in chamber
designs. The control was an area of soil covered by natural grass
and weeds, while the experimental area was tilled soil with a recent
biosolid amendment. Nine chamber bases were placed in each area
with three 8-in, three 10-in, and three 12-in diameter chambers.
These bases were put in place 24 h prior to sampling to allow
disturbances in the soil microbiome to settle. For each sampling
date, chamber tops were sealed to bases, and 15 mL gas samples were
collected at 0, 30, and 60 min after chamber closure. Gas samples
were immediately injected into pre-evacuated 10 mL clear glass vials
with gray rubber septa. During each field visit, air and soil
temperatures and relative humidity were recorded using traceable
thermometers and humidity meters.
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Gas sample vials were analyzed for GHG concentrations using
the GC method described under Denitrification Assays but with one
amendment. Rather than running the GC program with an electron
capture detector alone (for N,O measurements only), the GC
program for all three GHG was used. This utilized the electron
capture, flame ion, and thermal conductivity detectors to
simultaneously quantify N,O, CH,, and CO,. Soil fluxes were
calculated using the change in GHG concentration over time, the
ideal gas law, and chamber dimensions following standard methods
(Parkin and Venterea, 2010).

DNDC modeling

The Denitrification-Decomposition (DNDC) model (Canada
version, DNDCvCAN, downloaded January 2024 from https://
github.com/BrianBGrant/DNDCv.CAN) uses inputs of climate,
soil, and cropping to give outputs of GHG fluxes (Li et al., 2000).
As an improvement on the US version, DNDCvCAN has additional
microbial input parameters which allows for more fine tuning
related to nitrification and denitrification (Smith et al., 2020).
additional
parameters (Supplementary Table S2). A summary of model

Recommended values were used for all input
inputs is provided in Table 3. For this study, climate data was
obtained from the Stillwater station of the Oklahoma Mesonet, a
network of environmental monitoring stations throughout
Oklahoma (Oklahoma 2024).  Soil
properties were obtained from a combination of lab testing, the
Web Soil Survey, and the MesoSoil database (NRCS. Web Soil
Survey, 2024; Scott et al., 2013). Model runs were completed for
the years 2011-2022 with the years 2011-2021 used for spin-up time
to stabilize the nitrogen and carbon pools within the model. Annual

Climatological = Survey,

grass planted at the beginning of the year was used for the control
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TABLE 3 Model fit parameters.

DNDC input parameters

10.3389/fenvs.2025.1577071

Values and units

Control Biosolids
Max potential yield Default kg C ha™* N/A DNDC
Climate data (rainfall, Max and Min Temperature, Solar radiation, relative humidity, and Daily variation Daily variation in (mm,C") Mesonet
windspeed) in (mm,C")
Clay content 15% SWFAL
Bulk density 136 g cm™ MesoSoil
Hydraulic conductivity 0.21 ecm® cm™ MesoSoil
Wilting point 0.33 cm’ cm™ MesoSoil
Slope 1.72° Web Soil Survey
Soil Organic Carbon 0.0295 kg C kg™ soil SWFAL
Soil pH 7.7 7.1 SWFAL
Plant type Annual grass Fallow Stillwater
WWTP
Planting date Jan 1 N/A Stillwater
WWTP
Harvesting date Dec 31 N/A Stillwater
WWTP
Tillage N/A Ploughing with disk on Stillwater
May 5 WWTP
Fertilization N/A Sewer sludge on May 11 Stillwater
WWTP
C/N ratio for sewer sludge N/A 5.12 DNDC

SWEFAL, soil, water, and forage analytical laboratory; WWTP, wastewater treatment plant.

field while the experimental field was modeled as fallow. The site was
rainfed with no additional irrigation inputs. Other field management
included tilling with a disk and chisel and surface spread sewage
sludge as a manure amendment in the experimental field. The model
outputs of interest were daily N,O, CH,, and CO, fluxes. Daily
fluxes were summed to get the cumulative fluxes for the
modeled period.

Statistical analyses

Statistical analyses were completed using R version 4.2.2 and R
studio (R Core Team, 2019). The data normality was tested using
histograms of model residuals and the Shapiro-Wilk test. The
significance of the parameters was first tested using analysis of
variance (ANOVA) with a significant difference a = 0.05. The
ANOVA results were then processed using the least significant
(LSD) tests to test the differences between the
identified significant parameters. For the field measurements, the

difference

effect of treatments, chamber diameter, and date were tested for each
GHG. For the laboratory measurements, the effect of treatments,
nutrient addition, and date were tested for each assay. To evaluate
how well the DNDC model performed the following quantitative
metrics were used: root mean square error (RMSE), model
efficiency, and coefficient of determination (CD) (Smith et al,
1997). Normalized RMSE was calculated by Equation 1 where a
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lower percent value indicates better model fit. Model efficiency was
calculated using Equation 2 where positive values indicate that the
simulated data describes the measured data better than the mean of
the measured data. The CD was calculated using Equation 3 with the
lowest value possible being zero.

RMSE (%) = 120 ([ 2iz1 (Pi = O "
o] n
Y11 (0:=0) - ¥, (- O’
Y, (0i-0)
n ~\2
D= M
i (Pi-0)

In Equations 1-3, O; is the ith measured value, P; is the ith
modeled value, 7 is the number of observations, and O is the average

model efficiency = (2)

3)

measured value.

Results and discussion
The GHG potential of the system
The potential of the biosolid-amended agricultural system to

emit GHG (specifically N,O) was first assessed using DEA. Biosolid-
amended soil had a significantly higher denitrification potential than
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FIGURE 1

Denitrification potential (solid bar) and N,O production potential
(diagonal lined bar) for biosolid-amended (purple) and control (green)
soil on two different 2022 dates — May 13 (just after biosolid
application on May 11) and June 23. Biosolid-amended soil had
significantly higher denitrification and N,O production potentials than
controls (ANOVA, P < 0.001). May 13 had significantly higher
denitrification and N,O production potentials than June 23 (ANOVA,
P < 0.004).
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FIGURE 2

N,O ratio under different carbon (C) addition levels for biosolid-
amended and control soils. Nutrient solution carbon levels: 0 = no C
added, 0.5 = 2,500 mg of D-glucose added, 1 = 5,000 mg of
D-glucose added (as with the traditional DEA), and 2C =

10,000 mg of D-glucose added to 1L total nutrient solution. All
nutrient solutions also had 720 mg KNOs. Biosolids (purple) refers to
the biosolid-amended soil of the experimental plot, while control
(green) refers to soil from the unamended control plot adjacent to the
experimental plot. Treatment (biosolid-amended vs. control) was
significantly different (ANOVA, P = 0.003) although nutrient addition
was not (ANOVA, P = 0.27).

the control soil (P < 0.001) (Figure 1; Supplementary Table S3). This
outcome was likely linked to ambient soil NO;~ concentration,
which was higher in the biosolid-amended soil than control soil
(Table 1). Similarly, biosolid-amended soil had higher potential to
emit N,O (P < 0.001), although biosolid amendment led to an
overall significantly lower proportion of N,O as the end-product
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(lower N,O ratio) (P = 0.002) (Figure 2; Supplementary Table 54).
Considering time since biosolid application, denitrification and N,O
production potentials were significantly lower (P < 0.004) on the
second sample date (June 23) as compared to the date just after
biosolid application (May 13). The May sample likely had higher
denitrification rates due to higher nutrient content and rainfall
(10.6 cm), which would create ideal anaerobic conditions for the
denitrification process (Schwenke and Haigh, 2016).

Initially, the N,O ratio was higher in both soils, indicating more
potential for N,O compared to N,; however, the N,O ratio
decreased significantly (P < 0.001) over time, as shown in
Figure 1. The findings suggest that while the application of
biosolids may lead to an initial increase in N,O production when
measured directly after the application, the N,O production over
time could be lower. While the N,O production results are expected
with higher soil NO;7, the N,O ratio is complicated by several
factors, including soil NO;™, organic C, and pH (Khalifah and Foltz,
2024; Foltz et al,, 2023; Pfenning and McMahon, 1997; Robinson
et al,, 2014; Samad et al., 2016; Sun et al., 2012; Wang et al., 2013).
For NO;™ and organic C, their availability can determine the
availability of electron donors and acceptors necessary for
denitrification, influencing the end-products of the process.
Additionally, soil organic C can act as an energy source for
microorganisms, enabling them to use available soil nutrients to
generate denitrification end-products (Arango et al., 2007). Soil
pH can have a major impact on microbial activity, electron
donor and acceptor availability, and the enzymes involved in
denitrification, all ultimately affect the
denitrification end-products (Khalifah and Foltz, 2024; Sun et al,,
2012; Cuhel and Simek, 2011). Acidic soils tend to emit more N,O
than alkaline soils (Khalifah and Foltz, 2024; Foltz et al., 2023;
Robinson et al,, 2014; Mukumbuta et al,, 2018). In this study,
biosolid amendments initially decreased the pH of the soil

of which can

(Table 1). This could explain the high N,O production potential
from the biosolid-amended soils in May which then lowered when
the pH returned to neutral in June.

Based on our previous meta-analysis, C concentration was
found to be a major factor affecting the N,O ratio (Foltz et al,
2023). In this study, we tested the effect in these two soils to
understand how N,O emissions could be further managed with
C addition. We similarly found that as the carbon concentration
increased, the N,O ratio decreased (Figure 2), indicating more N,
was emitted than N,O. Although a decreasing trend in N,O ratio
was observed with increasing C addition, the difference was not
significant (P = 0.27). Instead, the influence of biosolid amendment
was more significant (P = 0.003) than experimental nutrient
addition in the lab, suggesting that field conditions may be more
critical to establish. So management that increases soil C can help to
further reduce the emission of N,O alongside other influential
treatments.

The biosolid-amended soil had increased gene concentrations
compared with control soil (Figure 3; Supplementary Table S5),
including an approximate 1.85 increase in 16S rRNA in the biosolid-
amended soil compared to the control soil. Biosolid-amended soil
had higher NO5;~, NH,*, TN, and OM concentrations than the
control soil (Table 1). Previous research has indicated a positive
correlation between the abundance of nirK, nirS, and norZ (Veraart
et al,, 2017) as well as nosZ genes (Kandeler et al., 2006) with OM.
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FIGURE 3

The concentration of the detected genes extracted from the
samples’ DNA (Mean of 2 replicates +standard deviation). Biosolids
(purple) refers to the biosolid-amended soil of the experimental plot,
while control (green) refers to soil from the unamended control

plot adjacent to the experimental plot.
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FIGURE 4

The difference in the ratio of the most dominant genes in the
denitrification process (nirK, nirS, cnorB, gnorB and nosZ). Biosolids
(purple) refers to the biosolid-amended soil of the experimental plot,
while control (green) refers to soil from the unamended control

plot adjacent to the experimental plot.

Correspondingly, this study’s biosolid-amended soil had higher
cnorB, gnorB, and nosZ genes concentrations than that in
control soil.

It is important to consider the (nirK + nirS)/nosZ and (cnorB +
qnorB)/nosZ ratios when indicating nitric oxide (NO) and N,O
production. A high (nirK + nirS)/nosZ ratio suggests a greater
possibility of NO (and subsequently N,O) production during
denitrification, due to nirK/nirS enzymes producing NO as an
intermediate product at a greater rate. A high (cnorB + gnorB)/
nosZ ratio can indicate a greater turnover rate of NO into N,O than
can be converted to N, by nosZ. The ratio of both (nirK + nirS)/nosZ
and (cnorB + gqnorB)/nosZ has significantly decreased in the
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biosolid-amended soil (Figure 4). Therefore, the control soil had
greater potential to produce NO (Vilar-Sanz et al,, 2013) and N,O
(Jia et al., 2021) emissions compared with biosolid-amended soil.
This finding aligns with the potential assays that found biosolid-
amended soil had a lower N,O ratio.

Field measurements of GHG emissions

To consider actual N,O and other GHG emissions (CH,, CO,),
field measurements were taken on seven dates in the 2 months
directly following biosolid application (Figure 5; Supplementary
Tables S6, S7). We first considered the influence of chamber
dimensions on GHG emissions and found no significant
difference in emissions between chamber sizes (P = 0.28, 0.79,
and 0.13 for N,O, CH,, and CO,, respectively). Therefore, all
results discussed here are based on the averages considering all
three chamber dimensions and replicates. Similar to laboratory
potential tests, N,O emissions from the biosolid-amended soil
were higher than those in the control soil initially following
biosolid application.

After this initial spike in N,O, the emissions returned to ambient
(control) levels of near-zero for the remainder of the monitoring
period. This outcome aligns with the laboratory results, where the
N,O ratio decreased with time from the application of biosolids,
suggesting lower potential for N,O emissions. This pattern of
elevated N,O emissions is consistent with prior research, which
suggests that biosolids, due to their high nitrogen content, can
enhance microbial denitrification activity and subsequently
increase N,O emissions (Nicholson et al., 2022). Similarly and in
line with previous research, measured CO, emissions in biosolid-
treated soils were also higher than in the control group (Donovan
etal, 2011; Yang et al., 2024). Short-term biosolid land applications
have been shown to temporarily increase the emission of GHG,
although long-term applications have been shown to improve soil
structure and health and, as a result, decrease overall GHG emissions
(Buragiene et al., 2023; Obi-Njoku et al., 2022). Therefore, with time,
the GHG emission at this site could decrease further in the biosolid-
amended field. This prediction is supported by the laboratory
which
denitrification over time.

potential tests, showed increased completion of

The influence of biosolid amendments on GHG can vary based
on the chemical composition of biosolids and the soil conditions.
Biosolids can improve soil structure by improving porosity, aeration,
and soil moisture retention, which facilitate better oxygen diffusion
and microbial respiration rates, ultimately affecting GHG emissions
(Hu et al., 2024; Khan et al., 2022). Moreover, biosolids increase the
organic matter stock and improve the microbial activity to resist
decomposition and as a result, allow for greater C storage in the soil
(Badewa et al., 2023; Chaker et al,, 2018). Improved C storage can
provide higher C levels that favor complete denitrification when
NO;™ inputs occur and stimulate denitrification.

For CH, emissions, the measured data shows that there is
variation in the emissions. At the initial stage of the application,
the biosolid-amended soil had slightly increased CH,4 emissions.
Then, approximately a month after biosolid application, there were
reduced emissions when compared with the control. Typically, CH,

production is limited under aerobic conditions, and biosolid
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FIGURE 5

Field measurement and model prediction of GHG fluxes vs. time. Dates presented as month/day and all GHG fluxes reported in CO, equivalents.
Field measurement values are averages of all replicates including all three chamber sizes with error bars based on standard deviation (n = 9). Biosolids
(purple) refers to the biosolid-amended soil of the experimental plot, while control (green) refers to the unamended control plot adjacent to the

experimental plot.

amendments can alter soil redox potential and pH directly affecting
the methanogens process and supporting the reduction in CH, (Ali
et al,, 2014; Haque et al,, 2021).

Model predictions and evaluation

DNDC model GHG emissions for the same location and time of
field measurements were predicted (Figure 5). In general, predicted
CO, emissions from the biosolid-amended soil treatment followed a
similar pattern as the measured data. However, the DNDC model
predicted a spike in N,O emissions that was not replicated in the
measured data. Model evaluation metrics, including RMSE and
model efficiency, generally indicated poor model fit with RMSE

Frontiers in Environmental Science

above 87%. The DNDC model fit the CO, measurements the best
out of the three GHG with 99% and 87% for biosolid-amended soil
and control, respectively, which aligned with conclusions based on
visual inspection of the data. RMSE values for N,O and CH, were
well over 100%, indicating poor model fit, consistent with visual
inspection of the data. Model efficiency results similarly suggested
the means of the measured data described the measured data better
than the simulated data. Overall, DNDC was not able to simulate
emissions from this system well.

It should be noted that the DNDCvCAN model was updated
after the completion of this study to include a separate C pool for
organic C amendments (biosolids or manure) that separates them
from the soil organic C pools (Sitienei et al., 2025). It is possible that
this revised model version could improve emissions predictions
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from biosolid-amended systems, which is an area to be considered in
future work. Emission predictions could be further improved with
adjustment of the additional parameters beyond the recommended
values presented in Supplementary Table S2. Additionally, it appears
that the model calculates CH, consumption when the site is an
upland crop field. Based on the field measurements in this study it is
possible for an upland crop field amended with biosolids to produce
some amount of CHy, which should be considered in future model
improvements. Additional longer term field measurements would be
beneficial to assist with model improvement for CH, dynamics in
upland crop fields.

Limitations and future directions

While this study primarily focused on denitrification and
associated N,O emissions, several other processes are known to
N,O,
ammonium oxidation (anammox), and dissimilatory nitrate
reduction to ammonium (DNRA) (Baggs, 2011; Braker and
Conrad, 2011; Shan et al, 2021). Among these, nitrification

contribute to including nitrification, anaerobic

and denitrification processes are typically dominant and driven
by soil moisture content (Braker and Conrad, 2011; Tian et al.,
2020; Kumar et al, 2020). Beyond potential increase in
microbial activity and GHG emissions, the land application
of biosolids raises concerns about contamination
accumulation in the soil, particularly with excessive and
prolonged use over approximately 15 years (Rani et al,
2024). According to information from Stillwater WWTP, the
land application of biosolids was carried out biennially and
adhered to the regulations and requirements set by the EPA.
However, further research is needed to assess the potential
accumulation of contaminants associated with the continued
use of biosolid amendments to soil at this site and others like it.
In general, future work should include long-term monitoring of
these systems, which is a limitation of this study as it was
conducted over a single season. Furthermore, future work
should compare biosolid application methods, rates, and

timings to provide practical implications for those interested

in improving their environmental impact under this
management.
Conclusion

This study provides significant insights into the effects of
biosolid applications on GHG emissions, particularly focusing on
N,O dynamics in agricultural soils. The study is comprehensive by
considering lab potentials, field measurements, and model
predictions together. In the lab and field, the application of
biosolids led to an initial increase in potential and measured
N,O emissions compared to control soils. This increase was
associated with the higher concentrations of soil NO;~ observed
in the biosolid-amended soils and lower initial pH, both of which
serve as critical factors influencing the denitrification process and its
level of completion. The elevated denitrification potential results
were similarly matched with the increased abundance of relevant
functional genes. The DNDC model was able to predict the increase
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in GHG emissions after biosolid application, although the
magnitude of emissions was inaccurate, with the model typically
underpredicting GHG emissions. To make this approach more
holistic, biosolids processing, transportation, and end-life usage
should be incorporated. Considering life cycle GHG emissions
could help make more informed decisions on the sustainability of
biosolid land application. Another aspect that should be explored is
the composition of biosolids and their impact on soil properties that
will influence GHG emissions. Finally, the long-term impacts should
be investigated as these results suggest it is possible to have lower
emissions over time. These findings also carry implications for
biosolid management policy. In particular, the observed short-
term increases in GHG emissions following land application
highlight the need for site-specific guidance that accounts for soil
conditions, amendment timing, and nutrient dynamics.
data and life
assessments into regulatory frameworks, such as those established

Incorporating  field-based  emissions cycle
under the EPA’s Part 503 rule, could help balance agronomic
benefits  with goals,

sustainability of biosolid land application.

climate  mitigation improving  the
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