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ABSTRACT: Per- and polyfluoroalkyl substances (PFAS) are a
large group of human-made chemicals that have been widely used
in industry and consumer products. Perfluorooctanesulfonic acid ’
(PFOS) is a ubiquitous type of PFAS, which is extremely stable /
chemicals that have been persistent in the environment for many A
SERS

years. The accumulation of PFOS in the human body can lead to
various unfavorable health issues related to the immune, metabolic,
and endocrine systems. The conventional PFOS detection method
utilizes liquid chromatography coupled with a mass spectroscopy
system that typically involves a lengthy and complex procedure.
Herein, we propose to develop a low-cost and rapid test approach
based on surface-enhanced Raman spectroscopy (SERS) and deep
learning for PFOS detection. The gold nanoparticle SERS
substrates utilized in this study can significantly enhance the Raman signal of PFOS in solution at a low concentration. PFOS
detection and quantification in water using the SERS-based substrate are carried out by measuring Raman peak intensities of PFOS
in solution at a range of low concentrations and comparing them to the signal of a blank SERS substrate background. The results
show that the SERS substrate can achieve a detection limit as low as 0.0005 ppb. In addition, we propose a demultiplexing deep
learning model, which can generate high signal-to-noise ratio (SNR) PFOS spectra from the noisy mixture of PFOS and background
Raman spectra. Average cross-correlation and mean absolute error (MAE) are utilized to evaluate the similarity between the
demultiplexed and denoised PFOS Raman spectra (output of deep learning) and their ground truths. The proposed model can
achieve an encouraging result with high average cross-correlation and low average MAE of 0.9622 + 0.0667 and 0.0034 + 0.0024,
respectively.
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Unmixed PFOS Raman spectrum

B INTRODUCTION

SERS technique is capable of detecting trace-level chemicals,

Surface-enhanced Raman spectroscopy (SERS) is a surface-
sensitive technique that utilizes rough metal surfaces (e.g,
silver or gold)'™ with nano structures to enhance Raman
scattering (inelastic scattering). This enhanced Raman signal is
attained through localized surface plasmon resonance.” This
occurs in molecules located at or adjacent to nanostructured
noble metal surface, resulting in significantly increasing charge
transfer between the substrate and the target molecule. Indeed,
SERS intensity of different target molecules greatly depends on
the materials and morphology of SERS substrates, as well as
the affinity between the substrates and molecules.”™® More-
over, each SERS substrate has different background signals,
depending on material, which should not coincide with the
predominant Raman peaks for the target molecules. This is an
essential factor that needs to be addressed for detecting various
target molecules. Typically, the Raman signal could be
enhanced to 10" to 10" times, which allows this technique
to detect very low levels of chemicals.” Thus, this powerful
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and it is commonly used in various applications, such as food

12,13 14,15

surface science, and envi-

safety,lo’11 biotechnology,
o 16-18

ronmental monitoring.
In recent years, deep learning has become a powerful tool in
numerous applications, including natural language process-

. 19,20 .21 25-27
ing, computer vision,

~** and speech recognition.
Deep learning can unprecedentedly extract obscure features
and information from complex data, and most deep learning
architectures are easily adjusted to meet various requirements

in applications. As a result, it has also shown a resounding
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Table 1. Comparative Table Summarizing Cost per Sample, Analysis Time/Complexity, and Limit of Detection (LOD) of

Representative Conventional Methods vs. the Proposed Method

cost per sample
(unit: USD

high (>200)

method

chromatographic methods

complexity
total oxidizable (TOP) high (>300) 1—6 hours/high complexity
assays
electrochemical methods low (<50)
our method low (<10)

could be up to several hours, depending on users’ experience/high

rapid test (less than 30 minutes)/low complexity
rapid test (less than 30 minutes) /low complexity

analysis time/complexity LOD

0.0016 ppb***°7—40 ppb*'
0.0005—0.0079 ppb***>~%*

0.0017 ppb™>°°
0.0005 ppb

success in analytical chemistry,”***
applications of Raman spectroscopy.”

Perfluorooctanesulfonic acid (PFOS) is one of the
predominantly concerned per- and polyfluoroalkyl substances
(PFAS), which have been commonly utilized in a wide range of
industrial processes, including stain-resistant fabrics, aqueous
fire-fighting foam (AFFF), and food packaging.%’39 Con-
sequently, PFOS is commonly found in human blood, wildlife,
food, soil, and water in the world.” Since PFOS was frequently
added in AFFF, it is particularly present in soil and water at
airports and other related installations.*" This could result in
numerous severe human health issues. There are several
approaches employed for PFOS detection, such as liquid
chromatography/tandem mass spectrometry (LC—MS/MS),
colorimetry, fluorescence spectroscopy, and potentiome-
try."'™" 1In fact, these conventional methods require
extraordinarily complicated and costly devices, as well as
laborious preparation processes, which are not applicable for
rapid detection. While SERS is an effective and affordable
approach for the rapid PFOS detection,”™** the computa-
tional analysis would be required to distinguish the identities of
PFOS spectra from the mixture spectra. In practical
implementation, PFOS spectra tend to be scrambled with
other spectra, particularly in complicated sample matrices. The
comparison between the proposed method and other conven-
tional methods for PFOS detection is also shown in Table 1.

In this work, we report an approach based on SERS,
integrated with the demultiplexing deep learning model, to
detect PFOS in water, which is a predominant PFOS-
contaminated source. The SERS substrates utilized in this
research are custom-made gold nanoparticle substrates
employed for the serial dilution of PFOS solution. The
detection limit observed from this serial dilution experiment
can achieve the detection limit as low as 0.000S ppb. To verify
the ability of the SERS substrate to detect PFOS solution, we
compared Raman spectra of PFOS on the SERS substrate to
PFOS powder and the blank SERS substrate (background
signal). The result shows that the Raman signal at 1,044 cm™
of the PFOS solution at low concentrations (from S ug/L to
0.00005 pg/L) on the SERS substrate is the same as that of the
PFOS powder and not covered by the background signal. This
compelling result allows us to develop reliable detection and
quantification of PFOS at a relatively low concentration using
the SERS substrate. Furthermore, a deep learning-based
approach enables the unmixing of PFOS spectra from the
background signal, facilitating effortless analysis of the PFOS
spectra. The proposed deep learning model can effectively
unmix and generate high SNR PFOS spectra with an average
cross-correlation and mean absolute error between the deep
learning outputs and ground truths of 0.9622 + 0.0667 and
0.0034 + 0.0024, respectively.

specifically, in the

B MATERIALS AND METHODS

Sample Preparation and Raman Measurement. PFOS
was purchased from TCI America (Portland, OR, USA) with a
purity of 98.0%. Since PFOS has water solubility of 680 mg/
L,>" we prepared 50 mL of PFOS solution with a high
concentration of 500 mg/L, which was then diluted to 500 pg/
L (ppb) using ethanol as the solvent. The 500 ppb PFOS stock
solution was further diluted with deionized (DI) water to S,
0.5, 0.05, 0.005, 0.000S, and 0.00005 ppb. Using DI water to
dilute the solution can substantially reduce the Raman
background signal from ethanol, and less than 1% of ethanol
in water had negligible effects on background signals. Each
PFOS solution (15 uL) was dropped on the SERS substrate
(ONSPECT-Lite, National Electronics and Computer Tech-
nology (NECTEC), Bangkok, Thailand). The solution on the
substrate was then dried out at room temperature, followed by
promptly acquiring Raman spectra using a Renishaw inVia
Raman spectrometer, which is connected to a Leica micro-
scope (Leica DMLM, Leica Microsystems, Buffalo Grove, IL,
USA). A 785 nm near-infrared (near-IR) laser with a power of
15 mW, a 20X NA = 0.45 objective lens (Leica Microscope),
and a 3,000 ms exposure time with an average number of 10
accumulations were used for the data acquisition of each
scanning position. A general overview of this work is also
demonstrated in Figure 1.

The gold nanoparticle SERS substrate used in this study is a
cost-effective substrate (less than 10 USD per sample) widely
used for numerous applications, particularl?r rapid detection in
trace chemical and biological analysis.**"®" The substrate was
fabricated by the Opto-Electrochemical Sensing Research team
at National Electronics and Computer Technology Center
(NECTEC), Bangkok, Thailand. In short, a laser-making
machine is employed to create nanoto-microscaled roughness
on the surface of a metal sheet. Noble metal nanoparticles with
an average size of 59 + 17 nm are then deposited on the
roughened metal sheet, creating a 3D-strcutured SERS
substrate with noble metal nanoparticles adhered to the
roughened surface. The photograph and scanning electron
microscope (SEM) images of the SERS substrate are shown in
Figure 2. More details of the fabrication process and
characterization of the SERS chip can be found in a previous
publication by the NECTEC research group.62

Deep Learning Model. The encoder-decoder, together
with the skip connections, also known as the UNet
architecture, are employed to denoise and unmix the low
SNR mixture spectra (input of the deep learning model), as
shown in Figure 3a. The encoder is first employed for
downsampling the input tensor. Each encoder block consists of
ResNet convolutional and Max-Pooling blocks. The ResNet
convolutional block is applied to capture and extract latent
features of an input tensor. Its architecture is assembled from
convolutional blocks with a kernel size of 3, a stride and
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Figure 1. Schematic of the proposed method based on surface-
enhanced Raman spectroscopy (SERS) and deep learning for PFOS
detection. (a) PFOS solution preparation, PFOS powder is first
weighted out and ethanol is used to dissolve the PFOS powder to
obtain the PFOS solution with a high concentration. DI water is then
added to dilute the PFOS solution. (b) Overview of the proposed
method is that the PFOS solution is dropped on the SERS substrate,
followed by acquiring the enhanced Raman spectra of PFOS. Deep
learning is utilized to unmix the Raman spectrum of PFOS from the
mixture spectrum (PFOS and background).

Figure 2. Gold nanoparticle SERS substrate used in this work
(ONSPECT-Lite, NECTEC, Bangkok, Thailand). (a) Photograph of
the SERS substrate. (b) Scanning electron microscope (SEM) image
of the SERS substrate. (c) The enlarged SEM image in the red-dashed
box in (b).

padding of 1, a PReLU activation function, and a skip
connection. Max-Pooling reduces the tensor size by half for
each encoder block. The decoder block is composed of
convolutional transpose for upsampling the tensor, followed by

the ResNet convolutional blocks. The last decoder block
applies the Tanh function as its activation function. The output
of this function varies from —1 to 1. The advantage of using
this function is that it avoids exploding and vanishing output
values. Consequently, the input is normalized to align with the
output range of —1 to 1. Skip connections are also added
between each encoder and decoder, allowing the gradient to
easily backpropagate in order to optimally update the weights.
Furthermore, the Transformer encoder is used to extract the
features from the same input (the low SNR mixture Raman
spectrum). The output of the Transformer is then multiplied
with the output of the bottleneck layer of UNet, as shown in
Figure 3a. The Transformer encoder begins with patch
embedding, using a learnable linear projection to map the
vectorized input patches (x;,‘) into a latent dimensional

embedding space. Position embeddings are then added to
the patch embeddings to maintain positional information, as
shown in eq 1.

Zy = [x;,E; x;E; " x;,'E] + Epe (1)

where E is the patch embedding projection, E,,,, denotes the
position embedding. The Transformer encoder is composed of
L layers of Multi-head Self-attention (MSA) and Multilayer
Perceptron (MLP) blocks shown in eqs 2 and 3, the output of

the y-th layer can be expressed as follows:
Z, = MSA(LN(Z,_))) + Z,_, )

Z,= MLP(LN(Z))) + Z, 3)

where LN(+) is the layer normalization operator and Z, is the
encoded spectral representation. The architecture of a
Transformer layer is shown in the bottom right of Figure 3a.
Herein, the size of each input tensor (mixture Raman spectra)
is 1 X 1 X 896 and it is fed to the encoder blocks (E1, E2, E3,
and E4), followed by the bottleneck block (B), and the
decoder blocks (D1, D2, D3, and D4), respectively.

Data Set Preparation. To prepare the data set for training
the proposed deep learning model, the mixture of noisy input
spectra was simulated using the pure Raman spectra of the
SERS substrate background (a blank substrate), PFOS powder
(reference of the PFOS spectrum), and a Gaussian noise signal.
Each spectrum was multiplied by a random constant, followed
by combining them together, as shown in eq 4. All the
constants (K1—K3) were random without a single repeat. In
total, we simulated 1,080 spectra, 120 spectra, and 30 spectra
for training, validation, and testing data sets, respectively.

Simulated mixture spectrum
= (K1)(BKG) + (K2)(PFOS) + (K3)(GN) 4)

where K1 and K2 are random constants in the range of 0.5 to
5. K3 is derived from the highest intensity of the mixture signal
between (K1)(BKG) and (K2)(PFOS) multiplied by a
random constant in the range of 0.01 to 1. BKG, PFOS, and
GN represent the Raman spectra of the background substrate,
PFOS powder, and Gaussian noise, respectively. Accordingly,
the ground truth of each simulated spectrum is determined as
(K2)(PFOS).

Apart from the simulated data set, the experimentally
acquired surface-enhanced Raman spectra of PFOS (acquired
from the serial dilution experiment) were also employed for
training and testing deep learning models with the three
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Figure 3. Proposed deep learning model and data set preparation. (a) Transformer UNet encoder-decoder for denoising and demultiplexing the
Raman spectrum. (b,c) Schematics of the data set preparation for experimentally collected data and simulated data, respectively.

following steps for their corresponding ground truth
preparation:

Step 1: Remove the baseline of Raman spectra of PFOS on
the SERS substrate (obtained from the experiment) and PFOS
powder/reference. Therefore, their baselines are set to be at an
analogous level.

Step 2: Determine the spectral intensity at the wavenumber
of 1,044 cm™ for the PFOS on SERS and the PFOS powder.
This wavenumber is the predominant peak of the PFOS
reference signal and does not coincide with the background of
the SERS substrate. The intensity ratio at 1,044 cm™' between
the PFOS on SERS over the PFOS powder is then computed
for employing in the next step.

Step 3: Multiply the PFOS powder signal by the ratio
derived from Step 2 to estimate the ground truth of the PFOS
on SERS signal.

In total, there are 630 spectra of the experimentally collected
data, acquired from PFOS solutions with 5 different

45870

concentrations (S, 0.5, 0.05, 0.00S, and 0.0005 ppb) on the
SERS substrates. However, the size of data is somewhat small
for training a deep learning model.

Thus, the augmentation is applied to the training data by
multiplying a random factor and adding random Gaussian
noise as shown in eq 5, where C1 and C2 were random factors
without a single repeat. This augmentation was only applied to
600 spectra to double the size of the data to 1,200 spectra, but
30 other spectra are reserved for the testing data set (the total
original size of all experimentally collected data comprises 630
spectra). The 1,200 spectra are then divided into the 1,080 and
120 spectra for training and validation data sets, respectively.

Actual mixture spectrum

= (C1)(PFOS on SERS) + (C2)(noise) (3)

The overview schematics of data preparation are also
demonstrated in Figure 3b,c. In essence, the simulated and

https://doi.org/10.1021/acsomega.5c06511
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Figure 4. PFOS detection using SERS and its calibration curve result. (a) The average Raman spectra of PFOS solution at different concentrations
(solvent: DI water). (b) The calibration curve of PFOS solution (x-axis is the PFOS concentration and y-axis is the ratio between P1 (997 cm™) to

P2 (1,044 cm™)) of the Raman spectra in (a).

actual measurement data sets are merged for training,
validation, and testing the models. In summary, there are
2,160, 240, and 60 spectra for training, validation, and testing
data sets, derived equally from both the simulated and
experimentally collected data sets. It is important to note
that the size of simulated data set should not be significantly
larger or smaller than the actual measurement data set in order
to circumvent the overfitting problem.

Training Implementation. The proposed model was
trained on a personal computer with an Intel Core i7-9750U
CPU, 64 GB RAM, and an NVIDIA RTX 3090 graphics card,
using Pytorch version 2.0.1 library with the following hyper
parameters: learning rate of 0.0001, number of epochs of 50,
and batch size of 8. The Adam optimizer and mean absolute
error (MAE) were used for training the model.

>y — wf
=1 %

n

MAE = )

where y; is the ground truth, «; is the predicted output, and n is

the total number of spectra.

B RESULTS AND DISCUSSION

Serial Dilution of PFOS Solution. PFOS has a molecular
structure consisting of a hydrophobic perfluorooctane tail in

45871

conjugation with a sulfonate headgroup, as shown in Figure 4a.
Typically, the vibrations of each bond in PFOS demonstrate
distinct Raman wavenumbers with their intensity correlating to
the concentration of PFOS. In this experiment, PFOS solutions
at six concentrations of 5, 0.5, 0.05, 0.005, 0.0005, and 0.00005
ppb were dropped on the six different SERS substrates. After
that, 36 positions of each substrate or concentration were
scanned using a Raman spectrometer to acquire the 36 Raman
spectra, followed by averaging them. In addition, the average
spectrum of PFOS powder was also acquired to compare with
the average SERS of the PFOS solutions for evaluating their
Raman wavenumbers’ similarity, as illustrated in Figure 4a.
According to the serial dilution result, two Raman peaks at
997 cm™! (P1, the assignment of C—C®***) and 1,044 cm™!
(P2, the assignment of S—0;*") of the average SERS PFOS
spectra correspond closely to the Raman spectrum of the
PFOS powder. Furthermore, the intensities of these two peaks
show considerable change when the PFOS concentrations also
differ. It is crucial to point out that the P2 peak is the same
peak observable in both PFOS powder and PFOS SERS
spectra, where the P2 peak can be obviously observed from
PFOS solution with concentration from S to 0.0005 ppb. The
lowest concentration that P2 can still be noticeable is 0.0005
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Figure 5. Comparison of PFOS SERS (magenta spectrum) acquired from the PFOS solution with a concentration 0.05 ppb, PFOS powder (red
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truth PFOS reference spectrum, deep learning results from the three deep learning models. The common peaks between the PFOS signals and the

mixture spectrum are highlighted in green.

ppb (blue plot in Figure 4a), whereas the P2 peak completely
vanishes at 0.00005 ppb (green plot in Figure 4a).
Background and PFOS Raman Spectra. To alleviate the
spectral variability, the relative ratio between P1 and P2 was
utilized for plotting the calibration curve as shown in Figure

4b. Typically, the intrinsic Raman spectra intensity of a lower

45872

concentration solution should be weaker than the intensity of a
higher concentration solution. However, the SERS Raman
intensity greatly depends on the electromagnetic and chemical
enhancement effects between the nanosurface and the target
molecule to create hotspots. Increasing concentration could
lead to large particle sizes, resulting in poor bonding with the
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Table 2. Performance Comparison of Three Different Deep Learning Models for PFOS Raman Demultiplexing (Average +

Standard Deviation)

UNet

0.8582 + 0.2667
0.0046 + 0.003S

average cross-correlation
average MAE

ResNet UNet

0.9043 + 0.2148
0.0036 + 0.0030

Trans UNet

0.9622 + 0.0667
0.0034 + 0.0024

nanoparticle of the substrate and lowering the signal
enhancement. In addition, unbound target molecules could
potentially block the enhanced signal. In our experiment, the
PFOS solution at a higher concentration (5 and 0.5 ppb)
showed progressively decreased intensity of Raman spectra,
while the lower concentration solution at 0.05 ppb showed a
stronger intensity. To validate that the Raman spectra of PFOS
on the SERS substrate are genuinely obtained from PFOS
molecules enhanced by the substrate, the background signal
(BKG) of the substrate was also acquired, followed by
comparison with the PFOS powder and the PFOS SERS
spectra. Since the PFOS SERS at a concentration of 0.05 ppb
shows the highest intensity of the P2 peak compared to other
concentrations, it was employed for this comparison. As
previously mentioned, the Raman peak at 1,044 cm™' (P2)
only appears in the PFOS powder and PFOS SERS spectra and
it does not appear in the background spectra of the blank SERS
substrate, which is substantiated by the result, as shown in
Figure S below. However, only one nonoverlapping peak and
some overlapping peaks are somewhat challenging to
comprehensively analyze the result. Therefore, as discussed
in the next section, we propose a deep learning model to
demultiplex the mixture spectra between PFOS and back-
ground spectra.

Demultiplexing Deep Learning for PFOS Raman
Spectra. In practical implementation, Raman spectra of an
unpurified and inhomogeneous sample typically originate from
mixture spectra of several compounds, especially SERS, which
includes a strong background signal of the substrate itself. To
accurately analyze the Raman data, we need an algorithm to
extract the signal of the compound that we desire to detect.
Therefore, we propose a deep learning model to demultiplex
the PFOS Raman spectra from the mixture spectra of PFOS
and SERS background. Apart from demultiplexing, the
proposed deep learning model can also enhance the signal-
to-noise ratio (SNR) of the demultiplexed output. In short, the
proposed deep learning model can simultaneously perform
demultiplexing and SNR enhancement to retrieve the high
SNR and unmixed PFOS spectra. To evaluate the model’s
performance, the testing data set (unseen data and not used for
training), cross-correlation,®” and MAE were utilized. Cross-
correlation is a function commonly used to evaluate the
similarities of two signals, which can be defined as the
following equation:

R = Z(xi_i)()’i_V)
I CEEIDICEED) 7
where R is the correlation coeflicient, x; is the value of the

predicted output, ¥ is the mean of the predicted output, y; is
the ground truth, 7 is the mean of the ground truth, and i is

the number of sampling points of the signal (0,1,2,3, ..., n — 1).
Figure 6 shows the representative results of the testing data set.
The mixture input spectra (dark blue spectra) from both
simulated data and experimentally collected data were
employed for testing three different deep learning models:

UNet, ResNet UNet, and Trans UNet, with their outputs
illustrated as purple, red, and green spectra, respectively. The
generated Raman spectra were compared to the corresponding
ground truth spectra (orange spectra) by using two average
metrics, cross-correlation and MAE, as presented in Table 2.
Overall, all the models can exceptionally perform on the
demultiplexing and SNR enhancement. The state-of-the-art
Trans UNet model outperforms the other models.

B CONCLUSION

In this work, we present an approach based on SERS together
with deep learning for PFOS detection, showing promising
results. The SERS substrate can significantly enhance the
Raman spectra of PFOS in solution and detect the trace
amount of PFOS solution down to 0.0005 ppb. In addition, the
proposed deep learning model, which is employed for
demultiplexing and SNR enhancement of low-SNR mixture
spectra of PFOS and background spectra, shows promising
evaluation result, where the average cross-correlation and MAE
are 0.9622 + 0.0667 and 0.0034 + 0.0024, respectively. This
could ease the difficulty of using the SERS technique to detect
PFOS, as we can easily obtain the unmixed PFOS spectra from
the mixture Raman spectra. With these promising results, we
anticipate that the proposed method could be an alternative
and practical method for PFOS detection. In the future, we will
explore more feasibility of employing the proposed method to
detect the PFOS in the natural environment, especially water,
soil, and human blood.
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