to appear in "Rebeca for Actor Analysis in Action," LNCS 15560, Springer, 2025

Verify Engineering Models, not Scientific Models

Shaokai Lin[0000700017688575572] and Edward A. Lee[0000*0002*5663*0584]

UC Berkeley, Berkeley, CA, 94720, USA
shaokai@berkeley.edu, eal@berkeley.edu

Abstract. Driving progress in science and engineering for centuries,
models are powerful tools for understanding systems and building ab-
stractions. However, the goal of models in science is different from that
in engineering, and we observe the misuse of models undermining re-
search goals. Specifically in the field of formal methods, we advocate
that verification should be performed on engineering models rather than
scientific models, to the extent possible. We observe that models un-
der verification are, very often, scientific models rather than engineering
models, and we show why verifying scientific models is ineffective in en-
gineering efforts. To guarantee safety in an engineered system, it is the
engineering model one should verify. This model can be used to derive
a correct-by-construction implementation. To demonstrate our proposed
principle, we review lessons learned from verifying programs in a lan-
guage called Lingua Franca using Timed Rebeca.

Keywords: Formal Verfication - Lingua Franca - Rebeca.

Prologue

This paper is dedicated to our friend, colleague, and mentor, Marjan Sirjani, and
offered as a contribution to her Festschrift. Marjan’s work on formal methods
for software engineering has been and continues to be an inspiration.

1 Scientific and Engineering Models

In science, the objective of a model is to match a real-world system. In contrast,
in engineering, the objective of a real-world system (an implementation) is to
match a model [15]. A digital logic diagram, for example, is an engineering
model; a circuit gets constructed to match the model. Differential equations
giving currents and voltages in a circuit over time are commonly used as a
scientific model; the equations are crafted to match the physical circuit. But
even these equations could be used as an engineering model, giving for example
a specification of an analog circuit. The actual components used will not be
perfectly linear and will not have the resistances, capacitance, and inductance
perfectly matching the model. When using models, it is important to understand
whether they are being used as engineering models or scientific models. Are the

2 Lin and Lee

resistances wrong in the model or in the physical circuit? One of the two must
be true.

This paper argues that formal verification, by its very nature, should focus
on verifying engineering models, not scientific ones. As George Box famously
said, “all models are wrong, but some are useful” [6]. Here, Box was referring
to scientific models. The corresponding statement for engineering models is, “all
physical, real-world implementations are wrong, but some are useful” [14]. An
engineering model is, or at least attempts to be, right, not wrong. It is a speci-
fication, an idealization, and an implementation can only approximate it.

Formal verification, by its nature of being formal, can only make assertions
about models. For scientific models, therefore, since the model itself is always
wrong, proving “correctness” of a wrong model has questionable value. On the
other hand, proving that a design (a specification) is correct can be extremely
useful. Indeed, most success stories for formal verification concern synchronous
digital logic (an engineering model) and software (another engineering model).
The physical realization in both cases is “electrons sloshing in silicon” [15], about
which nothing is proved.

In this paper, we examine a major innovation of Sirjani and her colleagues,
Timed Rebeca (TR), a language and formalism for describing and analyzing
timed systems. We argue that the timing features of TR are more useful when
viewed as an engineering model than when viewed as a scientific model. To
support the case, we show the relationship between the timing constructs of TR
and an implementation (vs. modeling) language with similar timing constructs,
Lingua Franca (LF). We show that, with the addition of priorities for message
handlers, TR can model the timing constructs of Lingua Franca and therefore
can be used to effectively formally verify engineering models specified using LF.

For example, the TR after delay gives a time offset between the sending
and the receiving of a message between actors. If this after delay is intended
to model physical communication latencies, then it is being used as a scientific
model. The model is correct only if the physical communication latencies actually
match. If, on the other hand, it is used to specify a logical offset between the
sender’s view and the receiver’s view of changing data, then it is being used as
an engineering model. The implementation is correct only if it actually delivers
the specified logical offset. Such delays are used in LF in the latter sense, not
the former, whereas in TR, we have seen them used both ways.

A significant limitation remains, however. Formal verification can only be
performed on closed models. For systems that interact with an uncontrolled
environment that is not designed, we have no choice but to provide a scientific
model of that environment. Any proof of the correctness of a design, therefore,
is predicated on the assumptions about the environment. These assumptions are
made evident by making a clear separation between models of the environment
and models of the system under design. The weaker those assumptions, the
stronger the confidence provided by the verification results.

Verify Engineering Models, not Scientific Models 3

2 Scientific and Engineering Models in Timed Rebeca

Timed Rebeca [21] is an extension of the Rebeca modeling language [22] (an im-
plementation of the Hewitt-Agha actor model [8, 1, 2]) that adds a notion of time.
In this extension, time is an integer, messages are sent and arrive at (possibly
distinct) times and message handlers (optionally) take time to execute. Three
operators are added to the Rebeca language to model time: delay, deadline,
and after. A delay statement models the passing of time of an actor during the
execution of a message server. The after operator indicates time that elapses
before a message is delivered to its destination. The deadline operator models
message loss if the destination is busy due to delay statements and does not
handle an incoming message before the deadline expires.

In addition to these operators, Timed Rebeca strengthens the semantics that
define the order in which message handlers are invoked. Because of these oper-
ators, each message delivered to an actor has a time associated with it, and the
destination actor will handle messages in temporal order, unless it is busy due
to a delay statement, in which case it will handle the message at the time the
delay expires. If two messages are delivered with the same time, then the handler
order is nondeterministic unless the programmer specifies priorities. The ability
to specify priorities was added later specifically to support the kind of modeling
we describe in this paper [24,9].

Reynisson et al. [21] give a ticket service example (Fig. 1), where an agent ac-
cepts requests for tickets from an environment and issues requests for a ticket to
two ticket services. If the first ticket service does not respond with a ticket within
a specified amount of time (defined by the checkIssuedPeriod environment
variable, defined on line 1 and used on line 14), then it tries the second ticket
service. The TicketService actor uses the delay operator to nondeterminis-
tically delay responding by either serviceTimel or serviceTime?2 (lines 38
and 39). Here, there is a mix of scientific and engineering modeling. The value
of checkIssuedPeriod is an engineering specification. It defines how long
the Agent actor should wait before giving up on the requested ticket service.
On the other hand, the serviceTimel or serviceTime2 variables model
communication and computation time, which are assumptions derived from the
environment through scientific means (measurement, for example). When per-
forming verification on this model, the results of the verification can only be
considered valid for these two particular assumed delays. If the actual observed
delays deviate from these assumed delays, which could always happen due to
the nature of scientific modeling, the verification model is no longer applicable.

Later, Sirjani and Khamespanah note the distinction between engineering
models and scientific models and describe a Timed Rebeca example for compo-
nents of a network on chip [23]. Specifically, the model consists of a Manager,
which generates network traffic, and a Router, which routes traffic according to
a specified policy. In this example, the precise times given in after, delay, and
deadline statements can be interpreted as specifications for the time taken by
a synchronous digital circuit implementation of the router. No time units are
given in the paper, but in this engineering-model interpretation, they could be

4 Lin and Lee

1 env int requestDeadline,
checkIssuedPeriod,
retryRequestPeriod,
newRequestPeriod, serviceTimel,

serviceTime2; 22 msgsrv ticketIssued(int tok) {
2 23 if (token == tok) {
3 reactiveclass Agent { 24 ticketIssued = true; }}
4 knownrebecs { TicketService tsl; 25 msgsrv retry () {
TicketService ts2; } 26 attemptCount = 0;
5 statevars { int attemptCount; 27 self.findTicket (tsl);}
6 boolean ticketIssued; int token; } 28 }
7 msgsrv initial() { 29 reactiveclass TicketService ({
8 self.findTicket (tsl); } 30 knownrebecs { Agent a; }
9 msgsrv findTicket (TicketService ts) { 31 msgsrv initial() { }
10 attemptCount += 1; token += 1; 32 msgsrv requestTicket (int token) {
11 ts.requestTicket (token) deadline (33 // The tic <
requestDeadline) ; 34 // the
12 // Check if > the 35 // d >
13 // request has bee cceived. 36 // 1 or
14 self.checkTicket () after(37 // servic ime2.
checkIssuedPeriod);} 38 int wait = ?(serviceTimel,
15 msgsrv checkTicket () { serviceTime?2) ;
16 if (!ticketIssued 39 delay (wait);
17 && attemptCount == 1) { 40 a.ticketIssued (token);
18 self.findTicket (ts2); 41 }
19 } else if (!ticketIssued 42}
20 && attemptCount == 2) { 43 main {
21 self.retry() after(44 Agent a(tsl, ts2):();
retryRequestPeriod) ; 45 TicketService tsl(a): ();
22 } else if (ticketIssued) { 46 TicketService ts2(a):();
23 ticketIssued = false; 47 '}
24 self.retry() after(

newRequestPeriod);
25 }
26 }

Fig. 1. Timed Rebeca model for a ticket service, from [21].

clock cycles or SI units (such as nanoseconds) as measured by the clock of a
synchronous digital circuit.

We argue here that the Timed Rebeca constructs, delay, deadline, and
after, are much more useful in an engineering model than in a scientific model,
except when explicitly modeling an uncontrolled environment. Using after to
model communication delays, for example, is questionable for systems using
modern network communication. The delays can be nondeterministically chosen,
but for verification to be tractable, a small number of possible delays must be
used. Moreover, these delays refer to clock measurements of time at distinct
points in the network. Reynisson et al. [21] assume perfect (or near perfect)
clock synchronization, but perfect clock synchronization is not possible. On the
other hand, when these numbers refer to a logical clock instead of physical clocks,
and the time ordering of events is a semantic property of the system rather than
an emergent property of the implementation, then verification results can be
trusted subject only to the condition that the system implementation correctly
realizes the semantics. We show how to do that in this paper.

Verify Engineering Models, not Scientific Models 5

Fig. 2. Two accidental deployments of emergency escape slides (image from The Tele-
graph, Sept. 9, 2015).

3 Running Example

In this section, we introduce an example (somewhat artificial and grossly over-
simplified) which is a distributed system in which the order of events is of critical
importance. There are many practical examples that have this character, but we
pick this one because it is vivid, simple, and challenging to get right, all at the
same time.

Consider automating the opening and closing of an aircraft door. Modern
passenger planes are equipped with emergency escape slides that are automati-
cally deployed if the door is opened while the door is “armed.” When the doors
are closed for departure, flight attendants arm them. At arrival, once they have
verified that a ramp is right outside the door, the flight attendants disarm the
door before an operator opens it. The process currently is manual, with a red or
green flag displayed in a window on the door to indicate whether it is armed or
not.

Suppose we wish to automate the process so that the door can be opened
remotely. There might be multiple systems on the aircraft that issue a command
to open the door. Some of these, such as a cockpit control, might want to ensure
that a ramp is present and the door is disarmed before it is opened, while others,
such as a fire alarm system, might want to open the door whether it is armed or
not.

The door will be equipped with a networked microprocessor that provides
just two services, disarm and open (we leave out arming and closing, which are
not needed to make our points). Assume the door starts in the armed and closed
state. What should the microprocessor do when it receives an open command
over the network? It is critical to be sure that if the open command has an
associated disarm command, or if there is a ramp present at the door, that the
door should be disarmed before it is opened. We have to guard against errors

6 Lin and Lee

Vision

check_ramp
Cockpit W

I send_open_cmd I

Fig. 3. Aircraft door system schematic using the Actor model.

22 reactiveclass Door (10) {
23 statevars {

reactiveclass Cockpit (10) {

1
2 knownrebecs { Vision v; Door d; } zi i
3 Cockpit) { 28 int status;
4 self.send_open_cmd () ; 29 }
5 }
X 30 Door () { status = 0; }
3 msgs/rgg§(e‘ndic?ﬁen7cn?cll/()\ { 31 @priority (1)
o e ages 32 msgsrv disarm(boolean disarm) {
8 d.open (true) ; a3 / Disarm the door
o v,c}}eckframg(true?\;} - 34 if (status == 0) status = 1;
10 // Repeat after 100 ms. 35 }
11 self.send_open_cmd() after(100);

36 @priority (2)

37 msgsrv open (boolean open) {
38 // Actuate door opener.
39 if (status 0)

=
N

}
}
14 reactiveclass Vision(10) {
15 knownrebecs { Door d; }

[
w

. 40 status = 3;
16 msgsrv check_ramp (boolean trigger) { " else if (status == 1)
17 Use vision to d e ramps .
N 42 status = 2;
18 // ume a ramp 43)
19 d.disarm(true) ; 44}
20 } :
21) 45 main {
46 @priority (1) Cockpit c(v, d):();
47 @priority(2) Vision v (d) 0
48 @priority(3) Door d() ()

49 '}

Fig. 4. Timed Rebeca model for the aircraft door system using priorities.

due to networking or computation delays, otherwise we might find ourselves in
the life-threatening situations depicted in Fig. 2.

Suppose that when a cockpit control issues an instruction to open the door,
the actual opening is delayed until a ramp is present. As shown in Fig. 3, a com-
puter vision system might check for a ramp. Suppose further that the Cockpit,
Vision, and Door components are realized as Hewitt-Agha actors. We immedi-
ately have a problem because the order of message delivery and handling in the
Hewitt-Agha model is nondeterministic. It is highly sensitive to delays in the
network and in intermediate computations. With the design in Fig. 3, the open
message will very likely arrive before disarm message, resulting in catastrophe.

Fig. 4 shows a Timed Rebeca model that uses a combination of temporal
semantics and explicit priorities to ensure correct ordering of message handlers.
The constructor for the Cockpit component starts things off by sending itself a
send_open_cmd on line 4. It then repeatedly invokes this same message handler

Verify Engineering Models, not Scientific Models 7

every 100 time units on line 11. This, effectively, models an environment, where
the time units for the repeat may represent a worst case maximum frequency for
events. We have, therefore, a scientific model of an environment that encodes an
assumption about its worst case behavior. To trust any verification results with
this model, we must convince ourself that any time intervals larger than this will
not result in violations of the properties of interest.

In this (simplified) model, the Door actor has a state variable status (line
28) that takes on the value 3 if the door opens and the slides are deployed
(Fig. 2). Since this model only includes the cockpit control, and it assumes that
the Vision actor always sees a ramp (line 19), then we would like to verify that
status never reaches value 3. Using Afra, the Timed Rebeca model-checking
tool, we can verify that this requirement is satisfied. However, the requirements
would not be satisfied without the @priority annotations on lines 31, 36, 46,
47, and 48. The priority annotations are a recent addition in Timed Rebeca [24,
9]. They can be specified at the level of message servers (lines 31, 36) and at the
level of actor instances (lines 46, 47, and 48). Semantically, a smaller priority
value indicates higher execution priority. Components with the same priority get
executed in a nondeterministic order when they are enabled. Priorities specified
on message servers are treated separately from priorities specified on actors.

In this model, the only temporal operator is on line 11. Hence, all message
transport and message handling is assumed to be instantaneous. Without the
priorities, there is a risk that the open message handler of Door will be invoked
before the check_ramp handler of Vision or, if not, before the di sarm handler
of Door. This, again, would result in catastrophe.

In a distributed system, enforcing these priorities is not trivial. The Lin-
gua Franca language, described in the next section, infers priorities based on
data dependencies and enforces them at runtime. Without LF, a distributed
implementation of this design will be quite difficult to realize. Moreover, the
enforcement aspect of the implementation will be error prone, weakening the
verification results. We may have formally verified the design, but without a
strong assurance that the implementation matches the design, the verification
result is not very useful.

Given the temporal semantics of Timed Rebeca, it is tempting to instead
model the timing of an implementation and verify that model. It may be, for
example, that instead of assuming unrealistic instantaneous computation and
message transport, the delays experienced in a physical implementation will
lead to a safe design. The Timed Rebeca model in Fig. 5 attempts to check
this. To open the aircraft door, the Cockpit actor calls the send_open_cmd
handler, which sends two messages. It first sends a check_ramp message to the
Vision actor (line 11) using an after delay to model the network delay. It then
waits 5 time units (line 13) before sending an open message (line 16), again
using an after delay to model the network delay. The Vision actor models its
computation time on line 25 and the network delay of its relay to Door on line
29. Again, we can use Afra to verify that the Door actor never reaches status
== 3.

8 Lin and Lee

1 reactiveclass Cockpit (10) {
2 knownrebecs {

Visi ; D ;
i ! ision v; Door d; 32 reactiveclass Door (10) {
5 Cockpit () { 2Z stétevars {
6 self.send_open_cmd() ; 35 :
7) 36
8 msgsrv send_open_cmd () { 37)

// Send ge to check ramp. . ¥
o , ! J eek ,\] k 38 int status;
10 /7 ax network latency = 2ms. 39 }
1; vcl;f(l:k_rfmp(itrzlei) afi;.ef(%), 40 Door () { status = 0; }

ooy e ey artaEeiEe. 41 msgsrv disarm(boolean disarm) {
13 delay (5) ; y fearm the ;
14 L e 42 / Disarm the door.
, o 43 if (status == 0) status = 1;

15 // Max ork la y ")
16 d. t ft 2);
17 Og??f fu?)ﬁ? e:/':(()[45 msgsrv open (boolean open) {

// Repeat a er 1UU ms.

. 46 // Actuate door opener.
12) self.send_open_cmd() after(100); ur if (status —— 0)
20 } 48 status = 3;
4 1 if == 1

21 reactiveclass Vision(10) { 53 € ziaius(iti?u)
22 knownrebecs { Door d; } o) !
23 msgsrv check_ramp (boolean trigger) ({ 52)
24 // Computation time = 2 ms.

53 main {

54 Cockpit c(v, d):();
55 Vision wv(d) ()
56 Door d() ()

(2); o7)

30 }

Fig. 5. Using after and delay to avoid accidentally deploying emergency slides,
model network latencies, and model execution time.

This model, however, exposes a critical flaw in this style of design. If we as-
sume the after delays are worst-case scientific models of network delay, then
we have a problem. If the open message from the Cockpit happens to experience
less delay, say one time unit instead of two, then the model becomes nondeter-
ministic, and the door may be opened before it is disarmed. To correct for this,
we could increase the delay on line 13. In fact, this model mixes scientific mod-
els (lines 11, 16, 25, and 29) with engineering modeling (line 13). The scientific
models must be interpreted as worst-case behaviors, and we have to do careful
reasoning, separate from the formal verification, to assure ourselves that lower
values will not hurt. On the other hand, the engineering model on line 13 has
the opposite semantics. It must be interpreted as a lower bound, a requirement
on the system design to ensure that accidental deployment of emergency slides
never occurs. The formal verification performed by Afra does not help with this
reasoning but only tells us whether the desired condition is satisfied for the
particular delays chosen.

The ultimate root cause of the problem is mixing engineering models with
scientific models in an undisciplined way. We illustrate how to correct this by
clearly separating the model of the environment from the model of the system

Verify Engineering Models, not Scientific Models 9

under design, and by exclusively using engineering models for the system under
design.

4 Overview of Lingua Franca

Lingua Franca (LF) [19] is a polyglot coordination language designed to augment
multiple mainstream programming languages (also called target languages), cur-
rently C, C++, Python, TypeScript, and Rust, with deterministic reactive con-
currency and the capability to specify timed behavior. LF is supported by a
runtime system that enables concurrent and distributed execution of reactive
programs, which can be deployed on various platforms, including in the cloud,
at the edge, in containers, and even on resource-constrained bare-metal embed-
ded platforms.

A Lingua Franca program defines interactions between components known
as reactors [17], with the logic for each reactor written in plain target code. Lin-
gua Franca’s code generator then produces one or more programs in the target
language, which are compiled using standard toolchains. When the application
has parallelism, it runs on multiple cores without losing determinism. For dis-
tributed applications, multiple programs and scripts are generated to deploy
these programs on multiple machines and/or containers. The network commu-
nication fabric connecting these components is also synthesized as part of the
code generation and compilation process.

4.1 Reactor-Oriented Programming

Lingua Franca programs consist of reactors, which are stateful entities with
event-driven routines. Reactors adopt advantageous semantic features from es-
tablished models of computation, namely actors [3], logical execution time [10],
synchronous reactive languages [5], and discrete event systems [13] (such as
DEVS [25] and SystemC [16]). The reaction routines belonging to reactors can
process inputs, generate outputs, alter the reactor’s state, and schedule future
events. Reactors resemble actors [3], which are software components that commu-
nicate through message passing. However, unlike traditional actors, these mes-
sages have timestamps, and the concurrent interaction of reactors is determin-
istic by default. Any nondeterministic behavior must be explicitly programmed
if needed.

Fig. 6 shows a Lingua Franca program realizing the aircraft door service
described in the previous section. The textual code shown at the bottom of
the figure is Lingua Franca code, and the diagram above it is automatically
generated by the tools and updated dynamically as the code is edited. In this
example, the main program is federated (line 2), which means that each of the
top-level reactors, Cockpit, Vision, and Door, will be code generated into its
own program in the target language (specified on line 1). These programs, called
federates, can be containerized for better isolation and fault tolerance and/or
distributed to distinct hardware, for example to exploit specialized hardware in

10 Lin and Lee

AircraftDoorSimpler

Door
Vision o Status:int=0

trigger ramp disarm
—P--) B

T2)\ open open
O"-D"-ﬁ y. 2 /= > 1 sec

1 target C , or Python, Rust, etc.
2 federated reactor {

3 ¢ = new Cockpit () 30 reactor Door {

4 v = mew Vision() 31 input open: bool
5 d = new Door () : .
6 c.open —> d.open 32 input disarm: bool
. c'open s v'tri or 33 state status: int 0
-oP -trigg 34 // This reaction should be first
8 v.ramp —-> d.disarm : .
9} 35 reaction (disarm) {=
36 // Disarm the door.
10 kpi .
reacto::: coc pl‘:’ { 37 if (self->status {
11 physical action command
38 self->status = 1;
12 output open: bool
13 reaction (startup) -> command {= 39 !
; i 40 =} deadline (100 ms) {=
14 // up kpit UI 5 o . .
41 // andle the d 1line violation

= here...

16 = 42 =) :
17 reaction (command) 43 reaqtf.on(open) i
18 // Target lanc 44 // Actuate do .
19 /B, , send 45 if (self->status {
20 1f_set (open, true); 46 self*%status =3
21 - - 47 } else if (self->status == 1) {
22 1 48 self->status = 2;
23 reactor Vision { 49 ! .
: . 50 =} deadline(1l s)
24 input trigger: bool 51 // Handle the Colati
25 output ramp: bool . - -
26 reaction (trigger) -> ramp {= 53)
27 // Target lang le here

29 }

Fig. 6. Aircraft door system schematic and Lingua Franca specification.

the Vision reactor. This Vision reactor accesses a camera with a computer
vision system that detects a ramp outside the door and disarms the door before
opening it.

The grey chevrons in inside reactors in the diagram represent reactions, which
are triggered by inputs, timers, or events on an event queue and are able to
produce outputs. The business logic inside reactions is written in the target
language that is chosen. A typical implementation of these reactors could use,
for example, the Python target, which can leverage existing packages such as
Tensorflow lite for the vision component, if it is to be realized on the edge, or it
could use an API to realize the vision component in the cloud, or it could use
the C target together with OpenCV, the open computer vision library (this code
would go on line 27). Legacy code and libraries are easy to use in LF by simply
invoking their APIs in the reaction bodies.

Verify Engineering Models, not Scientific Models 11

In principle, a federated LF program could use different target languages for
each of the federates, such as Python for the Vision federate and C or Rust
for the other components, but this capability only exists currently in concept
demonstration form.

Cockpit uses a common pattern for LF programs that react to asynchronous
events from the environment. It has a physical action, defined on line 11, which is
used to inject asynchronous external events from the environment. The reaction
to the startup event on line 13 can be used to set up any external interactions, for
example enabling an interrupt service routine to handle sensor events or cockpit
switches. When these events occur, the service routine schedules the physical
action, which gets assigned a timestamp drawn from a local physical clock. The
code on line 17 will then be invoked in reaction to such events.

A key property of Lingua Franca is that every reactor handles events in
timestamp order, and when events bear the same timestamp, they will appear
simultaneously at the reactor. Moreover, reactions are logically instantaneous.
If they produce outputs in reaction to inputs, as the Vision does, those out-
puts have the same timestamp as the input. Consequently, LF semantics assures
that the Door reactor will not react to an open command until the results of
the Vision reactor are delivered to it. Moreover, when a reactor is presented
with multiple simultaneous inputs, reactions will be invoked in the lexical order.
Hence, given simultaneous disarm and open events, the Door reactor will re-
act first to the disarm event (line 35) and then to the open event (line 43).
As we have seen in the previous section, it is not trivial to ensure such behavior
in an actor network, even one extended with time, as in Timed Rebeca. It is,
nevertheless, possible, as we will show.

The Door reactor also includes two deadline declarations, which serve two
purposes. First, they guide the LF scheduler to prioritize reaction invocations
with nearer deadlines. Second, they provide fault handling code, on lines 40 and
50, which is invoked instead of the regular reaction code if and when the deadline
is violated.

In this example, the federated reactors can be deployed on separate machines
and reactions in different reactors can be executed by multiple threads in parallel.
More importantly, for the same given input values and timing, the partial order
constraints on the execution of reactions ensures determinism. This modular
design of reactors, determinism, and flexibility in deployments make LF suitable
for describing time-sensitive applications.

4.2 Specifying Timing Behavior

Lingua Franca makes a distinction between two timelines, logical time and
physical time [18]. Logical time is represented by a tag (timestamp and mi-
crostep in superdense time [7, 20]) that tracks the processing of events within the
system. It is a marker for the sequence and timing of events as understood by the
system’s logic. Physical time tracks the actual movement of physical clocks, not
to be confused with the conceptual clocks used in synchronous-reactive models.

12 Lin and Lee

In LF’s model of time, logical time, by default, lags behind physical time, mean-
ing that the system’s logical processing waits for the physical time to advance
before proceeding.

Lingua Franca programs can explicitly specify a variety of timing behaviors
in time-sensitive systems. These timing behaviors include time-triggered events,
constraints on asynchronous events (such as minimum spacing), and deadlines.
The timing behavior specification in Lingua Franca allows deterministic execu-
tion for timed events and user inputs. Reactions to events are executed in order
based on the logical time (i.e., the tag).

The physical action in the Cockpit reactor (line 11), represented in the dia-
gram by a triangle with a “P”, captures external asynchronous inputs, assigning
them a logical timestamp based on the physical time, as measured by a local
clock. Lines 40 and 50 give deadlines, which specify a maximum acceptable gap
between the logical time and physical time of a reaction invocation. These are
also shown in the diagram as red markers in the reactions of the Door reactor.

Like Timed Rebeca, Lingua Franca supports after delays on connections
between reactors (not used in this example). These increment the timestamp of
an event conveyed along the connection. They are part of the program logic,
not a scientific model of communication delays. This manipulation can be used
to ameliorate that effects of the fundamental tradeoff between consistency and
availability in a distributed system [12].

For federated programs, Lingua Franca offers two distinct coordination strate-
gies [4]. The default coordinator is a centralized component called the RTI
(for runtime infrastructure) that guarantees that events are processed in the
proper semantic order regardless of communication delays, computation time,
or clock synchronization. An alternative coordinator is decentralized and guar-
antees proper semantic order only under clearly stated assumed bounds on com-
munication latency, computation times, and clock synchronization error. This
coordinator also provides hooks to handle faults that occur when these assump-
tions are violated. Deadline statements in LF can also be viewed as clearly stated
assumptions coupled with fault handlers to deal with violations of those assump-
tions.

In short, Lingua Franca offers deterministic behavior under clearly stated as-
sumptions, mechanisms to detect when these assumptions are violated, and fault
handlers so that applications can react appropriately to violation of the assump-
tions. This determinism applies even with parallel and distributed execution
of LF programs, bringing the key advantages of determinism [11]: repeatabil-
ity, consensus, predictability (sometimes), fault detection, simplicity, unsurpris-
ing behavior, and composability. For applications that require (or benefit from)
nondeterminism, LF includes explicitly nondeterministic constructs that can be
used. This is a notable contrast with most other concurrent and distributed com-
puting frameworks, which give you nondeterminism by default and leave it to
the designer to build deterministic behavior when needed.

Verify Engineering Models, not Scientific Models 13

5 Verifying an Engineering Model using Timed Rebeca

1 reactiveclass Cockpit (10) {

2 knownrebecs {

3 Door door;

4 Vision Vision;

5 }

6 statevars { boolean open_value; }

7 Cockpit () {

8 dule a physical act

9 self.reaction_1();

10 }

11 @globalPriority (2)

12 msgsrv reaction_1() {

13 open_value = true;

14 door.read_port_open (open_value)
after (0);

15 Vision.read_port_trigger (
open_value) after(0);

16 }

17}
18 reactiveclass Vision(10) {

19 knownrebecs { Door door; }

20 statevars {

21 boolean ramp_value;

22 boolean trigger_value;

23 boolean trigger_is_present;

24 }

25 Vision() {

26 trigger_is_present = false;}

27 @globalPriority (4)

28 msgsrv reaction_1() {

29 // Assume a ramp is detected

30 ramp_value = true;

31 door.read_port_disarm(ramp_value
) after (0);

32 }

33 @globalPriority (3)
34 msgsrv read_port_trigger (boolean
_trigger_value) {

35 trigger_value = _trigger_value;
36 trigger_is_present = true;

37 self.reaction_1();

38 }

39 }

40 reactiveclass Door (10) {

41 statevars {

42 int status;

43 boolean open_value;

44 boolean open_is_present;

45 boolean disarm_value;

46 boolean disarm_is_present;
47 }

48 Door () {

49 status = 0;

50 open_is_present = false;

51 disarm_is_present = false;
52 }

53 @globalPriority (6)

54 msgsrv reaction_1() {

55 if (status == 0) status = 1;
56 disarm_is_present = false;}
57 @globalPriority(8)

58 msgsrv reaction_2() {

59 // Deploy e gency slides.
60 if (status 0) status = 3;
61 else if (status == 1) {

62 status = 2;}

63 open_is_present = false;}
64 @globalPriority (7)

65 msgsrv read_port_open

66 (boolean _open_value) {

67 open_value = _open_value;
68 open_is_present = true;

69 self.reaction_2();}

70 @globalPriority (5)

71 msgsrv read_port_disarm

72 (boolean _disarm_value) {
73 disarm_value = _disarm_value;
74 disarm_is_present = true;
75 self.reaction_1();}

76}

77 main {

78 Cockpit c(d, v):();

79 Vision wv(d):();

80 Door da@):();

81 }

Fig. 7. Timed Rebeca model encoding the semantics of the Lingua Franca model.

In this section, we show how to use Timed Rebeca to verify an engineer-
ing model of the aircraft door system, rather than a model mixing engineering
requirements and scientific assumptions. Fig. 7 shows a Timed Rebeca model
encoding the semantics of the Lingua Franca program shown in Fig. 6. Strictly
speaking, this Timed Rebeca model encodes the behavior of the LF program at
the instant when the Cockpit component schedules the physical action command.
We discuss the challenge of environmental modeling in Section 6.

Since the LF program is an engineering model, we interpret all reaction
dependencies and temporal semantics as requirements on the system design.

14 Lin and Lee

Therefore, in the Timed Rebeca model, we ensure that the same requirements
hold for all message servers that represent LF reactions. In the LF model, when
a physical action command is scheduled, the disarm and open input ports
of Door should receive messages logically simultaneously, despite the fact that
the Vision component sits between the open port and the disarm port. This
temporal requirement necessitates that Vision reaction must be invoked before
both reactions in Door, regardless of actual network delays and execution times.
In addition, to preserve determinism, LF requires that all reactions within
the same reactor execute in the order of their declarations. This means that
when reactions in the Door components are triggered logically simultaneously,
the reaction labelled 1 must execute before the reaction labelled 2, as explained
in Section 4.1. Therefore, based on the requirements above, LF defines a unique
correct sequence of reaction invocations upon the arrival of a physical action:

Cockpit reaction 2 — Vision reaction 1 — Door reaction 1 — Door reaction 2.

A correctly implemented LF runtime must deliver this sequence during program
execution, and ensuring that an LF runtime is implemented correctly is nontriv-
ial. When formally verifying the engineering model, however, the LF semantics
can be assumed, which simplifies verification significantly.

To encode this well defined sequence in Timed Rebeca, we use the
@globalPriority annotation, which gives a Timed Rebeca message server a
priority value respected across reactive classes. These priorities provide partial
ordering constraints that, according to Lingua Franca semantics, allow parallel
execution while respecting dependencies. This is suitable in our use case, as LF’s
requirements on the order of reaction invocations spans across reactors. We give
the four reactions in the sequence global priorities of 2, 4, 6, and 8 respectively
(lines 11, 27, 53, 57 in Fig. 7). We set a reaction’s priority to twice its invocation
order so that auxiliary handlers (lines 34, 65, 71), which encode the semantics
of LF ports, can execute before the reactions they trigger.

We verify this engineering model in Afra, which confirms that status can
never be 3, even under all possible network latencies and execution times. As
long as the implementation correctly follows the LF semantics, we can fully trust
this verification result.

6 Challenges

One challenge that arises is that, in order to perform verification, Timed Re-
beca programs must usually include a model of the environment in which they
operate. A verifiable TR system is closed. All inputs to the designed part of the
system have to be modeled. They can be modeled nondeterministically using
Timed Rebeca, but in order for bounded model checking to be tractable, the
number of nondeterministic choices must be limited. We avoided this problem
in the previous section by using a degenerate environment model, where the en-
vironment makes exactly one request for service. But for many cases, this will
not be sufficient. For example, it may be important to consider the rate at which

Verify Engineering Models, not Scientific Models 15

requests for service can occur. These rates can be bounded in Lingua Franca,
which may make the modeling easier, but this remains to be explored.

Since we cannot design the environment in which an engineered system runs,
a model of the environment is necessarily a scientific model, not an engineering
model. The model can make assumptions, enabling a kind of “assume-guarantee”
reasoning, but the model cannot be a specification of the environment. There
is an art, therefore, to constructing models of the environment. Ideally, each
such model represents the weakest possible assumptions such that verification
remains tractable and the assumptions can reasonably be assumed to hold. In
practice, patterns of environment behaviors will need to be verified separately,
because any single model with weak enough assumptions to admit all possible
behaviors of the environment will lead to intractable verification problems.

7 Conclusion

We observe that models used for verification in practice sometimes conflate en-
gineering models and scientific models, and that there is significant risk that this
confusion compromises the trustworthiness of the verification results. We argue
that systems under design should be modeled with engineering models, which are
specifications of correct behavior, rather than scientific models, which approxi-
mate implementations. When this can be done, the results of formal verification
can show definitively the correctness of a design. It is a separable problem to
determine whether an implementation correctly realizes the specification. A key
limitation, however, is that designs can only be verified under assumptions about
the environment in which they operate, and that models of the environment are
inevitably scientific models, not engineering models.

We have shown that Lingua Franca programs can serve as effective engineer-
ing models for a deterministic version of actor networks, and that Timed Rebeca
can be used to verify these models. Using Timed Rebeca’s ability to model non-
determinism, scientific models of the operating environment can be combined
with the engineering models of the design, yielding verification results that are
trustworthy under clearly stated assumptions about the operating environment
of the designed system.

Acknowledgement. The work in this paper was supported in part by the Na-
tional Science Foundation (NSF), award #CNS-2233769 (Consistency vs. Avail-
ability in Cyber-Physical Systems) and the iCyPhy Research Center (Industrial
Cyber-Physical Systems), supported by Denso, Siemens, and Toyota.

Disclosure of Interests. The authors have no competing interests to declare
that are relevant to the content of this article.

16

Lin and Lee

References

1.

2.

10.

11.

12.

13.

14.

15.

16.

17.

Agha, G.: ACTORS: A Model of Concurrent Computation in Distributed Systems.
The MIT Press Series in Artificial Intelligence, MIT Press, Cambridge, MA (1986)
Agha, G.: Concurrent object-oriented programming. Communications of the ACM
33(9), 125-140 (1990)

Agha, G.A.: Abstracting interaction patterns: A programming paradigm for open
distributed systems. In: Stefani, E.N., J.-B. (eds.) Formal Methods for Open
Object-based Distributed Systems, IFIP Transactions. pp. 135-153. Chapman and
Hall (1997). https://doi.org/10.1007/978-0-387-35082-0 10

Bateni, S., Lohstroh, M., Wong, H.S., Kim, H., Lin, S., Menard, C., Lee, E.A.:
Risk and mitigation of nondeterminism in distributed cyber-physical systems. In:
ACM-IEEE International Conference on Formal Methods and Models for System
Design (MEMOCODE) (2023). https://doi.org/10.1145/3610579.3613219
Benveniste, A., Caspi, P., Edwards, S.A., Halbwachs, N., Le Guernic, P., De Si-
mone, R.: The synchronous languages 12 years later. Proceedings of the IEEE
91(1), 64-83 (2003)

Box, G.E.P., Draper, N.R.: Empirical Model-Building and Response Surfaces. Wi-
ley Series in Probability and Statistics, Wiley (1987)

Cataldo, A., Lee, E.A., Liu, X., Matsikoudis, E., Zheng, H.: A con-
structive fixed-point theorem and the feedback semantics of timed sys-
tems. In: Workshop on Discrete Event Systems (WODES) (2006),
http://ptolemy.eecs.berkeley.edu/publications/papers/06 /constructive/

Hewitt, C.: Viewing control structures as patterns of passing messages. Journal of
Artificial Intelligence 8(3), 323-363 (1977)

Khosravi, R., Khamespanah, E., Ghassemi, F., Sirjani, M.: Actors Upgraded for
Variability, Adaptability, and Determinism, pp. 226-260. Lecture Notes in Com-
puter Science, Springer (2024). https://doi.org/10.1007/978-3-031-51060-1 9
Kirsch, C.M., Sokolova, A.: The logical execution time paradigm. In: Advances in
Real-Time Systems, pp. 103-120. Springer (2012)

Lee, E.A.: Determinism. ACM Transactions on Embedded Computing Systems
(TECS) 20(5), 1-34 (July 2021). https://doi.org/10.1145 /3453652

Lee, E.A., Akella, R., Bateni, S., Lin, S., Lohstroh, M., Menard, C.: Con-
sistency vs. availability in distributed cyber-physical systems. ACM Trans-
actions on Embedded Computing Systems (TECS) 22(5s), 1-24 (2023).
https://doi.org/10.1145/3609119, presented at EMSOFT, September 17-22, 2023,
Hamburg, Germany

Lee, E.A., Liu, J., Muliadi, L., Zheng, H.: Discrete-event models. In: Ptolemaeus,
C. (ed.) System Design, Modeling, and Simulation using Ptolemy II. Ptolemy.org,
Berkeley, CA (2014), http://ptolemy.org/books/Systems

Lee, E.A., Sirjani, M.: What good are models? In: Formal Aspects of Component
Software (FACS). vol. LNCS 11222. Springer (2018)

Lee, E.A.: Plato and the Nerd — The Creative Partnership of Humans and Tech-
nology. MIT Press (2017)

Liao, S., Tjiang, S., Gupta, R.: An efficient implementation of reactivity for model-
ing hardware in the scenic design environment. In: Proceedings of the 34th annual
Design Automation Conference. pp. 70-75 (1997)

Lohstroh, M., Incer Romeo, 1., Goens, A., Derler, P., Castrillon, J., Lee, E.A.,
Sangiovanni-Vincentelli, A.: Reactors: A deterministic model for composable re-
active systems. In: 8th International Workshop on Model-Based Design of Cyber
Physical Systems (CyPhy’19). vol. LNCS 11971, p. 27. Springer-Verlag (2019)

18.

19.

20.

21.

22.

23.

24.

25.

Verify Engineering Models, not Scientific Models 17

Lohstroh, M., Lee, E.A., Edwards, S., Broman, D.: Logical time for reac-
tive software. In: Workshop on Timing-Centric Reactive Software (TCRS), in
Cyber-Physical Systems and Internet of Things Week (CPSIoT). ACM (2023).
https://doi.org/10.1145/3576914.3587494

Lohstroh, M., Menard, C., Bateni, S., Lee, E.A.: Toward a lingua franca for deter-
ministic concurrent systems. ACM Transactions on Embedded Computing Systems
(TECS) 20(4), Article 36 (2021). https://doi.org/10.1145,/3448128

Maler, O., Manna, Z., Pnueli, A.: From timed to hybrid systems. In: Real-Time:
Theory and Practice, REX Workshop. pp. 447-484. Springer-Verlag (1992)
Reynisson, A.H., Sirjani, M., Aceto, L., Cimini, M., Jafari, A., Ingolfsdottir,
A., Sigurdarson, S.H.: Modelling and simulation of asynchronous real-time sys-
tems using timed rebeca. Science of Computer Programming 89, 41-68 (2014).
https://doi.org/10.1016/j.scico.2014.01.008

Sirjani, M., Jaghoori, M.M.: Ten Years of Analyzing Actors: Rebeca Experience,
vol. Lecture Notes in Computer Science, vol 7000. Springer, Berlin, Heidelberg
(2011). https://doi.org/10.1007/978-3-642-24933-4 3

Sirjani, M., Khamespanah, E.: On time actors. Theory and Practice of Formal
Methods LNCS 9660, 373-392 (2016). https://doi.org/10.1007/978-3-319-30734-
3_ 25, springer, Cham

Sirjani, M., Lee, E.A., Khamespanah, E.: Verification of cyberphysical systems.
Mathematics 8, 1-20 (2020). https://doi.org/10.3390/math8071068

Zeigler, B.P., Moon, Y., Kim, D.; Ball, G.: The DEVS environment for high-
performance modeling and simulation. IEEE Computational Science and Engi-
neering 4(3), 61-71 (1997)

