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Simple Alternating Minimization Provably Solves Complete Dictionary Learning\ast 

Geyu Liang\dagger , Gavin Zhang\ddagger , Salar Fattahi\dagger \S , and Richard Y. Zhang\ddagger 

Abstract. This paper focuses on the noiseless complete dictionary learning problem, where the goal is to rep-
resent a set of given signals as linear combinations of a small number of atoms from a learned
dictionary. There are two main challenges faced by theoretical and practical studies of dictionary
learning: the lack of theoretical guarantees for practically used heuristic algorithms and their poor
scalability when dealing with huge-scale datasets. Towards addressing these issues, we propose a
simple and efficient algorithm that provably recovers the ground truth when applied to the noncon-
vex and discrete formulation of the problem in the noiseless setting. We also extend our proposed
method to mini-batch and online settings where the data is huge-scale or arrives continuously over
time. At the core of our proposed method lies an efficient preconditioning technique that transforms
the unknown dictionary to a near-orthonormal one, for which we prove a simple alternating mini-
mization technique converges linearly to the ground truth under minimal conditions. Our numerical
experiments on synthetic and real datasets showcase the superiority of our method compared with
the existing techniques.
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1. Introduction. The dictionary learning problem seeks to represent data as a linear
combination of a small number of basis elements, known as atoms, which are learned from the
data itself. The resulting collection of atoms, known as the dictionary, can then be used for
a variety of signal processing tasks [28, 25], often as a plug-in replacement for classical bases
based on cosines, wavelets, or Gabor filters. The advantage of a learned dictionary over these
classical bases is that it is tuned to the input dataset and can therefore provide a sparser
representation for each input signal that uses fewer atoms.

The problem of learning a dictionary that provides the sparsest representation is nonconvex
and highly difficult to solve, both in theory and in practice. In this paper, we focus on learning
a complete dictionary, whose number of atoms matches the dimensionality of the data, via the
following optimization problem:
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856 G. LIANG, G. ZHANG, S. FATTAHI, AND R. Y. ZHANG

min
\bfitX ,\bfitD 

\| \bfitY  - \bfitD \bfitX \| 2F + \zeta \| \bfitX \| 0.(CDL)

Here, \bfitY \in Rn\times p is a data matrix whose columns are observed signals, and our goal is to find a
square dictionary matrix\bfitD \in Rn\times n and corresponding sparse code\bfitX \in Rn\times p to approximately
represent \bfitY while minimizing its \ell 0-pseudonorm (denoted as \| \cdot \| 0) which counts its number
of nonzero elements.

The ability to solve (CDL) to optimality would allow us to strike the best-possible trade-
off between the sparsity of the representation and its quality of fit (according to the preference
expressed by the parameter \zeta > 0). Unfortunately, the \ell 0-pseudonorm presents a significant
difficulty, as it is not only nonconvex, but also discrete and combinatorial. Even rigorously
verifying that a learned dictionary is first-order locally optimal could require exhaustively
enumerating all 2np possible sparsity patterns. It is therefore understandable that the most
widely used heuristics like KSVD [2] and MOD [12] do not actually guarantee convergence to
an optimal solution, not even when provided with a near-optimal initial guess. Instead, the
state-of-the-art for provable optimality relies on relaxing the combinatorial \ell 0-pseudonorm
into the convex \ell 1-norm [1] or the convex \ell 4-norm [43]. Under assumptions like mutual
incoherency [4], restricted isometry property (RIP) [1], or large sample complexity [40, 43],
the relaxation is exact and an optimal solution to the original combinatorial problem can be
recovered. However, when the relaxation is inexact, the recovered solution may be drastically
different from the solution to the original (CDL).

In this paper, we revisit the combinatorial \ell 0-pseudonorm in (CDL), motivated by the fact
that the orthogonal instance (in which the dictionary \bfitD is constrained to be orthonormal) is
significantly easier to analyze. In the orthogonal setting, alternating minimization is simple,
in that the minimizations over \bfitD and \bfitX at each iteration have simple closed-form solutions.
We give the first proof that the resulting sequence converges to the ground truth model under
minimal conditions, provided that the algorithm is initialized properly. To extend to general
complete dictionaries, which are not necessarily orthogonal, our key idea is to use a data-
driven preconditioning step to ``orthogonalize"" the data. Surprisingly, this preconditioning
step allows us to extend our linear convergence guarantee to general complete dictionary
learning without significant modifications. As shown in Figure 1, the resulting preconditioned
algorithm learns more powerful dictionaries that strike a better balance between the sparsity
of representation and the quality of fit than the commonly used heuristic KSVD.

1.1. Summary of results. At the heart of our method to recover a pair (\bfitD \ast ,\bfitX \ast ) is an
efficient alternating minimization algorithm for the orthonormal dictionary learning problem,
which reads

min
\bfitX ,\bfitD 

\| \bfitY  - \bfitD \bfitX \| 2F + \zeta \| \bfitX \| 0 s.t. \bfitD \in O(n),(ODL)

where O(n) denotes the set of n \times n orthonormal matrices. While the orthogonality con-
straint adds another nonconvex component to the original formulation, we point out that the
minimization of \bfitX for a fixed orthonormal \bfitD \in O(n) has a cheap closed-form solution,

argmin
\bfitX 

\| \bfitY  - \bfitD \bfitX \| 2F + \zeta \| \bfitX \| 0 =HT\zeta (\bfitD 
T\bfitY ),
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Figure 1. A comparison of image denoising using dictionaries learned via our proposed method (Algo-
rithm 2.3) and via KSVD. We choose a random landscape image and artificially corrupt 50\% of the pixels.
Reconstruction is done via orthogonal matching pursuit with the learned dictionaries. The corrupted original
image is shown on the right, and the two reconstructed images are shown on the left. We see that the dictionary
learned via our method achieves a much better denoising result than one learned via KSVD. We refer the reader
to section 4.2 for the details of setup.

via a hard-thresholding operator HT\zeta (\cdot ) at level \zeta , which is defined as

(HT\zeta (\bfitA ))ij =

\Biggl\{ 
\bfitA ij if | \bfitA ij | \geq \zeta ,

0 if | \bfitA ij | < \zeta .

Similarly, the minimization of an orthonormal \bfitD \in O(n) for a fixed \bfitX also has a well-known
closed-form solution via the so-called orthogonal Procrustes problem

argmin
\bfitD \in O(n)

\| \bfitY  - \bfitD \bfitX \| 2F + \zeta \| \bfitX \| 0 =Polar(\bfitY \bfitX \top ),

where Polar(\bfitA ) = \bfitU \bfitA \bfitV \top 
\bfitA and \bfitU \bfitA \bfSigma \bfitA \bfitV \top 

\bfitA is the singular value decomposition (SVD) of \bfitA .
Therefore, the iterations

\bfitX (t+1) =HT\zeta (\bfitD 
(t)\top \bfitY ), \bfitD (t+1) =Polar(\bfitY \bfitX (t+1)\top )(1.1)

correspond exactly to an alternating minimization solution of problem (ODL). While (1.1)
has been derived before, we give the first rigorous proof that the sequence locally converges
at a linear rate with minimal conditions on the sparsity rate of \bfitX \ast . Concretely, we prove
that when the data are generated as \bfitY = \bfitD \ast \bfitX \ast , with \bfitD \ast an orthogonal dictionary and
\bfitX \ast a sparse random matrix, (1.1) converges linearly to a ground truth (\bfitD \ast ,\bfitX \ast ), when it is
initialized within an O( 1

\sigma 
\surd 
\theta n
) Frobenius neighborhood of this solution.

We use a data-driven preconditioning step to generalize (1.1) to general instances of (CDL),
for which the square dictionary matrix \bfitD \ast is not necessarily orthonormal. The basic idea is
to learn an orthonormal dictionary \~\bfitD with respect to the preconditioned data matrix \~\bfitY =
(\bfitY \bfitY \top ) - 1/2\bfitY , and then to output a complete dictionary \bfitD = (\bfitY \bfitY \top )+1/2 \~\bfitD by reversing the
preconditioning. Indeed, if the data are generated as \bfitY =\bfitD \ast \bfitX \ast with \bfitD \ast deterministic and
\bfitX \ast a sparse random matrix satisfying E[\bfitX \ast \bfitX \ast \top ] = In, then E[\bfitY \bfitY \top ] =\bfitD \ast E[\bfitX \ast \bfitX \ast \top ]\bfitD \ast \top =
\bfitD \ast \bfitD \ast \top . Therefore, the preconditioned data are generated as \~\bfitY \approx \~\bfitD 

\ast 
\bfitX \ast with respect to an
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858 G. LIANG, G. ZHANG, S. FATTAHI, AND R. Y. ZHANG

orthogonal dictionary \~\bfitD 
\ast 
= (\bfitD \ast \bfitD \ast \top )+1/2\bfitD \ast and the same sparse code \bfitX \ast . We show that

such preconditioning can be efficiently implemented via low-rank updates of the corresponding
Cholesky factors. One of our main contributions is to show that this simple preconditioning
step allows us to extend our linear convergence guarantee from orthogonal dictionaries (ODL)
to general complete dictionaries (CDL), even in the online and mini-batch settings.

A key strength of our convergence guarantee is that it does not rely on any incoherency/RIP
assumptions. In fact, we can recover very ill-conditioned dictionaries that are highly coherent,
although at the expense of a higher sample complexity. Moreover, we can recover codes with
sparsity levels in the order of O(n); in contrast, existing methods based on alternating min-
imization can handle sparsity levels of at most O(n\alpha ) for some \alpha \leq 1/2. Another technique
that achieves a near-linear sparsity level O(n1 - \gamma ) for \gamma > 0 is based on sum-of-squares hierar-
chy [8], which is indeed inefficient in practice. Using Riemannian optimization techniques, [39]
was the first to show that (CDL) with linear sparsity level can be solved in polynomial time.
However, the Riemannian optimization algorithm can be expensive, and the associated sam-
ple complexity has a dependency of \Omega (n5) for orthogonal dictionaries and \Omega (n7) for complete
dictionaries [39].

In practice, the iterations (1.1) admit highly efficient implementations, which can fully take
advantage of the massive parallelism inherent in modern hardware. The hard-thresholding
operator is embarrassingly parallel, while the SVD operation that constitutes the polar op-
erator can be implemented using hardware-optimized LAPACK implementations. The most
expensive part of (1.1) is actually its need to iterate and sum over all p columns of the data
matrix \bfitY at every iteration. To address potential scalability issues with a very large p, we
propose a mini-batch version,

\bfitX 
(t+1)
(\cdot ,i) =HT\zeta (\bfitD 

(t)\top \bfitY (\cdot ,i)) \forall i\in \Omega , \bfitD (t+1) =Polar

\Biggl( \sum 
i\in \Omega 

\bfitY (\cdot ,i)\bfitX 
(t+1)\top 
(\cdot ,i)

\Biggr) 
,(1.2)

that approximates \bfitY \bfitX (t+1)\top \approx 
\sum 

i\in \Omega \bfitY (\cdot ,i)\bfitX 
(t+1)\top 
(\cdot ,i) over a mini-batch \Omega \subseteq \{ 1,2, . . . , p\} and

updates only the sparse codes \bfitX 
(t+1)
(\cdot ,i) associated with the mini-batch samples i\in \Omega . We show

that the preconditioner can also be incrementally updated via an efficient low-rank update
formula for the Cholesky factor, which is comparable to the classical Sherman--Morrison--
Woodbury formula for updating the determinant/matrix inverse. We show that the accuracy
of the recovered dictionary is explicitly lower bounded by the statistical error of the precon-
ditioner. We also show that such an error will diminish in the online setting as more samples
come in. This is the first time that efficient updating is applied to methods that use the
preconditioning for (CDL).

Despite its mini-batch nature, we show that our method enjoys the same sharp linear
convergence to the true solution. Finally, we extend our technique to the online dictionary
learning, where the data samples arrive sequentially over time. To the best of our knowledge,
existing methods for online dictionary learning work with batch sizes of at least O(n) (see,
e.g., [32, Theorem 1] and [3, Theorem 2]). In contrast, our proposed preconditioner admits
an efficient triangular rank-one update with as few as one new sample, thereby making it
particularly appealing in the online setting.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.
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ALTERNATING MINIMIZATION SOLVES COMPLETE DICTIONARY LEARNING 859

1.2. Related work.
Optimality conditions. As the first question, we must first verify whether a ground truth

(\bfitD \ast ,\bfitX \ast ) is a global minimizer of (CDL) for the generative model \bfitY = \bfitD \ast \bfitX \ast . Of course,
if this were not the case, solving (CDL)---even to global optimality---may not be enough to
recover a ground truth (\bfitD \ast ,\bfitX \ast ). A series of work [18, 14, 20, 17, 34, 11, 19] studied the local
optimality of the ground truth for (CDL) by replacing \ell 0-norm with \ell 1-norm. The work [38]
elegantly showed that the ground truth is the unique global minimizer to (CDL) when \zeta \rightarrow 0.
Specifically, when p = \Omega (n logn), they showed that any ground truth (\bfitD \ast ,\bfitX \ast ) is the global
minimizer to min\bfitX ,\bfitD \| \bfitX \| 0 subject to the constraint \bfitY =\bfitD \bfitX . The question remains to be
answered: how to design a provable algorithm for recovering (\bfitX \ast ,\bfitD \ast ).

Alternating minimization. The empirical success achieved by methods like MOD and KSVD
has encouraged the emergence of many alternating minimization algorithms [23, 27, 7]. To-
wards providing a provable guarantee for alternating minimization, it is common to replace the
\ell 0-pseudonorm with its convex surrogate \ell 1-norm [1, 10, 29, 41]. Such a compromise is due to
the prohibitive computational cost and formidable analytical challenges of the \ell 0- pseudonorm.
However, \ell 1 relaxation is biased towards solutions with smaller entries, thereby leading to an
inferior sparsity level [44]. On the algorithmic side, methods based on \ell 1-relaxation need to
solve variants of the LASSO problem at each iteration either exactly [1, 10] or approximately
via an automatic differentiation with backpropagation [29, 41]. In this work, we focus on the
formulation of (CDL) without any convex relaxation, which is the original intention of sparse
dictionary learning. Unlike the \ell 1 method, the theoretical underpinnings of the alternating
algorithms for the \ell 0 formulation are far less explored. In [35, 19, 36, 30], the authors study
the convergence behavior of a variant of KSVD. Specifically, the dictionary update step is
performed by maximizing the absolute norm of the S-largest responses where S is the number
of nonzero entries in each signal. In [33], authors propose an alternating scheme based on
sorting the nonzero entries of sparse codes. However, the success of these algorithms relies on
restrictive generative models like symmetric decaying [34] and fixed sparsity S [33].

Riemannian manifold optimization for complete dictionary learning. One line of work focuses
on solving (CDL) via Riemannian manifold optimization techniques [31, 43]. Notably, the work
[40] was the first to show that a smoothed variant of (CDL) based on \ell 1-relaxation is devoid
of spurious local solutions. Similar benign landscape results have also been independently
discovered in the analysis of other problems like matrix factorization [13]. As a result, one
can provably recover one dictionary atom at a time via the Riemannian trust-region method.
The work [16] showed that similar results can be achieved by first-order methods on the
Riemannian manifold. In a different approach, the work [43] studied the \ell 4-maximization on
the Steifel manifold, which is further generalized in [37] to \ell p-maximization. Akin to our own
work, preconditioning the data matrix plays an important role in these algorithms.

Online dictionary learning. Another line of research has focused on the online variants of
(CDL). The work [27] first proposed an online algorithm that solves \ell 1-relaxation of (CDL),
but it only guarantees convergence to a critical point. The work [26] enhanced the usability and
practicality of \ell 1-relaxation but provided no theoretical guarantees. The work [3] proposed an
alternating algorithm that can recover the ground truth (\bfitX \ast ,\bfitD \ast ), which is further improved
in [32]. However, both variants have a specific requirement on the size of the input for each
iteration and cannot deal with situations where samples are received one by one.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.
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860 G. LIANG, G. ZHANG, S. FATTAHI, AND R. Y. ZHANG

1.3. Notation. We use\bfitA (i,\cdot ), \bfitA (\cdot ,j), and\bfitA ij to denote the ith row, jth column and (i, j)th
entry of \bfitA , respectively. We use \| \bfitA \| 2 to denote the spectral norm of \bfitA , \| \bfitA \| F to denote the
Frobenius norm of \bfitA , \| \bfitA \| 1,2 to denote the maximum 2-norm of the columns of \bfitA , \| \bfitA \| 0 to
denote the total number of nonzero entries in \bfitA , and \| \bfitA \| 1 to denote the entrywise \ell 1 -norm
of \bfitA . The symbol \bfitI d denotes the d \times d identity matrix, and O(n) denotes the orthogonal
group in dimension n. We use supp(\bfitA ) to refer to the set of indices of nonzero entries of \bfitA .
The symbol \sigma i(\bfitA ) denotes the ith largest singular value of \bfitA , and \kappa (\bfitA ) denotes the condition
number of \bfitA . Given a matrix \bfitA , its polar decomposition is defined as Polar(\bfitA ) = \bfitU \bfitA \bfitV \top 

\bfitA ,
where \bfitU \bfitA \bfSigma \bfitA \bfitV \top 

\bfitA is the SVD of \bfitA . We also define the operator \scrL (\bfitA ) =\bfitL \top 
\bfitA , where \bfitL \bfitA \bfitL \top 

\bfitA is
the Cholesky factorization of a positive semidefinite matrix \bfitA . For an event \scrE , its indicator
function is denoted as 1\scrE . Given two sequences f(n) and g(n), the notations f(n)\lesssim g(n) and
f(n) = O(g(n)) imply that there exists a universal constant C > 0 satisfying f(n) \leq Cg(n)
for all large enough n. Similarly, the notations f(n) \gtrsim g(n) and f(n) = \Omega (g(n)) imply that
there exists a universal constant C > 0 satisfying f(n)\geq Cg(n) for all large enough n. We use
f(n) = \omega (g(n)) if for all constants C > 0 we have f(n)\geq Cg(n) for all large enough n. We say
an event happens with high probability if it occurs with probability of at least 1 - n - \omega (1) with
respect to all randomness in the problem.

2. Our method. We consider a noiseless model, where the data matrix is generated ac-
cording to \bfitY = \bfitD \ast \bfitX \ast . For any signed permutation matrix \Pi , the pair (\bfitD \ast \Pi ,\Pi \top \bfitX \ast ) is
also a valid ground truth that satisfies \| \Pi \top \bfitX \ast \| 0 = \| \bfitX \ast \| 0.1 Let \scrM = \{ (\bfitD \ast \Pi ,\Pi \top \bfitX \ast ) :
\Pi is a signed permutation\} . Our goal is to recover an arbitrary element (\bfitD \ast \Pi ,\Pi \top \bfitX \ast )\in \scrM .

2.1. Orthogonal dictionary learning. We first assume that the dictionary is an orthogonal
matrix \bfitD \ast \in O(n). This leads to Algorithm 2.1, an alternating minimization algorithm based
on the closed-form solutions (1.1).

We note that Algorithm 2.1 has been studied before. The paper [6] reports the empirical
performance of Algorithm 2.1 on an image restoration task. The paper [33] provides a the-
oretical analysis for a variant of Algorithm 2.1 based on sorted thresholding. One may even
argue that Algorithm 2.1 is similar to the method of optimal directions (MOD). However, the
existing theoretical guarantees for Algorithm 2.1 are indeed restrictive (see the discussion on
alternating minimization in section 1.2). To bridge this knowledge gap, we first introduce our
assumption on the sparse matrix \bfitX .

\bfA \bfl \bfg \bfo \bfr \bfi \bft \bfh \bfm \bftwo .\bfone . Alternating minimization for (ODL).

1: \bfI \bfn \bfp \bfu \bft : \bfitY , \bfitD (0), \zeta 
2: \bff \bfo \bfr t= 0,1, . . . , T \bfd \bfo 

3: Set \bfitX (t) =HT\zeta (\bfitD 
(t)\top \bfitY )

4: Set \bfitD (t+1) =Polar(\bfitY \bfitX (t)\top )
5: \bfe \bfn \bfd \bff \bfo \bfr 

6: \bfr \bfe \bft \bfu \bfr \bfn \bfitD (T ),\bfitX (T )

1A signed permutation matrix is a generalized permutation matrix whose nonzero entries are \pm 1.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.
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ALTERNATING MINIMIZATION SOLVES COMPLETE DICTIONARY LEARNING 861

Assumption 2.1 (model for sparse code). The sparsity pattern of ground truth \bfitX \ast follows
a Bernoulli distribution with parameter \theta = (0,1]. In particular,

1\bfitX \ast 
ij \not =0 =Bij , where Bij

i.i.d.\sim \scrB (\theta ) for all 1\leq i\leq n, 1\leq j \leq p.

The nonzero values of \bfitX \ast are independently drawn from a sub-Gaussian distribution with
mean zero and constant variance \sigma 2. Moreover, the magnitudes of nonzero entries of \bfitX \ast are
lower bounded by some constant \Gamma . More specifically, we have

| \bfitX \ast 
ij | \geq \Gamma , E(\bfitX \ast 

ij) = 0, and E(\bfitX \ast 2
ij ) = \sigma 2 for every (i, j)\in supp(\bfitX \ast ).

Now, we are ready to show the convergence of Algorithm 2.1.

Theorem 2.2. Suppose that \bfitY =\bfitD \ast \bfitX \ast , where \bfitD \ast is orthogonal and \bfitX \ast satisfies Assump-
tion 2.1 with sparsity level 0 < \theta < 1/2. Suppose that the initial dictionary \bfitD (0) satisfies
\| \bfitD (0)  - \bfitD \ast \| F \lesssim 1

\sigma 
\surd 
\theta n

for some (\bfitD \ast ,\bfitX \ast ) \in \scrM . Moreover, suppose that n/\theta 2 \lesssim p \lesssim n\gamma for

some constant \gamma > 0. Then, with probability at least 1 - n - \omega (1), for any T \geq 1, the output of
Algorithm 2.1 with \zeta =\Gamma /2 satisfies

\| \bfitD (T )  - \bfitD \ast \| F \leq 0.9T \| \bfitD (0)  - \bfitD \ast \| F , \| \bfitX (T )  - \bfitX \ast \| F \leq 0.9T \| \bfitX (0)  - \bfitX \ast \| F

Theorem 2.2 improves upon the existing results on two fronts.
Linear sparsity level. We allow a constant fraction of entries in \bfitX \ast to be nonzero, thereby

improving upon the best-known sparsity level of O(
\surd 
n/ logn) for alternating minimization [3].

Moreover, the imposed upper bound on the sample size asserts that it must be bounded by a
polynomial function of n. This mild assumption is only included to simplify the presentation
of our main result.

Linear sample complexity. In order to recover \bfitD \ast exactly, we only need to observe O(n)
many samples, which is log(n) factor smaller than the sample complexity required for the
uniqueness of the solution when \xi \rightarrow 0 [38]. This sample complexity is optimal (modulo
constant factors) since it is impossible to recover the true dictionary with a sublinear number
of samples even if \bfitX \ast is known. Note that the theoretical convergence of Algorithm 2.1 is
contingent upon a good initial dictionary. As shown in Lemma 3.1, the imposed condition
on the initial dictionary automatically guarantees the recovery of the support for any \bfitX (t)

with t\geq 0. In subsection 2.4, we discuss possible ways to obtain such an initial dictionary in
theory and practice. We also suspect that our initialization requirement can be improved to
\| \bfitD (0)  - \bfitD \ast \| 1,2 \leq O(1/ logn) with fresh samples at every iteration, which is the best-known
radius for alternating minimization [3].

Despite its desirable properties, Algorithm 2.1 suffers from two fundamental limitations.
First, its convergence depends on the orthogonality of the true dictionary, which may not
be satisfied in many applications. Second, it does not readily extend to huge-scale or online
settings, where it is prohibitive or even impossible to process all data samples together. To
address these challenges, we next extend our algorithm to complete (nonorthogonal) dictionary
learning with mini-batch and online data.
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862 G. LIANG, G. ZHANG, S. FATTAHI, AND R. Y. ZHANG

2.2. Mini-batch complete dictionary learning. To distinguish from (ODL), we denote the
ground truth dictionary as \bfitA \ast (i.e., \bfitY =\bfitA \ast \bfitX \ast ). Towards dealing with large p, we subsample
from the columns of \bfitY . To address the nonorthogonality of the dictionary, we consider a
preconditioner \bfitP defined as

\bfitP =\scrL 

\Biggl( \biggl( 
1

p\theta \sigma 2
\bfitY \bfitY \top 

\biggr)  - 1
\Biggr) 
.

Using this preconditioner, we obtain a new (preconditioned) data matrix \~\bfitY = \bfitP \bfitY . To
explain the intuition behind this choice of preconditioner, note that 1

p\theta \sigma 2\bfitY \bfitY \top \approx \bfitA \ast \bfitA \ast \top for

large enough p, which allows us to write \~\bfitY \approx \scrL ((\bfitA \ast \bfitA \ast \top ) - 1)\bfitA \ast \bfitX \ast . Upon defining \bfitD \ast =
\scrL ((\bfitA \ast \bfitA \ast \top ) - 1)\bfitA \ast , one can check that \bfitD \ast \in O(n) and \~\bfitY \approx \bfitD \ast \bfitX \ast . Indeed, this is an instance
of (ODL) and can be solved via Algorithm 2.1. The detailed implementation is provided in
Algorithm 2.2. We note that the dependency of the preconditioner on \theta and \sigma 2 is purely to
simplify the presentation and can be replaced by a simple normalization step in practice. Our
next theorem characterizes the performance of Algorithm 2.2. Without loss of generality, we
assume that \| \bfitA \ast \| 2 = 1 and set \^\kappa to be the condition number of \bfitA \ast .

Theorem 2.3. Suppose that \bfitY =\bfitA \ast \bfitX \ast , where \bfitX \ast satisfies Assumption 2.1 with sparsity
level 0< \theta < 1/2. Suppose that the initial dictionary \bfitA (0) satisfies \| \bfitA (0)  - \bfitA \ast \| F \lesssim 1

\^\kappa \sigma 
\surd 
\theta n

for

some (\bfitA \ast ,\bfitX \ast ) \in \scrM . Moreover, suppose that n/\theta 2 \lesssim \~p\lesssim n\gamma , \^\kappa 12n3 log2 \~p/\theta \lesssim p, T \lesssim n\beta , and
logn\gtrsim \beta +\gamma for some constants \gamma ,\beta > 0. Then with probability at least 1 - n - \omega (1), the output
of Algorithm 2.2 with \zeta =\Gamma /2 satisfies\bigm\| \bigm\| \bigm\| \bfitA (T )  - \bfitA \ast 

\bigm\| \bigm\| \bigm\| 
F
\leq 0.9T \| \bfitA (0)  - \bfitA \ast \| F +O

\biggl( 
n\^\kappa 6

\theta 
\surd 
p

\biggr) 
.(2.1)

Theorem 2.3 states that Algorithm 2.2 converges linearly to the true dictionary up to
a statistical error O( n\^\kappa 

6

\theta 
\surd 
p). This statistical error is due to the deviation of the precondi-

tioner from its expectation, which diminishes with p. A key distinction of our result is that
we do not impose any incoherency requirement or RIP on \bfitA \ast , which are common assump-
tions in existing results. We also highlight that the upper bound on T is indeed very mild.

\bfA \bfl \bfg \bfo \bfr \bfi \bft \bfh \bfm \bftwo .\bftwo . Alternating minimization for mini-batch (CDL).

1: \bfI \bfn \bfp \bfu \bft : \bfitY , \bfitA (0), \zeta 

2: Set \bfitP =\scrL (( 1
p\theta \sigma 2\bfitY \bfitY \top ) - 1)\top , \~\bfitY =\bfitP \bfitY , and \bfitD (0)=\bfitP \bfitA (0).

3: \bff \bfo \bfr t= 0,1, . . . , T  - 1 \bfd \bfo 

4: Sample \~p many columns from \~\bfitY to be \~\bfitY 
(t)
.

5: Set \~\bfitX 
(t)

=HT\zeta (\bfitD 
(t)\top \~\bfitY 

(t)
).

6: Set \bfitD (t+1) =Polar( \~\bfitY 
(t) \~\bfitX 

(t)\top 
).

7: \bfe \bfn \bfd \bff \bfo \bfr 

8: \bfr \bfe \bft \bfu \bfr \bfn \bfitA (T ) =\bfitP  - 1\bfitD (T ) as an approximation to \bfitA \ast 
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ALTERNATING MINIMIZATION SOLVES COMPLETE DICTIONARY LEARNING 863

To demonstrate this, note that, in order to guarantee 0.9T \| \bfA (0)  - \bfA \ast \| F =O( n\^\kappa 
6

\theta 
\surd 
p), it suffices

to have T = \Omega (
\theta 
\surd 
p

\^\kappa 6n \mathrm{l}\mathrm{o}\mathrm{g}n), a condition that satisfies T = O(n\beta ) for some \beta > 0 for all practical
purposes.

2.3. Online dictionary learning. Although the computational efficiency of Algorithm 2.2
is largely improved compared to its full-batch counterpart, it may not be implementable
in huge-scale or online settings due to the dependency of the preconditioner on the entire
dataset with size p. Both situations call for a cheap method to update the preconditioner
more efficiently in an online fashion.

To update \bfitP with a new sample \bfity , a naive approach would be to recompute it from
scratch, which would cost O(n3) operations. However, we show that \bfitP can be updated more
efficiently in O(n2) operations by taking advantage of the more efficient rank-one updates on
matrix inversion and Cholesky factorization. To this goal, we first use the Sherman--Morrison
formula to update (\bfitY \bfitY \top ) - 1 as

(\bfitY \bfitY \top +\bfity \bfity \top ) - 1 =(\bfitY \bfitY \top ) - 1 - \bfitv \bfitv \top , where \bfitv =
\Bigl( 
1 + \bfity \top (\bfitY \bfitY \top ) - 1\bfity 

\Bigr)  - 1/2
(\bfitY \bfitY \top ) - 1\bfity ,

which, given (\bfitY \bfitY \top ) - 1, can be obtained in O(n2) operations. Given the above rank-one
update for the inverse, the Cholesky factor \scrL ((\bfitY \bfitY \top +\bfity \bfity \top ) - 1) can be obtained within O(n2)
operations by performing triangular rank-one updates on \scrL ((\bfitY \bfitY \top ) - 1) [22]. We explain the
implementation of this method in Appendix C.

Inspired by the above update, we propose an online variant of Algorithm 2.3. We start
the algorithm by initializing the preconditioner and the data matrix using p1 and p2 samples,
respectively, both potentially significantly smaller than p. When a new sample arrives, we
update the preconditioner \bfitP (t) via the triangular rank-one update and update the data set
accordingly. Our next theorem establishes the convergence of Algorithm 2.3.

\bfA \bfl \bfg \bfo \bfr \bfi \bft \bfh \bfm \bftwo .\bfthree . Alternating minimization for online dictionary learning.

1: \bfI \bfn \bfp \bfu \bft : \bfitA (0), \zeta , p1, p2

2: Set \bfitZ 
(0)
\mathrm{i}\mathrm{n}\mathrm{v} = ( \=\bfitY \=\bfitY 

\top 
) - 1, \bfitP (0) =\scrL (p1\theta \sigma 2\bfitZ 

(0)
\mathrm{i}\mathrm{n}\mathrm{v})

\top , where \=\bfitY is constructed with p1 samples

and \bfitD (0)=\bfitP (0)\bfitA (0).

3: Initialize \bfitY (0) with p2 samples.
4: \bff \bfo \bfr t= 0,1, . . . , T  - 1 \bfd \bfo 

5: Given a new \bfity , set \bfitY (t)=[\bfitY (t - 1) \bfity ] and remove the first column of \bfitY (t).

6: Update \bfitP (t) and \bfitZ 
(t)
\mathrm{i}\mathrm{n}\mathrm{v} using \bfitP (t - 1), \bfitZ 

(t - 1)
\mathrm{i}\mathrm{n}\mathrm{v} , and \bfity via Algorithm B.1.

7: Set \~\bfitY 
(t)

=\bfitP (t)\bfitY (t).

8: Set \~\bfitX 
(t)

=HT\zeta (\bfitD 
(t)\top \~\bfitY 

(t)
).

9: Set \bfitD (t+1) =Polar( \~\bfitY 
(t) \~\bfitX 

(t)\top 
).

10: \bfe \bfn \bfd \bff \bfo \bfr 

11: \bfr \bfe \bft \bfu \bfr \bfn (\bfitP (T - 1)) - 1\bfitD (T ) as an approximation to \bfitA \ast .
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864 G. LIANG, G. ZHANG, S. FATTAHI, AND R. Y. ZHANG

Theorem 2.4. Suppose that \bfitY =\bfitA \ast \bfitX \ast , where \bfitX \ast satisfies Assumption 2.1 with sparsity
level 0 < \theta < 1/2. Suppose that the initial dictionary \bfitA (0) satisfies \| \bfitA (0) - \bfitA \ast \| F \lesssim 1

\^\kappa \sigma 
\surd 
\theta n

for some (\bfitA \ast ,\bfitX \ast ) \in \scrM . Moreover, suppose that n/\theta 2 \lesssim p2 \lesssim n\gamma , \^\kappa 12n3 log2 p2/\theta \lesssim p1, and
T \lesssim n\beta for some constants \gamma ,\beta > 0. Then, with probability at least 1 - n - \omega (1), the output of
Algorithm 2.3 with \zeta =\Gamma /2 satisfies\bigm\| \bigm\| \bigm\| \bfitA (T )  - \bfitA \ast 

\bigm\| \bigm\| \bigm\| 
F
\leq 0.9T \| \bfitA (0)  - \bfitA \ast \| F +O

\biggl( 
n\^\kappa 6

\theta 
\surd 
p1 + T

\biggr) 
.(2.2)

The convergence result of Algorithm 2.3 is similar to that of Algorithm 2.2, with a key dif-
ference that the statistical error O( n\^\kappa 6

\theta 
\surd 
p1+T

) now decreases with T , which is due to the fact that

the preconditioner becomes progressively more accurate as new samples continue to arrive.

2.4. Initialization. The theoretical success of Algorithms 2.1--2.3 requires, at least in the-
ory, a good initialization with O(1/

\surd 
\theta n) distance to the ground truth. Such initialization can

be provided by the initialization scheme introduced in [1] and [3], albeit with slightly more
restrictive conditions on the sparsity level. For the same generative model as described in
Assumption 2.1, computationally intensive and data-intensive algorithms, such as the Rie-
mannian trust-region method (RTR) [39], can also be employed to design initial dictionaries
that satisfy the conditions outlined in Theorems 2.2--2.4. Specifically, for (ODL), [39, Theo-
rem 3.1] demonstrates that the RTR can obtain an initial point with a distance of O(1/

\surd 
\theta n)

from the ground truth, albeit with an increased sample complexity of p = \Omega (n5). Similarly,
for (CDL), [39, Theorem 3.2] illustrates that RTR can yield an initial point with a distance
of O(1/

\surd 
\theta n) from the ground truth with a sample complexity of p = \Omega (n7). Combining

these results with Theorems 2.2--2.4 allows for an end-to-end global guarantee at the cost of
increasing the sample complexity to \Omega (n5) for (ODL) and \Omega (n7) for (CDL).

However, we note that these tailored initialization schemes are not easily implementable,
especially in a huge-scale regime. In practice, we observed that a simple warm-start algorithm
would yield similar performance. Consider a variant of Algorithm 2.1 with a diminishing
threshold presented in Algorithm 2.4 (the warm-start schemes for Algorithms 2.2 and 2.3 are
similar and hence omitted for brevity).

Notice that a large \zeta 0 will force \bfitX (t) to be an all-zero matrix and make \bfitD (t+1) an identity
matrix. As we shrink the threshold \zeta t, the matrix \bfitX (t) eventually becomes nonzero, and

\bfA \bfl \bfg \bfo \bfr \bfi \bft \bfh \bfm \bftwo .\bffour . Algorithm 2.1 with warm-start.

1: \bfI \bfn \bfp \bfu \bft : \bfitY , \zeta 0, \zeta , \beta \in (0,1)

2: Set \bfitD (0) = \bfitI n.
3: \bff \bfo \bfr t= 0,1, . . . , T0 \bfd \bfo 
4: \zeta t+1 =max\{ \beta \zeta t, \zeta \} .
5: Set \bfitX (t) =HT\zeta t(\bfitD 

(t)\top \bfitY ).

6: Set \bfitD (t+1) = \bfitI n if \bfitX (t) = \bfzero n, and \bfitD (t+1) =Polar(\bfitY \bfitX (t)\top ) if \bfitX (t) \not = \bfzero n.
7: \bfe \bfn \bfd \bff \bfo \bfr 

8: \bfr \bfe \bft \bfu \bfr \bfn \bfitD (T0)

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

D
ow

nl
oa

de
d 

02
/0

1/
26

 to
 1

30
.1

26
.1

01
.1

35
 . 

R
ed

is
tri

bu
tio

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.si

am
.o

rg
/te

rm
s-

pr
iv

ac
y



ALTERNATING MINIMIZATION SOLVES COMPLETE DICTIONARY LEARNING 865

Figure 2. The plots above show the iterates of Algorithm 2.4 with p = 100, n = 5, and \theta = 0.3. The left
figure shows the error in the sparse code. The right figure shows the number of nonzero entries of Supp(\bfitX \ast ) - 
Supp(\bfitX (t)). The number is 126 at the beginning, which is the total number of nonzero entries in \bfitX \ast , and 0 in
the end, which indicates the full recovery of the support of \bfitX \ast .

the iterates \bfitD (0) start to gradually move towards the basin of attraction of \bfitD \ast . Figure 2
demonstrates how our proposed warm-start algorithm generates an initial dictionary that is
sufficiently close to the true dictionary. We also observe that, in practice, the convergence of
iterates from \bfitI d to the basin of local convergence is not linear. However, once the iterates
reach this basin, they exhibit linear convergence to the ground truth, which is theoretically
guaranteed by Theorem 2.2. We also note that our proposed warm-start algorithm can serve
as an effective initialization scheme for other DL algorithms, including those discussed in
section 1.2. The theoretical analysis of this warm-start algorithm is left as an enticing challenge
for future research.

3. Proofs. In this section, we present the proofs of our main theorems.

3.1. Proof of Theorem 2.2. We use induction to prove Theorem 2.2. We consider the
following induction hypothesis:

\| \bfitD (s)  - \bfitD \ast \| F =O

\biggl( 
1

\sigma 
\surd 
\theta n

\biggr) 
at iteration s.(3.1)

As will be shown later, this induction hypothesis will lead to the desired linear convergence
result. The base case is verified, given the initial condition. We next present the following
two key lemmas, the proofs of which can be found in Appendix B.

Lemma 3.1 (exact support recovery). Consider \bfitY = \bfitD \ast \bfitX \ast , where \bfitD \ast \in On and \bfitX \ast 

satisfies Assumption 2.1. For all \bfitD satisfying \| \bfitD  - \bfitD \ast \| 1,2 = O( 1
\sigma 
\surd 
\theta n
), with probability at

least 1 - 2exp(log p - Cn), we have supp(HT\Gamma /2(\bfitD 
\top \bfitY )) = supp(\bfitX \ast ).

Lemma 3.2 (guaranteed improvement on polar decomposition). Consider \bfitY =\bfitD \ast \bfitX \ast , where
\bfitD \ast \in On and \bfitX \ast satisfies Assumption 2.1 with sparsity level 0 < \theta < 1/2, and suppose that
p=\Omega (n/\theta 2). Then, with probability at least 1 - 2exp(logn - n), the following inequality holds

for every approximation \bfitX of \bfitX \ast such that \| \bfitX  - \bfitX \ast \| F

\| \bfitX \ast \| 2
=O(1) and supp(\bfitX ) = supp(\bfitX \ast ):

\| Polar(\bfitY \bfitX \top ) - \bfitD \ast \| F < 0.9
\| \bfitX  - \bfitX \ast \| F

\| \bfitX \ast \| 2
.
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866 G. LIANG, G. ZHANG, S. FATTAHI, AND R. Y. ZHANG

Lemma 3.1 together with our induction hypothesis (3.1) implies that

supp
\Bigl( 
\bfitX (s)

\Bigr) 
= supp

\Bigl( 
HT\Gamma /2(\bfitD 

(s)\top \bfitY )
\Bigr) 
= supp(\bfitX \ast ) .(3.2)

We can use the exact recovery of support to bound the error on the sparse code:

\| \bfitX (s)  - \bfitX \ast \| F = \| HT\Gamma /2(\bfitD 
(s)\top \bfitY ) - \bfitX \ast \| F

(\mathrm{a})

\leq \| \bfitD (s)  - \bfitD \ast \| F \| \bfitY \| 2,

where we used (3.2) for (a). The above inequality implies that

\| \bfitX (s)  - \bfitX \ast \| F
\| \bfitX \ast \| 2

=
\| \bfitX (s)  - \bfitX \ast \| F

\| \bfitD \ast \bfitX \ast \| 2
=

\| \bfitX (s)  - \bfitX \ast \| F
\| \bfitY \| 2

\leq \| \bfitD (s)  - \bfitD \ast \| F =O

\biggl( 
1

\sigma 
\surd 
\theta n

\biggr) 
.(3.3)

Invoking Lemma 3.2 with \bfitX =\bfitX (s) together with (3.3) leads to

\| \bfitD (s+1)  - \bfitD \ast \| F <
0.9\| \bfitX (s)  - \bfitX \ast \| F

\| \bfitX \ast \| 2
< 0.9\| \bfitD (s)  - \bfitD \ast \| F .

Therefore, the induction hypothesis (3.1) holds for t= s+1. Consequently, the linear conver-

gence for \| \bfitX (s) - \bfitX \ast \| F

\| \bfitX \ast \| 2
follows from (3.3) and the above inequality:

\| \bfitX (s+1)  - \bfitX \ast \| F
\| \bfitX \ast \| 2

\leq \| \bfitD (s+1)  - \bfitD \ast \| F < 0.9
\| \bfitX (s)  - \bfitX \ast \| F

\| \bfitX \ast \| 2
.

The proof is complete by noticing a lower bound of the probability that both Lemma 3.1 and
Lemma 3.2 hold is 1 - 2exp(log p - Cn) - 2exp(logn - n) = 1 - n - \omega (1), which follows from
our assumption p=O(n\gamma ). This completes the proof.

Next, we provide the proof of Theorem 2.4. As will be shown later, the proof of Theo-
rem 2.3 readily follows from this proof.

3.2. Proof of Theorem 2.4. The linear convergence of \bfitA (T ) hinges on the linear conver-
gence of the preconditioned dictionary \bfitD (T ) towards

\bfitD \ast =\scrL ((\bfitA \ast \bfitA \ast \top ) - 1)\top \bfitA \ast .

To establish this fact, we first prove the following inequality:

\| \bfitD (s+1)  - \bfitD \ast \| F \leq 0.9\| \bfitD (s)  - \bfitD \ast \| F +O
\Bigl( 
\| \bfitP (s)\bfitA \ast  - \bfitD \ast \| F

\Bigr) 
, s= 0,2, . . . , T  - 1.(3.4)

We present the following intermediate lemmas, the proofs of which are in Appendix B.

Lemma 3.3 (bounding preconditioner error). Suppose that \bfitX \ast satisfies Assumption 2.1.
Then, with probability at least 1 - 2exp( - n), we have\bigm\| \bigm\| \bigm\| \bigm\| \bigm\| \bfitP (t)  - \scrL 

\biggl( \Bigl( 
\bfitA \ast \bfitA \ast \top 

\Bigr)  - 1
\biggr) \top 

\bigm\| \bigm\| \bigm\| \bigm\| \bigm\| 
2

\leq O

\biggl( 
\^\kappa 6

\theta 

\sqrt{} 
n

p1 + t

\biggr) 
.
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ALTERNATING MINIMIZATION SOLVES COMPLETE DICTIONARY LEARNING 867

Lemma 3.4 (spectral property for sparse code matrix). Suppose that \bfitX \ast satisfies Assump-
tion 2.1 and p=\Omega (\tau n/\theta 2) for an arbitrary \tau > 0. Then, with probability at least 1 - 2exp( - n),
we have

\| \bfitX \ast \| 2 \leq 
\Bigl( 
1 + \tau  - 

1

4

\Bigr) \sqrt{} 
p\theta \sigma , \sigma n (\bfitX 

\ast )\geq 
\Bigl( 
1 - \tau  - 

1

4

\Bigr) \sqrt{} 
p\theta \sigma , \kappa (\bfitX \ast )\leq 1 + \tau  - 

1

4

1 - \tau  - 
1

4

.

As with the proof of Theorem 2.3, we will use the induction hypothesis \| \bfitD (s)  - \bfitD \ast \| F \leq 
O( 1

\sigma 
\surd 
\theta n
). The base case is easy to verify given the initial condition and Lemma 3.3:

\| \bfitD (0)  - \bfitD \ast \| F = \| \bfitP (0)\bfitA (0)  - \scrL ((\bfitA \ast \bfitA \ast \top ) - 1)\top \bfitA \ast \| F
= \| \bfitP (0)\bfitA (0)  - \scrL ((\bfitA \ast \bfitA \ast \top ) - 1)\top \bfitA (0) +\scrL ((\bfitA \ast \bfitA \ast \top ) - 1)\top \bfitA (0)  - \scrL ((\bfitA \ast \bfitA \ast \top ) - 1)\top \bfitA \ast \| F
\leq \| \bfitP (0)  - \scrL ((\bfitA \ast \bfitA \ast \top ) - 1)\top \| 2\| \bfitA (0)\| F + \| \scrL ((\bfitA \ast \bfitA \ast \top ) - 1)\top \| 2\| \bfitA (0)  - \bfitA \ast \| F

\leq O

\biggl( 
\^\kappa 6

\theta 

\sqrt{} 
n

p1
\cdot 
\surd 
n

\biggr) 
+O

\biggl( 
\^\kappa \cdot 1

\^\kappa \sigma 
\surd 
\theta n

\biggr) 
=O

\biggl( 
1

\sigma 
\surd 
\theta n

\biggr) 
.

Moreover, after achieving (3.4) for each s, we have \| \bfitD (s+1)  - \bfitD \ast \| F =O( 1
\sigma 
\surd 
\theta n
) since

\| \bfitP (s)\bfitA \ast  - \bfitD \ast \| F \leq 

\bigm\| \bigm\| \bigm\| \bigm\| \bigm\| \bfitP (s)  - \scrL 
\biggl( \Bigl( 

\bfitA \ast \bfitA \ast \top 
\Bigr)  - 1

\biggr) \top 
\bigm\| \bigm\| \bigm\| \bigm\| \bigm\| 
2

\| \bfitD \ast \| F =O

\biggl( 
1

\sigma 
\surd 
\theta n

\biggr) 
.

For the remainder of this section, we abuse the notation and use \bfitX \ast to denote the sparse
code that generates \bfitY (s) = \bfitA \ast \bfitX \ast , where \bfitY (s) is obtained by adding the latest sample as
the last column and removing the oldest sample from its first column (see steps 6 and 7 in
Algorithm 2.3). Indeed, \bfitX \ast is different from iteration to iteration, but it plays a similar role in

the proof to the ground truth matrix in the full-batch case. We also define \~\bfitX as \~\bfitX =\bfitD \ast \top \~\bfitY 
(s)

,

which is again a different sparse code for different iterations since \~\bfitY 
(s)

= \bfitP (s)\bfitY (s) and both
\bfitP (s) and \bfitY (s) change from iteration to iteration. Let us assume that the initial sample size
and batch size satisfy p1 = \Omega (\tau 1n

3 log2 p2\sigma 
2\^\kappa 12/(\theta \Gamma 2)) and p2 = \Omega (\tau 42n/\theta 

2) for parameters
\tau 1, \tau 2 > 0 to be defined later.

Towards proving (3.4), we first show that \~\bfitX 
(s)

recovers the sparsity pattern of \bfitX \ast if we
use a large enough number of samples to construct the preconditioner. To show this, we

consider one entry (\bfitD (s)\top \~\bfitY 
(s)

)ij of \bfitD 
(s)\top \~\bfitY 

(s)
and write\Bigl( 

\bfitD (s)\top \~\bfitY 
(s)

\Bigr) 
ij
=

\Bigl( 
\bfitD (s)\top \bfitD \ast ( \~\bfitX  - \bfitX \ast )

\Bigr) 
ij\underbrace{}  \underbrace{}  

:=\scrA ij

+
\Bigl( 
\bfitD (s)\top \bfitD \ast \bfitX \ast 

\Bigr) 
ij\underbrace{}  \underbrace{}  

:=\scrB ij

.(3.5)

The first term in the right-hand side can be bounded as

| \scrA ij | \leq \| \bfitD (s)\top \bfitD \ast \| 2\| \~\bfitX  - \bfitX \ast \| 1,2 = \| \~\bfitX  - \bfitX \ast \| 1,2
\leq \| \bfitD \ast \top \bfitP (s)\bfitA \ast \bfitX \ast  - \bfitX \ast \| 1,2 \leq \| \bfitP (s)\bfitA \ast  - \bfitD \ast \| 2\| \bfitX \ast \| 1,2

\leq 
\bigm\| \bigm\| \bigm\| \bigm\| \bfitP (s)  - \scrL 

\biggl( \Bigl( 
\bfitA \ast \bfitA \ast \top 

\Bigr)  - 1
\biggr) \bigm\| \bigm\| \bigm\| \bigm\| 

2

\| \bfitA \ast \| 2\| \bfitX \ast \| 1,2 \lesssim 
\^\kappa 6

\theta 

\sqrt{} 
n

p1 + T
\| \bfitX \ast \| 1,2(3.6)
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868 G. LIANG, G. ZHANG, S. FATTAHI, AND R. Y. ZHANG

with probability at least 1 - 2exp( - n), where the last inequality is due to Lemma 3.3. The
expectation for the norm of each column, based on Assumption 2.1, is \sigma 

\surd 
\theta n. Therefore,

according to Theorem A.2 (see Appendix A), the random variable \| \bfitX \ast 
(\cdot ,k)\| 2  - \sigma 

\surd 
\theta n is sub-

Gaussian with sub-Gaussian norm O(
\surd 
\theta \sigma ). As a result, the kth column of \bfitX \ast satisfies

P
\Bigl( 
\| \bfitX \ast 

(\cdot ,k)\| 2 \geq 2\sigma 
\surd 
\theta n

\Bigr) 
\leq 2exp ( - Cn)(3.7)

for some constant C. Upon taking a union bound over different columns, we have

\| \bfitX \ast \| 1,2 = max
1\leq k\leq p2

\| \bfitX \ast 
(\cdot ,k)\| 2 \leq 2\sigma 

\sqrt{} 
\theta n log p2(3.8)

with probability at least 1 - 2exp( - Cn). Combining this inequality with (3.6), we have

| \scrA ij | \lesssim 
\^\kappa 6\sigma \surd 
\theta 

\sqrt{} 
n2 log p2
p1 + T

for every (i, j). Based on the above inequality and with the choice of p1 \gtrsim n2 \mathrm{l}\mathrm{o}\mathrm{g} p2\sigma 2\^\kappa 12

\theta \Gamma 2 , we
have | \scrA ij | < \Gamma /4. Following the proof of Lemma 3.1, the deviation of the second term \scrB ij
from \bfitX \ast 

ij can also be upper bounded by \Gamma /4 with high probability, which will not be repeated

here. Therefore, we have | (\bfitD (s)\top \~\bfitY 
(s)

)ij | < \Gamma /2 when \bfitX \ast 
ij = 0 and | (\bfitD (s)\top \~\bfitY 

(s)
)ij | > \Gamma /2 when

\bfitX \ast 
ij \not = 0, which leads to supp( \~\bfitX 

(s)
) = supp(\bfitX \ast ) with probability at least 1  - 2exp( - n)  - 

2exp( - Cn) - 2exp(log p2  - Cn). For any matrix \bfitM \in Rn\times p2 , we define the projection oper-
ator \scrP as

(\scrP (\bfitM ))ij =

\Biggl\{ 
\bfitM ij if (i, j)\in supp(\bfitX \ast ),

0 if (i, j) \not \in supp(\bfitX \ast ).

Given the exact support recovery, we have

\| \~\bfitX 
(s)  - \scrP ( \~\bfitX )\| F = \| \scrP (\bfitD (s)\top \~\bfitY 

(s)
) - \scrP ( \~\bfitX )\| F \leq \| \bfitD (s)\top \~\bfitY 

(s)  - \~\bfitX \| F
= \| \bfitD (s)\top \~\bfitY 

(s)  - \bfitD \ast \top \~\bfitY 
(s)\| F \leq \| \bfitD (s)  - \bfitD \ast \| F \| \~\bfitY 

(s)\| 2 = \| \bfitD (s)  - \bfitD \ast \| F \| \~\bfitX \| 2.

As a result we have

\| \~\bfitX 
(s)  - \scrP ( \~\bfitX )\| F
\| \scrP ( \~\bfitX )\| 2

=
\| \~\bfitX 

(s)  - \scrP ( \~\bfitX )\| F
\| \~\bfitX \| 2

\| \~\bfitX \| 2
\| \scrP ( \~\bfitX )\| 2

\leq \| \bfitD (s)  - \bfitD \ast \| F
\| \~\bfitX \| 2

\| \~\bfitX \| 2  - \| \~\bfitX  - \scrP ( \~\bfitX )\| 2

(3.9)

\leq \| \bfitD (s)  - \bfitD \ast \| F
\| \~\bfitX \| 2

\| \~\bfitX \| 2  - \| \~\bfitX  - \scrP ( \~\bfitX )\| F

(\mathrm{a})

\leq \| \bfitD (s)  - \bfitD \ast \| F
\| \~\bfitX \| 2

\| \~\bfitX \| 2  - \| \~\bfitX  - \bfitX \ast \| F
(\mathrm{b})

\leq \| \bfitD (s)  - \bfitD \ast \| F

\Biggl( 
1 +

\| \~\bfitX  - \bfitX \ast \| F
\| \bfitX \ast \| 2  - 2\| \~\bfitX  - \bfitX \ast \| F

\Biggr) 
\leq \| \bfitD (s)  - \bfitD \ast \| F

\left(  1 +

\| \~\bfitX  - \bfitX \ast \| F

\| \bfitX \ast \| 2

1 - 2\| \~\bfitX  - \bfitX \ast \| F

\| \bfitX \ast \| 2

\right)  
(\mathrm{c})

\leq \| \bfitD (s)  - \bfitD \ast \| F

\Biggl( 
1 +

1
\tau 1

1 - 2\times 1
\tau 1

\Biggr) 
=

\tau 1  - 1

\tau 1  - 2
\| \bfitD (s)  - \bfitD \ast \| F .
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ALTERNATING MINIMIZATION SOLVES COMPLETE DICTIONARY LEARNING 869

Here inequality (a) is due to the decomposition of \~\bfitX  - \bfitX \ast onto and outside the support
of \bfitX \ast . Specifically, define \scrP \bot (\cdot ) as the projection onto the complement of \scrP (\cdot ). We have
\scrP \bot ( \~\bfitX  - \scrP ( \~\bfitX )) =\scrP \bot ( \~\bfitX  - \bfitX \ast ) and \scrP ( \~\bfitX  - \scrP ( \~\bfitX )) = 0, which in turn implies \| \~\bfitX  - \scrP ( \~\bfitX )\| F \leq 
\| \~\bfitX  - \bfitX \ast \| F . The inequality (b) is due to \| \bfitX \ast \| 2 - \| \~\bfitX  - \bfitX \ast \| F \leq \| \bfitX \ast \| 2 - \| \~\bfitX  - \bfitX \ast \| 2 \leq \| \~\bfitX \| 2.
The inequality (c) holds due to \| \~\bfitX  - \bfitX \ast \| F

\| \bfitX \ast \| 2
\leq 1/\tau 1, which is a result of Lemma 3.3:

\| \~\bfitX  - \bfitX \ast \| F = \| \bfitD \ast \top \bfitP (s)\bfitA \ast \bfitX \ast  - \bfitX \ast \| F \leq \| \bfitP (s)\bfitA \ast  - \bfitD \ast \| F \| \bfitX \ast \| 2(3.10)

\leq 
\surd 
n\| \bfitP (s)\bfitA \ast  - \bfitD \ast \| 2\| \bfitX \ast \| 2 \lesssim 

\^\kappa 6

\theta 

\sqrt{} 
n2

p1 + T
\| \bfitX \ast \| 2,

and p1 =\Omega (\tau 1n
3 log2 p2\sigma 

2\^\kappa 12/(\theta \Gamma 2)).

So far, we have upper bounded \| \~\bfitX 
(s) - \scrP ( \~\bfitX )\| F

\| \scrP ( \~\bfitX )\| 2

with \| \bfitD (s)  - \bfitD \ast \| F . Next, we provide an

upper bound on \| \bfitD (s+1)  - \bfitD \ast \| F in terms of \| \~\bfitX 
(s) - \scrP ( \~\bfitX )\| F

\| \scrP ( \~\bfitX )\| 2

. We have

\| \bfitD (s+1)  - \bfitD \ast \| F = \| Polar( \~\bfitY (s) \~\bfitX 
(s)\top 

) - \bfitD \ast \| F = \| Polar(\bfitD \ast \~\bfitX \~\bfitX 
(s)\top 

) - \bfitD \ast \| F

(3.11)

= \| Polar(\bfitD \ast \~\bfitX \~\bfitX 
(s)\top 

) - Polar(\bfitD \ast \scrP ( \~\bfitX ) \~\bfitX 
(s)\top 

) + Polar(\bfitD \ast \scrP ( \~\bfitX ) \~\bfitX 
(s)\top 

) - \bfitD \ast \| F
= \| Polar(\bfitD \ast \~\bfitX \~\bfitX 

(s)\top 
) - Polar(\bfitD \ast \scrP ( \~\bfitX ) \~\bfitX 

(s)\top 
)\| F+\| Polar(\bfitD \ast \scrP ( \~\bfitX ) \~\bfitX 

(s)\top 
) - \bfitD \ast \| F .

To control the first term on the right-hand side, we invoke Theorem A.3 (see Appendix A):

\| Polar(\bfitD \ast \~\bfitX \~\bfitX 
(s)\top 

) - Polar(\bfitD \ast \scrP ( \~\bfitX ) \~\bfitX 
(s)\top 

)\| F

\leq 2\| \bfitD \ast \~\bfitX \~\bfitX 
(s)\top  - \bfitD \ast \scrP ( \~\bfitX ) \~\bfitX 

(s)\top \| F
\sigma n(\bfitD 

\ast \~\bfitX \~\bfitX 
(s)\top 

) + \sigma n(\bfitD 
\ast \scrP ( \~\bfitX ) \~\bfitX 

(s)\top 
)

(\mathrm{a})

\leq 2\kappa ( \~\bfitX 
(s)

)\| \~\bfitX  - \scrP ( \~\bfitX )\| F
2\sigma n(\bfitX 

\ast ) - \| \bfitX \ast  - \~\bfitX \| 2  - \| \bfitX \ast  - \scrP ( \~\bfitX )\| 2

=
2\kappa ( \~\bfitX 

(s)
)\| \~\bfitX  - \scrP ( \~\bfitX )\| F
\| \bfitX \ast \| 2

\cdot 1

2
\kappa (\bfitX \ast )  - 

\| \bfitX \ast  - \~\bfitX \| 2

\| \bfitX \ast \| 2
 - \| \bfitX \ast  - \scrP ( \~\bfitX )\| 2

\| \bfitX \ast \| 2

(\mathrm{b})

\leq \tau 1(\tau 2  - 1)

\tau 1(\tau 2 + 1) - \tau 2 + 1

\kappa ( \~\bfitX 
(s)

)\| \~\bfitX  - \scrP ( \~\bfitX )\| F
\| \bfitX \ast \| 2

,

where (a) follows after normalizing both the numerator and the denominator with \| \~\bfitX 
(s)\| 2.

Moreover, (b) follows from (3.10), Lemma 3.4, and p2 =\Omega (\tau 42n/\theta 
2). Next, we provide a bound

on \kappa ( \~\bfitX 
(s)

), and we do so by first bounding \kappa (\scrP ( \~\bfitX )). By Lemmas 3.4 and 3.3, we have

\kappa (\scrP ( \~\bfitX )) =
\| \scrP ( \~\bfitX )\| 2
\sigma n(\scrP ( \~\bfitX ))

\leq \| \bfitX \ast \| 2 + \| \scrP ( \~\bfitX ) - \bfitX \ast \| 2
\sigma n(\bfitX 

\ast ) - \| \scrP ( \~\bfitX ) - \bfitX \ast \| 2
(3.12)

=
\| \bfitX \ast \| 2 + \| \scrP ( \~\bfitX ) - \bfitX \ast \| 2

\| \bfitX \ast \| 2/\kappa (\bfitX \ast ) - \| \scrP ( \~\bfitX ) - \bfitX \ast \| 2
\leq \tau 1 + 1

\tau 1(\tau 2 - 1)
\tau 2+1  - 1

.
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870 G. LIANG, G. ZHANG, S. FATTAHI, AND R. Y. ZHANG

Upon assuming \tau 1 \geq 10 and \tau 2 \geq 10, we have

\kappa ( \~\bfitX 
(s)

)\leq \| \scrP ( \~\bfitX )\| 2+\| \scrP ( \~\bfitX ) - \~\bfitX 
(s)\| 2

\sigma n(\scrP ( \~\bfitX )) - \| \scrP ( \~\bfitX ) - \~\bfitX 
(s)\| 2

\leq 1 + \| \scrP ( \~\bfitX ) - \~\bfitX 
(s)\| F /\| \scrP ( \~\bfitX )\| 2

1/\kappa (\scrP ( \~\bfitX )) - \| \scrP ( \~\bfitX ) - \~\bfitX 
(s)\| F /\| \scrP ( \~\bfitX )\| 2

(\mathrm{a})

\leq 1 + 9/32

79/121 - 9/32
< 4.

For (a), we used (3.9) and the fact that \| \bfitD (s)  - \bfitD \ast \| F \leq 1/4. To conclude, we have

\| Polar(\bfitD \ast \~\bfitX \~\bfitX 
(s)\top 

) - Polar(\bfitD \ast \scrP ( \~\bfitX ) \~\bfitX 
(s)\top 

)\| F <
12\| \~\bfitX  - \scrP ( \~\bfitX )\| F

\| \bfitX \ast \| 2
\leq 12\| \bfitX \ast  - \scrP ( \~\bfitX )\| F

\| \bfitX \ast \| 2
.

Next, we turn our focus to \| Polar(\bfitD \ast \scrP ( \~\bfitX ) \~\bfitX 
(s)\top 

) - \bfitD \ast \| F , which is the second term of (3.11).
We first introduce the following lemma, which is borrowed from [33].

Lemma 3.5 (approximation error for dictionary (see the proof of Lemma 2.4 in [33])). For
any matrix \bfitX \ast \in Rn\times p and \bfitY =\bfitD \ast \bfitX \ast where \bfitD \ast \in On, consider an approximation \bfitX to \bfitX \ast 

with \bfitE := (\bfitX  - \bfitX \ast )/\| \bfitX \ast \| 2 satisfying \| \bfitE \| F < 1/\kappa 2(\bfitX \ast ). Then, for some constant CT > 0,
\bfitD =Polar(\bfitY \bfitX \top ) satisfies:

\| \bfitD  - \bfitD \ast \| F \leq \kappa (\bfitX \ast )4

2

\bigm\| \bigm\| \bfitX \ast \bfitE \top  - \bfitE \bfitX \ast \top \bigm\| \bigm\| 
F

\| \bfitX \ast \| 2
+CT \| \bfitE \| 2F .

To invoke Lemma 3.5, let \~\bfitE 
(s)

=
\~\bfitX 

(s) - \scrP ( \~\bfitX )

\| \scrP ( \~\bfitX )\| 2

, and notice that

\| \~\bfitE (s)\| F
(\mathrm{a})

\leq 9

8
\| \bfitD (s)  - \bfitD \ast \| F \leq 9

32
\leq 

\biggl( 
79

121

\biggr) 2 (\mathrm{b})

\leq 1

\kappa 2(\scrP ( \~\bfitX ))
,

where (a) and (b) follow from (3.9) and (3.12), respectively. Therefore, Lemma 3.5 can be
invoked:

\| Polar(\bfitD \ast \scrP ( \~\bfitX ) \~\bfitX 
(s)\top 

) - \bfitD \ast \| F \leq \kappa (\scrP ( \~\bfitX ))4

2

\bigm\| \bigm\| \bigm\| \scrP ( \~\bfitX ) \~\bfitE 
(s)\top  - \~\bfitE 

(s)\scrP ( \~\bfitX )\top 
\bigm\| \bigm\| \bigm\| 
F

\| \scrP ( \~\bfitX )\| 2
+CT \| \bfitE \| 2F .

(3.13)

By recalling supp( \~\bfitX 
(s)

) = supp(\bfitX \ast ), we follow the same argument in the proof of Lemma 3.2
and conclude that\bigm\| \bigm\| \bigm\| \scrP ( \~\bfitX ) \~\bfitE 

(s)\top  - \~\bfitE 
(s)\scrP ( \~\bfitX )\top 

\bigm\| \bigm\| \bigm\| 
F

2\| \scrP ( \~\bfitX )\| 2
\leq 

max1\leq k\leq n

\bigm\| \bigm\| \bigm\| \bfitM k\scrP ( \~\bfitX ) \~\bfitM k

\bigm\| \bigm\| \bigm\| 
2
\| \~\bfitE (s)\| F

\| \scrP ( \~\bfitX )\| 2
,

where \bfitM k and \~\bfitM k are defined in the same way as in the proof of Lemma 3.2. Since both
\bfitM k and \~\bfitM k are linear operators, we have

max1\leq k\leq n

\bigm\| \bigm\| \bigm\| \bfitM k\scrP ( \~\bfitX ) \~\bfitM k

\bigm\| \bigm\| \bigm\| 
2

\| \scrP ( \~\bfitX )\| 2
\leq 

max1\leq k\leq n

\bigm\| \bigm\| \bigm\| \bfitM k\bfitX 
\ast \~\bfitM k

\bigm\| \bigm\| \bigm\| 
2
+ \| \scrP ( \~\bfitX ) - \bfitX \ast \| 2

\| \bfitX \ast \| 2(1 - \| \scrP ( \~\bfitX ) - \bfitX \ast \| F /\| \bfitX \ast \| 2)

\leq \tau 1
\tau 1  - 1

\left(  max1\leq k\leq n

\bigm\| \bigm\| \bigm\| \bfitM k\bfitX 
\ast \~\bfitM k

\bigm\| \bigm\| \bigm\| 
2

\| \bfitX \ast \| 2
+

1

\tau 1

\right)  .(3.14)

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

D
ow

nl
oa

de
d 

02
/0

1/
26

 to
 1

30
.1

26
.1

01
.1

35
 . 

R
ed

is
tri

bu
tio

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.si

am
.o

rg
/te

rm
s-

pr
iv

ac
y



ALTERNATING MINIMIZATION SOLVES COMPLETE DICTIONARY LEARNING 871

Following the proof of Lemma 3.2, we have that with probability 1  - 2exp(logn  - n) and
p2 =\Omega (\tau 42n/\theta 

2)

max1\leq k\leq n

\bigm\| \bigm\| \bigm\| \bfitM k\bfitX 
\ast \~\bfitM k

\bigm\| \bigm\| \bigm\| 
2

\| \bfitX \ast \| 2
\leq \tau 2 + 1

\tau 2  - 1

\surd 
\theta .(3.15)

Combined with (3.13), we have

\| Polar(\bfitD \ast \scrP ( \~\bfitX ) \~\bfitX 
(s)\top 

) - \bfitD \ast \| F \leq \kappa (\scrP ( \~\bfitX ))4

2

\bigm\| \bigm\| \bigm\| \scrP ( \~\bfitX ) \~\bfitE 
(s)\top  - \~\bfitE 

(s)\scrP ( \~\bfitX )\top 
\bigm\| \bigm\| \bigm\| 
F

\| \scrP ( \~\bfitX )\| 2
+CT \| \~\bfitE 

(s)\| 2F

\leq 
\biggl( 

\tau 1
\tau 1  - 1

\biggl( 
\tau 2 + 1

\tau 2  - 1

\surd 
\theta +

1

\tau 1

\biggr) 
\kappa (\scrP ( \~\bfitX ))4 +CT \| \~\bfitE 

(s)\| F
\biggr) 
\| \~\bfitE (s)\| F .

Therefore, we have a bound for the second term on the right-hand side of (3.11). Recall
that \kappa (\scrP ( \~\bfitX )) \leq \tau 1+1

\tau 1(\tau 2 - 1)

\tau 2+1
 - 1

due to (3.12) and 0 < \theta < 1/2. Therefore, similar to the proof of

Lemma 3.2, for sufficiently large \tau 1 and \tau 2 and \| \~\bfitE (s)\| F \leq 1
10CT

, (3.11) can be rewritten as

\| \bfitD (s+1)  - \bfitD \ast \| F
(\mathrm{a})

\leq 0.9\| \bfitD (s)  - \bfitD \ast \| F+
12\| \bfitX \ast  - \scrP ( \~\bfitX )\| F

\| \bfitX \ast \| 2
\leq 0.9\| \bfitD (s)  - \bfitD \ast \| F + 12\| \bfitP (s)\bfitA \ast  - \bfitD \ast \| F ,(3.16)

where (a) follows from (3.9). This completes the proof of the induction step (3.4). For each
induction step, our analysis holds with probability at least 1  - O(exp(log p2  - n)). After
taking the union bound, the first T steps of the induction hold with probability at least
1 - O(exp(logT + log p2  - n)), which is 1 - n - \omega (1) when T =O(n\beta ) and p2 =O(n\gamma ). Finally,
we use (3.16) to complete the proof of Theorem 2.4. To this goal, notice that

\| \bfitA (s+1)  - \bfitA \ast \| F =

\bigm\| \bigm\| \bigm\| \bigm\| \bfitP (s+1) - 1\bfitD (s+1)  - 
\Bigl( 
\scrL ((\bfitA \ast \bfitA \ast \top ) - 1)\top 

\Bigr)  - 1
\bfitD \ast 

\bigm\| \bigm\| \bigm\| \bigm\| 
F

(3.17)

\leq \| \bfitD (s+1)  - \bfitD \ast \| F +

\bigm\| \bigm\| \bigm\| \bigm\| \bfitP (s+1) - 1  - 
\Bigl( 
\scrL ((\bfitA \ast \bfitA \ast \top ) - 1)\top 

\Bigr)  - 1
\bigm\| \bigm\| \bigm\| \bigm\| 
F

\leq 0.9\| \bfitD (s) - \bfitD \ast \| F+O
\Bigl( 
\| \bfitP (s)\bfitA \ast  - \bfitD \ast \| F

\Bigr) 
+O

\Biggl( \bigm\| \bigm\| \bigm\| \bigm\| \bigm\| \bfitP (s+1)  - \scrL 
\biggl( \Bigl( 

\bfitA \ast \bfitA \ast \top 
\Bigr)  - 1

\biggr) \top 
\bigm\| \bigm\| \bigm\| \bigm\| \bigm\| 
F

\Biggr) 
.

Via a similar argument, we can write

\| \bfitD (s)  - \bfitD \ast \| F \leq \| \bfitA (s)  - \bfitA \ast \| F +O

\Biggl( \bigm\| \bigm\| \bigm\| \bigm\| \bigm\| \bfitP (s)  - \scrL 
\biggl( \Bigl( 

\bfitA \ast \bfitA \ast \top 
\Bigr)  - 1

\biggr) \top 
\bigm\| \bigm\| \bigm\| \bigm\| \bigm\| 
F

\Biggr) 
.(3.18)

Combining (3.17) and (3.18), we have

\| \bfitA (s+1)  - \bfitA \ast \| F \leq 0.9\| \bfitA (s)  - \bfitA \ast \| F

+O

\Biggl( \bigm\| \bigm\| \bigm\| \bigm\| \bigm\| \bfitP (s)  - \scrL 
\biggl( \Bigl( 

\bfitA \ast \bfitA \ast \top 
\Bigr)  - 1

\biggr) \top 
\bigm\| \bigm\| \bigm\| \bigm\| \bigm\| 
F

+\| \bfitP (s)\bfitA \ast  - \bfitD \ast \| F+

\bigm\| \bigm\| \bigm\| \bigm\| \bigm\| \bfitP (s+1)  - \scrL 
\biggl( \Bigl( 

\bfitA \ast \bfitA \ast \top 
\Bigr)  - 1

\biggr) \top 
\bigm\| \bigm\| \bigm\| \bigm\| \bigm\| 
F

\Biggr) 
.
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By invoking Lemma 3.3, we can bound \| \bfitP (s)\bfitA \ast  - \bfitD \ast \| F , \| \bfitP (s)  - \scrL ((\bfitA \ast \bfitA \ast \top ) - 1)\top \| F , and
\| \bfitP (s+1)  - \scrL ((\bfitA \ast \bfitA \ast \top ) - 1)\top \| F with O( \^\kappa 

6

\theta 

\sqrt{} 
n

p1+T
). This completes the proof.

3.3. Proof of Theorem 2.3. Theorem 2.3 is a special case of Theorem 2.4, where we use
one precalculated preconditioner throughout. In particular, it is easy to see that (3.16) in the
proof of Theorem 2.4 holds after replacing \bfitP (s) with \bfitP :

\| \bfitD (s+1)  - \bfitD \ast \| F \leq 0.9\| \bfitD (s)  - \bfitD \ast \| F + 12\| \bfitP \bfitA \ast  - \bfitD \ast \| F .(3.19)

Therefore, we have

\| \bfitD (s+1)  - \bfitD \ast \| F \leq 0.9\| \bfitD (s)  - \bfitD \ast \| F + 12\| \bfitP \bfitA \ast  - \bfitD \ast \| F
\leq 0.9s\| \bfitD (0) - \bfitD \ast \| F+(0.9+ \cdot \cdot \cdot +0.9s) 12\| \bfitP \bfitA \ast  - \bfitD \ast \| F
= 0.9s\| \bfitD (0)  - \bfitD \ast \| F +O(\| \bfitP \bfitA \ast  - \bfitD \ast \| F ).

Given the above inequality, one can use the same argument as in (3.17) and (3.18) to establish
the linear convergence of \bfitA (s). The details are omitted for brevity.

4. Numerical experiments. In this section, we validate our theoretical results using syn-
thetic and real data. All experiments are performed on a MacBook Pro 2021 with the Apple
M1 Pro chip and a 16 GB unified memory for a serial implementation in MATLAB 2022a.
The code is available at: https://github.com/lianggeyuleo/CompleteDL.git.

4.1. Synthetic dataset. We validate our theoretical results using a synthetic dataset.
We consider the generative model \bfitY =\bfitA \ast \bfitX \ast where \bfitA \ast is a randomly generated orthogonal
or full-rank dictionary. Moreover, \bfitX \ast is generated from a Gaussian--Bernoulli distribution
followed by a truncation step, where the entries \bfitX \ast 

ij with | \bfitX \ast 
ij | < \Gamma = 0.3 are replaced by

\bfitX \ast 
ij = sgn(\bfitX \ast 

ij)\Gamma . Consequently, the threshold \zeta in each algorithm is set to \Gamma /2 = 0.15.
First, we compare the efficiency of our method in solving (ODL) to other state-of-the-art

techniques. In this experiment, we vary the signal dimension n from 50 to 800 and set the
sample size p= 100n, which corresponds to the linear sample size condition in Theorem 2.2.
We invoke the warm-start method in Algorithm 2.4 to generate the initial points. For each
trial, we stop the algorithm when the consecutive iterates are close to each other (\| \bfitD (t - 1)  - 
\bfitD (t - 1)\| 2 \leq 10 - 7) and record the running time and final error (\| \bfitD (T )  - \bfitD \ast \| F ).

Many algorithms for dictionary learning exhibit poor scalability in this setting. For in-
stance, the convergence time of the KSVD method [2], which is perhaps the most well-known
alternating minimization algorithm for dictionary learning, exceeds 300 s even for our smallest
instance n= 50. Another example is the alternating minimization based on \ell 1-regularization
[1], which suffers from a similar scalability issue. Instead, in Figure 3, we consider two other
candidate algorithms that have comparable scalability with ours: (1) Gradient-based method
[3]: In this method, the dictionary update step (step 4 in Algorithm 2.1) is replaced by a
gradient step \bfitD (t+1) = \bfitD (t)  - \eta \nabla \bfitD (t)L where L is the objective of (ODL). Here, we pick
\eta = 10 - 5 after fine-tuning, which is the largest step-size to guarantee convergence in practice.
(2) \ell 4-maximization--based method [43]: The work [43] introduces a projected gradient ascent
for maximizing the objective function f(\bfitD ) = \| \bfitD \top \bfitY \| 44. This method is shown to have supe-
rior performance compared to SPAMS [21] and the subgradient descent method [5]. As can be
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ALTERNATING MINIMIZATION SOLVES COMPLETE DICTIONARY LEARNING 873

Figure 3. We compare three different dictionary learning methods with their running time and final error
until convergence. The results above are averaged over 5 independent trials. All methods use the same initial
point. The stopping criterion is when consecutive iterates are close to each other (\| \bfitD (t - 1) - \bfitD (t - 1)\| 2 \leq 10 - 7).

Figure 4. Results of Algorithm 2.2 with n = 5, \theta = 0.3, \~p = 100, and varying p. The specific number of
iterations to reach convergence varies with the sample size since it depends on the distance between the ground
truth and initialization.

seen in Figure 3, our method converges faster while achieving a smaller error. Particularly, the
gradient-based method will require more time to converge, while \ell 4-maximization is restricted
by its poor accuracy.

In Figure 4, we report the performance of Algorithm 2.2 with warm-start for varying
sample sizes. The true dictionary \bfitA \ast is a randomly generated full-rank n\times n matrix, and we
choose n= 5 and \theta = 0.3. We set \~p= 102 and vary p. Our experiments support our theoretical
results in the following aspects: (1) We observe the fast convergence of our algorithm for
different p, which is in line with Theorem 2.3. Similar to Figure 2, the effect of the warm-up
phase is evident in the early stages of the iterations. (2) We see clear improvement in the
accuracy of the final solution with a larger sample size. Such improvement is characterized
by Theorem 2.3 with the additional error term, which diminishes to zero as p\rightarrow \infty .

Finally, we numerically test the stability and sample complexity of our algorithm as \bfitA \ast 

becomes increasingly ill-conditioned. In Figure 5 (right), we present the results, illustrating

the sample size required to achieve a final error of \| \bfitA (T ) - \bfitA \ast \| F

\| \bfitA \ast \| F
\leq 0.1 as the condition number

of \bfitA \ast varies from 1 to 1000. Surprisingly, our practical findings indicate that the relationship

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.
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Figure 5. Left: Final error of Algorithm 2.2 in relation to condition number \kappa (\bfitA \ast ) and varied noise levels

\beta for a fixed sample size of \~p= p= 105. Right: Required sample size to achieve \| \bfitA (T ) - \bfitA \ast \| F
\| \bfitA \ast \| F

\leq 0.1 as a function

of the condition number \kappa (\bfitA \ast ). In both settings, we fix n= 5, \theta = 0.3, and T = 1000.

between sample size and the condition number differs from what our theoretical framework
suggests, showcasing a more favorable scenario in practice.

To further underscore the robustness of our algorithm, we investigate its performance in
a noisy setting, where \bfitY = \bfitA \ast \bfitX \ast + \scrE , with \scrE representing a noise matrix whose elements
follow a Gaussian distribution with zero mean and variance \beta 2. As illustrated in Figure 5
(left), our algorithm remains unaffected by the increasing condition number \kappa (\bfitA \ast ) in the
noiseless scenario. However, it encounters difficulties in recovering \bfitA \ast when both noise and ill-
conditioning are present. We acknowledge that a theoretical explanation for this phenomenon
in the noisy setting remains a topic for future investigation.

4.2. Real dataset. In this section, we showcase the performance of Algorithm 2.3 in
learning a dictionary for the Landscape Dataset [15] consisting of 7,000 colored images of
different landscapes, 20 of which are set aside as a test dataset. To gauge the quality of our
learned dictionary, we use our dictionary to perform a denoising task on these images.

Dataset. Each figure in our dataset is a colored image of size 150 \times 150 \times 3. Instead of
directly learning a dictionary for the whole dataset, we follow the procedure in [2] and divide
each figure into 225 patches of size 10\times 10\times 3. Each patch is then reshaped into a 300 \times 1
vector. Collecting all 225 patches over all 7000 images results in 1,575,000 patch samples. We
downsample this dataset to 10,000 patch samples so that KSVD can also be applied to this
dataset. This results in a data matrix \bfitY of size 300\times 10,000 with n = 300 and p = 10,000.
Our goal is to learn a dictionary \bfitA of size 300\times 300 for this data matrix.

Image denoising. We gauge the quality of our learned dictionary by using it to denoise
noisy images. Here, we corrupt each image with 50\% missing pixels. In other words, we
select 50\% of the 150\times 150 pixels in each image uniformly at random and then set the pixel
values across all three RBG channels to 0. Our goal is to learn a dictionary and use it to
denoise this image by filling in the missing pixels. For reconstruction, we choose a sparsity
level of approximately 10\%, which simply corresponds to 30 atoms for reconstruction. With
a given dictionary, the reconstruction is done using a standard implementation of orthogonal
matching pursuit (OMP) found in the SPAMS library in MATLAB [28].
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For both the image denoising examples in Figures 1 and 7, we set p1 = p2 = 500 in
Algorithm 2.3 (corresponding to a batch size of 500) and run it for a total of T = 2000
iterations, which took 125 seconds for the constructed data matrix \bfitY . We randomly sample
20 images from the dataset, which are then corrupted with noise. The images before and
after the denoising are shown in the first two rows of Figure 7. Here we see that our learned
dictionary reconstructs the original image almost exactly.

Additionally, we compare our learned dictionary with that of KSVD, which is implemented
using a standard sparse learning library [28] in MATLAB. We allow KSVD a total running
time of 1100 seconds. A comparison of denoised results using dictionaries learned with Al-
gorithm 2.3 and KSVD is shown in Figure 1. Here, we also see that the dictionary learned
by Algorithm 2.3 greatly outperforms KSVD, achieving a much better reconstruction of the
original image despite being 10 times faster. Furthermore, we plot the similarity score between
the reconstructed image and the original image versus the running time of both algorithms.
In particular, at each iteration of both algorithms, we use the dictionary at that iteration to
reconstruct a denoised image and compare it with the original. We see in Figure 6 that our
algorithm achieves a similarity score of 0.9 in 120 s, while KSVD can only achieve a similarity
score of 0.28 in 2500 s.

Image inpainting. To further gauge the efficacy of our learned dictionary, here we consider
the more challenging task of inpainting. Here instead of corrupting each image with 50\%
of missing pixels, we opt to black out entire pixel blocks. We segment each image into
patches with dimensions of 25\times 25 to facilitate inpainting for larger areas of obscured pixels.
Much like our previous approach, we execute Algorithm 2.3 for a total of T = 2,000, which
consumed approximately 2,100 s. For the reconstruction process, we maintain a sparsity level
of approximately 10\%, as we did previously.

Our reconstruction results are depicted in Figure 7. We randomly black out blocks of
dimensions 3\times 3, 5\times 5, and 10\times 10. In all three scenarios, the total count of obscured blocks
equals the total number of patches. It is evident that for smaller blacked-out blocks, our
dictionary performs well in reconstructing the images. However, when dealing with larger
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Figure 6. Similarity score between reconstructed image and original image. We display the similarity score
between the denoised image and the original one for our algorithm (left) and KSVD (right). As time progresses,
the dictionary obtained from our algorithm improves, leading to increasingly better reconstructions. On the other
hand, while the dictionary obtained from KSVD improves with time, the reconstruction quality exhibits a slower
rate of improvement.
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876 G. LIANG, G. ZHANG, S. FATTAHI, AND R. Y. ZHANG

Figure 7. Image denoising and inpainting. Given a dataset of multiple landscape images, we divided each
image into patches and combined them to form a large data matrix. A dictionary is learned using our mini-
batch alternating minimization algorithm. A total of 20 noisy images are shown with different noise patterns,
alongside their respective reconstructed versions.
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10\times 10 blocks, the inpainting task becomes more challenging. In this case, we observe that
the reconstructed images exhibit some imperfections within the blacked-out regions.

5. Conclusion. In this paper, we study the dictionary learning problem, where the goal
is to represent a given set of data samples as linear combinations of a few atoms from a
learned dictionary. The existing algorithms for dictionary learning often lack scalability or
provable guarantees. This paper shows that a simple alternating minimization algorithm
provably solves both orthogonal and complete dictionary learning problems. Unlike other
provably convergent algorithms for dictionary learning, our proposed method does not rely
on any convex relaxation of the problem and can be easily implemented in realistic scales.
Through synthetic and realistic experiments on image denoising, we showcase the superiority
of our proposed algorithm compared to the most commonly used algorithms for dictionary
learning.

Appendix A. Preliminary. To prove our main theorems, we will rely on several preliminary
results from high-dimensional statistics and matrix perturbation theory, which will be essential
for our arguments. We denote the sub-Gaussian norm and L2-norm of a random variable with
\| \cdot \| \psi 2

and \| \cdot \| L2 , respectively.

Theorem A.1 (concentration of sample covariance matrix [42]). Let \bfitx be a sub-Gaussian
random vector in Rn with covariance matrix \bfSigma , such that

\| \langle \bfitx ,\bfitz \rangle \| \psi 2
\leq Cce\| \langle \bfitx ,\bfitz \rangle \| L2 for any \bfitz \in Rn,

for some Cce \geq 1. Let \bfitX \in Rn\times p be a matrix whose columns have identical and independent
distribution as \bfitx . Then, for any u\geq 0 and with probability at least 1 - 2exp ( - u), we have\bigm\| \bigm\| \bigm\| \bigm\| 1p\bfitX \bfitX \top  - \bfSigma 

\bigm\| \bigm\| \bigm\| \bigm\| 
2

\lesssim C2
ce

\biggl( \sqrt{} 
n+ u

p
+

n+ u

p

\biggr) 
\| \bfSigma \| 2.

Theorem A.2 (concentration of norm [42]). Let \bfitx \in Rn be a random vector with independent,
sub-Gaussian coordinates \bfitx i that satisfy E\bfitx 2

i = 1. Then, \| \| \bfitx \| 2  - 
\surd 
n\| \psi 2

\leq CK2, where
K =maxi \| \bfitx i\| \psi 2

and C is an absolute constant.

We next introduce a perturbation bound for the polar decomposition.

Theorem A.3 (perturbation bound for polar decomposition [24]). Let \bfitA , \~\bfitA \in Rn\times n be full-
rank matrices with polar decompositions \bfitA =\bfitU \bfitP and \~\bfitA = \~\bfitU \~\bfitP . Then

\| \bfitU  - \~\bfitU \| F \leq 2

\sigma n(\bfitA ) + \sigma n( \~\bfitA )
\| \bfitA  - \~\bfitA \| F .

Appendix B. Proof of auxiliary lemmas.

B.1. Proof of Lemma 3.4. Consider each column vector of \bfitX \ast as a random vector. Upon
defining \Sigma \bfitX \ast as the covariance matrix of \bfitx , we have \Sigma \bfitX = \theta \sigma 2\bfitI n. We now use Theorem A.1
to prove Lemma 3.4. For any unit-norm \bfitz \in Rn and any ith column of \bfitX \ast , we have

\bigm\| \bigm\| \bigm\| \langle \bfitX \ast 
(\cdot ,i),\bfitz \rangle 

\bigm\| \bigm\| \bigm\| 2
\psi 2

=

\bigm\| \bigm\| \bigm\| \bigm\| \bigm\| \bigm\| 
n\sum 
j=1

\bfitX \ast 
(j,i)zj

\bigm\| \bigm\| \bigm\| \bigm\| \bigm\| \bigm\| 
2

\psi 2

\leq 
n\sum 
j=1

z2j

\bigm\| \bigm\| \bigm\| \bfitX \ast 
(j,i)

\bigm\| \bigm\| \bigm\| 2
\psi 2

\leq C1\sigma 
2
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for some constant C1 > 0. The last inequality follows from the fact that, for a sub-Gaussian
random variable, the sub-Gaussian norm is always bounded by its variance. Moreover,\bigm\| \bigm\| \bigm\| \langle \bfitX \ast 

(\cdot ,i),\bfitz \rangle 
\bigm\| \bigm\| \bigm\| 2
L2

=E\langle \bfitX \ast 
(\cdot ,i),\bfitz \rangle 

2 = \bfitz \top \Sigma \bfitX \ast \bfitz = \theta \sigma 2.

We are now ready to invoke Theorem A.1. By choosing Cce = C1/
\surd 
\theta , we have for some

constant C2 > 0 \bigm\| \bigm\| \bigm\| \bigm\| 1p\bfitX \ast \bfitX \ast \top  - \theta \sigma 2\bfitI n

\bigm\| \bigm\| \bigm\| \bigm\| 
2

\leq C2

\biggl( \sqrt{} 
n+ u

p
+

n+ u

p

\biggr) 
\sigma 2,(B.1)

with probability 1  - 2exp ( - u). Upon setting u = n and assuming p \geq 8C2
2\tau n/\theta 

2, one can
bound the right-hand side by

C2

\biggl( \sqrt{} 
n+ u

p
+

n+ u

p

\biggr) 
\sigma 2 \leq 2C2

\sqrt{} 
2n

p
\sigma 2 \leq \theta \sigma 2

\tau 1/2
.

Combining the above inequality with (B.1) leads to the desired inequalities.

B.2. Proof of Lemma 3.3. Let us define p= p1 + t. We start by noting that

1

p\theta \sigma 2
\bfitY \bfitY \top =\bfitA \ast 

\biggl( 
1

p\theta \sigma 2
\bfitX \ast \bfitX \ast \top 

\biggr) 
\bfitA \ast \top .

Moreover, according to Theorem A.1, we have\bigm\| \bigm\| \bigm\| \bigm\| 1p\bfitX \ast \bfitX \ast \top  - \theta \sigma 2\bfitI n\times n

\bigm\| \bigm\| \bigm\| \bigm\| 
2

\lesssim \sigma 2

\sqrt{} 
n+ u

p
(B.2)

with probability at least 1 - 2exp( - u). With the same probability, we have\bigm\| \bigm\| \bigm\| \bigm\| 1

p\theta \sigma 2
\bfitY \bfitY \top  - \bfitA \ast \bfitA \ast \top 

\bigm\| \bigm\| \bigm\| \bigm\| 
2

=

\bigm\| \bigm\| \bigm\| \bigm\| \bfitA \ast 
\biggl( 

1

p\theta \sigma 2
\bfitX \ast \bfitX \ast \top  - \bfitI n\times n

\biggr) 
\bfitA \ast \top 

\bigm\| \bigm\| \bigm\| \bigm\| 
2

\leq C2

\theta 

\sqrt{} 
n+ u

p

where in the last inequality, we used \| \bfitA \ast \| 2 = 1. We define \bfDelta 1 =
1

p\theta \sigma 2\bfitY \bfitY \top  - \bfitA \ast \bfitA \ast \top . Using
the Taylor expansion, we have\biggl( 

1

p\theta \sigma 2
\bfitY \bfitY \top 

\biggr)  - 1

=
\Bigl( 
\bfitA \ast \bfitA \ast \top +\bfDelta 1

\Bigr)  - 1

=

\biggl( \Bigl( 
\bfitA \ast \bfitA \ast \top 

\Bigr) 1/2
\biggl( 
Ir\times r +

\Bigl( 
\bfitA \ast \bfitA \ast \top 

\Bigr)  - 1/2
\bfDelta 1

\Bigl( 
\bfitA \ast \bfitA \ast \top 

\Bigr)  - 1/2
\biggr) \Bigl( 

\bfitA \ast \bfitA \ast \top 
\Bigr) 1/2

\biggr)  - 1

=
\Bigl( 
\bfitA \ast \bfitA \ast \top 

\Bigr)  - 1
 - 

\Bigl( 
\bfitA \ast \bfitA \ast \top 

\Bigr)  - 1
\bfDelta 1

\Bigl( 
\bfitA \ast \bfitA \ast \top 

\Bigr)  - 1
+O(\bfDelta 2

1).

As a result, we have \bigm\| \bigm\| \bigm\| \bigm\| \bigm\| 
\biggl( 

1

p\theta \sigma 2
\bfitY \bfitY \top 

\biggr)  - 1

 - 
\Bigl( 
\bfitA \ast \bfitA \ast \top 

\Bigr)  - 1
\bigm\| \bigm\| \bigm\| \bigm\| \bigm\| 
2

C3
\^\kappa 4

\theta 

\sqrt{} 
n+ u

p
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ALTERNATING MINIMIZATION SOLVES COMPLETE DICTIONARY LEARNING 879

for some constant C3 > 0. Similarly, by Corollary 4.8 from [9], we have\bigm\| \bigm\| \bigm\| \bigm\| \bigm\| \scrL 
\Biggl( \biggl( 

1

p\theta \sigma 2
\bfitY \bfitY \top 

\biggr)  - 1
\Biggr) 
 - \scrL 

\biggl( \Bigl( 
\bfitA \ast \bfitA \ast \top 

\Bigr)  - 1
\biggr) \bigm\| \bigm\| \bigm\| \bigm\| \bigm\| 

2

\leq C3\kappa 

\biggl( \Bigl( 
\bfitA \ast \bfitA \ast \top 

\Bigr)  - 1
\biggr) \bigm\| \bigm\| \bigm\| \bigm\| \bigm\| 

\biggl( 
1

p\theta \sigma 2
\bfitY \bfitY \top 

\biggr)  - 1

 - 
\Bigl( 
\bfitA \ast \bfitA \ast \top 

\Bigr)  - 1
\bigm\| \bigm\| \bigm\| \bigm\| \bigm\| 
2

\leq C3
\^\kappa 6

\theta 

\sqrt{} 
n+ u

p
.

We conclude the proof by setting u= n.

B.3. Proof of Lemma 3.2. Upon choosing \tau = 1 in Lemma 3.4, we have \kappa (\bfitX \ast ) < 11/9

with probability 1 - 2exp\{  - n\} . Then, by setting \bfitE = (\bfitX  - \bfitX \ast )/\| \bfitX \ast \| 2 and \widehat \bfitX \ast 
=\bfitX \ast /\| \bfitX \ast \| 2,

we immediately have

\| \bfitD  - \bfitD \ast \| F \leq \kappa (\bfitX \ast )4

2

\bigm\| \bigm\| \bigm\| \widehat \bfitX \ast 
\bfitE \top  - \bfitE \widehat \bfitX \ast \top \bigm\| \bigm\| \bigm\| 

F
+CT \| \bfitE \| 2F(B.3)

after invoking Lemma 3.5. Now define \scrT (\cdot ) to be the operator that replaces all the diagonal

entries of a matrix with zeros. It is easy to see that 1
2\| \widehat \bfitX \ast 

\bfitE \top  - \bfitE \widehat \bfitX \ast \top 
\| F \leq \| \scrT (\widehat \bfitX \ast 

\bfitE \top )\| F .
To further investigate this bound, we introduce two matrices. Let matrix \bfitM k denote an n\times n

diagonal matrix of ones and a zero at location (k, k). Left multiplying \widehat \bfitX \ast 
by \bfitM k corresponds

to replacing the kth row of \widehat \bfitX \ast 
with zeros. Let \~\bfitM k denote an p\times p diagonal matrix that has

ones at entries (i, i) for i \in supp(\widehat \bfitX \ast 
(k,\cdot )) and zeros elsewhere. Right multiplying \~\bfitX 

\ast 
by \~\bfitM k

corresponds to replacing all the columns that are zero at the kth row with zeros. Now, we
make the following observation:\bigm\| \bigm\| \bigm\| \scrT (\widehat \bfitX \ast 

\bfitE \top )
\bigm\| \bigm\| \bigm\| 
F
=

\sqrt{}    n\sum 
k=1

\bigm\| \bigm\| \bigm\| (\scrT (\widehat \bfitX \ast 
\bfitE \top ))(\cdot ,k)

\bigm\| \bigm\| \bigm\| 2
2
=

\sqrt{}    n\sum 
k=1

\bigm\| \bigm\| \bigm\| \Bigl( \bfitM k
\widehat \bfitX \ast \~\bfitM k

\Bigr) 
\bfitE (k,\cdot )

\bigm\| \bigm\| \bigm\| 2
2

\leq 

\sqrt{}    n\sum 
k=1

\bigm\| \bigm\| \bigm\| \bfitM k
\widehat \bfitX \ast \~\bfitM k

\bigm\| \bigm\| \bigm\| 2
2

\bigm\| \bigm\| \bfitE (k,\cdot )
\bigm\| \bigm\| 2
2
\leq max

1\leq k\leq n

\bigm\| \bigm\| \bigm\| \bfitM k
\widehat \bfitX \ast \~\bfitM k

\bigm\| \bigm\| \bigm\| 
2
\| \bfitE \| F .

The second equality is due to supp(\bfitE ) \subseteq supp(\widehat \bfitX \ast 
) and that the normalization step \widehat \bfitX \ast 

=

\bfitX \ast /\| \bfitX \ast \| 2 does not change the support of \widehat \bfitX \ast 
. We first focus on max1\leq k\leq n \| \bfitM k\bfitX 

\ast \~\bfitM k\| 2.
Define \bfitG k \in R(n - 1)\times p as the matrix \bfitM k\bfitX 

\ast \~\bfitM k after removing its kth row. One can see that
\| \bfitG k\| 2 = \| \bfitM k\bfitX 

\ast \~\bfitM k\| 2. Without loss of generality, we assume k = n, which means that we
remove the last row. Recall that right multiplying \bfitX \ast by \~\bfitM k will replace each column of \bfitX \ast 

whose kth row is zero by an all-zero column vector. Therefore, \bfitG k has the following property:

1\bfitG k
ij \not =0 =BkjBij , where Bkj ,Bij

\mathrm{i}.\mathrm{i}.\mathrm{d}.\sim \scrB (\theta ) for 1\leq i\leq n - 1, 1\leq j \leq p .

In short, \bfitG k is a matrix that satisfies Assumption 2.1 with parameter \theta 2. Therefore, we
can invoke Lemma 3.4 to bound \| \bfitG k\| 2 for each k. Given p \gtrsim \tau (n + u)/\theta 2, we have that
\| \bfitG k\| 2 \leq (1 + \tau  - 1/4)

\surd 
p\theta \sigma for some specific k, with probability 1  - 2exp( - u). To bound

maximal \| \bfitG k\| 2 for 1\leq k\leq n, we take the union bound and obtain

max
1\leq k\leq n

\bigm\| \bigm\| \bigm\| \bfitM k\bfitX 
\ast \~\bfitM k

\bigm\| \bigm\| \bigm\| 
2
= max

1\leq k\leq n
\| \bfitG k\| 2 \leq 

\Bigl( 
1 + \tau  - 1/4

\Bigr) \surd 
p\theta \sigma ,(B.4)

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

D
ow

nl
oa

de
d 

02
/0

1/
26

 to
 1

30
.1

26
.1

01
.1

35
 . 

R
ed

is
tri

bu
tio

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.si

am
.o

rg
/te

rm
s-

pr
iv

ac
y
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with probability 1 - 2exp(logn - u) as long as p \gtrsim \tau (n+ u)/\theta 2. Combining this result with
(B.3), we have

\| \bfitD  - \bfitD \ast \| F \leq \kappa (\bfitX \ast )4

2

\bigm\| \bigm\| \bigm\| \widehat \bfitX \ast 
\bfitE \top  - \bfitE \widehat \bfitX \ast \top \bigm\| \bigm\| \bigm\| 

F
+CT \| \bfitE \| 2F

\leq 
\kappa (\bfitX \ast )4max1\leq k\leq n

\bigm\| \bigm\| \bigm\| \bfitM k\bfitX 
\ast \~\bfitM k

\bigm\| \bigm\| \bigm\| 
2

\| \bfitX \ast \| 2
\| \bfitE \| F +CT \| \bfitE \| 2F

(\mathrm{a})

\leq 

\Bigl( 
1+\tau  - 1/4

1 - \tau  - 1/4

\Bigr) 4 \bigl( 
1 + \tau  - 1/4

\bigr) \surd 
p\theta \sigma \bigl( 

1 - \tau  - 1/4
\bigr) \surd 

p\theta \sigma 
\| \bfitE \| F+CT \| \bfitE \| 2F\leq 

\Biggl( \biggl( 
1 + \tau  - 1/4

1 - \tau  - 1/4

\biggr) 5\surd 
\theta +CT \| \bfitE \| F

\Biggr) 
\| \bfitE \| F ,

with probability 1 - 2exp(logn - u). Inequality (a) is due to Lemma 3.4 and (B.4). Recall that
\theta \leq 1/2. Therefore, for sufficiently large constant \tau , we have (1+\tau 

 - 1/4

1 - \tau  - 1/4 )
5
\surd 
\theta \leq 0.8. Moreover,

CT \| \bfitE \| F \leq 0.1, provided that \| \bfitE \| F \leq 1/(10CT ). Therefore, we have \| \bfitD  - \bfitD \ast \| F \leq 0.9\| \bfitE \| F .
The proof is complete upon choosing u= n.

B.4. Proof of Lemma 3.1. The (i, j)th entry (\bfitD \top \bfitY )ij of \bfitD 
\top \bfitY can be written as\Bigl( 

\bfitD \top \bfitY 
\Bigr) 
ij
= \langle \bfitD (\cdot ,i),\bfitY (\cdot ,j)\rangle = \langle \bfitD (\cdot ,i),\bfitD 

\ast 
(\cdot ,i)\rangle \bfitX 

\ast 
ij\underbrace{}  \underbrace{}  

:=\scrA ij

+
\sum 
k \not =i

\langle \bfitD (\cdot ,i),\bfitD 
\ast 
(\cdot ,k)\rangle \bfitX 

\ast 
kj\underbrace{}  \underbrace{}  

:=\scrB ij

.(B.5)

The first term \scrA ij can be decomposed as

\scrA ij = \langle \bfitD (\cdot ,i),\bfitD (\cdot ,i)\rangle \bfitX \ast 
ij + \langle \bfitD (\cdot ,i),\bfitD 

\ast 
(\cdot ,i)  - \bfitD (\cdot ,i)\rangle \bfitX \ast 

ij =\bfitX \ast 
ij + \langle \bfitD (\cdot ,i),\bfitD 

\ast 
(\cdot ,i)  - \bfitD (\cdot ,i)\rangle \bfitX \ast 

ij .

As a result, when \bfitX \ast 
ij = 0, we have \scrA ij = 0. Moreover, when \bfitX \ast 

ij \not = 0, we have | \scrA ij | \geq 
(1  - \| \bfitD \ast  - \bfitD \| 1,2)\Gamma \geq 3\Gamma 

4 , where the last inequality holds for every n \geq 16
\sigma 2\theta . The choice of

the constant 3/4 is to streamline the proof and can be replaced by any constant in ( 12 ,1). To
prove the lemma it suffices to show that, for all \bfitD such that \| \bfitD  - \bfitD \ast \| 1,2 \leq C1/n for some
C1 to be defined later, we have | \scrB ij | \leq \Gamma /4 with high probability. Note that this will lead to
| (\bfitD \top \bfitY )ij | \geq | \scrA ij |  - | \scrB ij | \geq \Gamma /2, thereby proving the statement. We have

| \scrB ij | =

\bigm| \bigm| \bigm| \bigm| \bigm| \bigm| 
\Biggl\langle 
\bfitD (\cdot ,i),

\sum 
k \not =i

\bfitD \ast 
(\cdot ,k)\bfitX 

\ast 
kj

\Biggr\rangle \bigm| \bigm| \bigm| \bigm| \bigm| \bigm| (B.6)

=

\bigm| \bigm| \bigm| \bigm| \bigm| \bigm| 
\Biggl\langle 
\bfitD (\cdot ,i)  - \bfitD \ast 

(\cdot ,i),
\sum 
k \not =i

\bfitD \ast 
(\cdot ,k)\bfitX 

\ast 
kj

\Biggr\rangle \bigm| \bigm| \bigm| \bigm| \bigm| \bigm| 
\leq 

\bigm\| \bigm\| \bigm\| \bfitD (\cdot ,i)  - \bfitD \ast 
(\cdot ,i)

\bigm\| \bigm\| \bigm\| 
2

\bigm\| \bigm\| \bigm\| \bigm\| \bigm\| \bigm\| 
\sum 
k \not =i

\bfitD \ast 
(\cdot ,k)\bfitX 

\ast 
kj

\bigm\| \bigm\| \bigm\| \bigm\| \bigm\| \bigm\| 
2
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\bfA \bfl \bfg \bfo \bfr \bfi \bft \bfh \bfm \bfB .\bfone . Rank-one update for the preconditioner.

1: \bfI \bfn \bfp \bfu \bft : \bfitL , \bfitA , \bfity .

2: Set \bfitv = \bfitA \bfity \surd 
1+\bfity \top \bfitA \bfity 

, \bfitA \prime =\bfitA  - \bfitv \bfitv \top , \bfitL = \bfitL \surd 
(p1+t)\theta \sigma 2

, \bfitw = \bfitv , and b= 1.

3: \bff \bfo \bfr j = 1, . . . , n \bfd \bfo 

4: Set \bfitL \prime 
jj =

\sqrt{} 
\bfitL 2
jj  - 1

b\bfitw j and \gamma =\bfitL 2
jjb - \bfitw 2

j .

5: \bff \bfo \bfr k= j + 1, . . . , n \bfd \bfo 

6: Set \bfitw k =\bfitw k  - \bfitw j

\bfitL jj
\bfitL kj and \bfitL \prime 

kj =
\bfitL \prime 

jj

\bfitL jj
\bfitL kj  - 

\bfitL \prime 
jj\bfitw j

\gamma \bfitw k.

7: \bfe \bfn \bfd \bff \bfo \bfr 

8: Set b= b - \bfitw 2
j

\bfitL 2
jj
.

9: \bfe \bfn \bfd \bff \bfo \bfr 

10: Set \bfitL \prime =
\sqrt{} 

(p1 + t+ 1)\theta \sigma 2\bfitL \prime .
11: \bfr \bfe \bft \bfu \bfr \bfn \bfitL \prime and \bfitA \prime .

\leq 
\bigm\| \bigm\| \bigm\| \bfitD (\cdot ,i)  - \bfitD \ast 

(\cdot ,i)

\bigm\| \bigm\| \bigm\| 
2

\bigm\| \bigm\| \bigm\| \bigm\| \bigm\| 
n\sum 
k=1

\bfitD \ast 
(\cdot ,k)\bfitX 

\ast 
kj

\bigm\| \bigm\| \bigm\| \bigm\| \bigm\| 
2

(B.7)

=
\bigm\| \bigm\| \bigm\| \bfitD (\cdot ,i)  - \bfitD \ast 

(\cdot ,i)

\bigm\| \bigm\| \bigm\| 
2

\bigm\| \bigm\| \bfitY (\cdot ,j)
\bigm\| \bigm\| 
2

=
\bigm\| \bigm\| \bigm\| \bfitD (\cdot ,i)  - \bfitD \ast 

(\cdot ,i)

\bigm\| \bigm\| \bigm\| 
2

\bigm\| \bigm\| \bfitX (\cdot ,j)
\bigm\| \bigm\| 
2
.

Following the argument of (3.7), we have \| \bfitX (\cdot ,j)\| 2 \leq 2\sigma 
\surd 
\theta n with probability at least 1  - 

2exp( - Cn). With the same probability, we have the following for any \bfitD that satisfies \| \bfitD  - 
\bfitD \ast \| 1,2 \leq \Gamma 

8\sigma 
\surd 
\theta n
:

| \scrB ij | \leq 
\bigm\| \bigm\| \bigm\| \bfitD (\cdot ,i)  - \bfitD \ast 

(\cdot ,i)

\bigm\| \bigm\| \bigm\| 
2

\bigm\| \bigm\| \bfitX (\cdot ,j)
\bigm\| \bigm\| 
2
\leq \Gamma /4.

Upon taking the union bound over all the entries of the jth column of \bfitX , we have | \scrB ij | < \Gamma /4
for all (i, j) with probability 1  - 2exp(log p  - Cn). This completes the proof of the second
statement.

Appendix C. Rank-one updates for the preconditioner. We define

\bfitA =
\Bigl( 
\bfitY \bfitY \top 

\Bigr)  - 1
, \bfitL =\bfitP (t - 1), \bfitA \prime =

\Bigl( 
\bfitY \bfitY \top + \bfity \bfity \top 

\Bigr)  - 1
, \bfitL \prime =\bfitP (t).

The above rank-one update algorithm for Cholesky decomposition (Algorithm B.1) is already
implemented in the MATLAB function cholupdate.
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