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Abstract. This paper focuses on the noiseless complete dictionary learning problem, where the goal is to rep-
resent a set of given signals as linear combinations of a small number of atoms from a learned
dictionary. There are two main challenges faced by theoretical and practical studies of dictionary
learning: the lack of theoretical guarantees for practically used heuristic algorithms and their poor
scalability when dealing with huge-scale datasets. Towards addressing these issues, we propose a
simple and efficient algorithm that provably recovers the ground truth when applied to the noncon-
vex and discrete formulation of the problem in the noiseless setting. We also extend our proposed
method to mini-batch and online settings where the data is huge-scale or arrives continuously over
time. At the core of our proposed method lies an efficient preconditioning technique that transforms
the unknown dictionary to a near-orthonormal one, for which we prove a simple alternating mini-
mization technique converges linearly to the ground truth under minimal conditions. Our numerical
experiments on synthetic and real datasets showcase the superiority of our method compared with
the existing techniques.
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1. Introduction. The dictionary learning problem seeks to represent data as a linear
combination of a small number of basis elements, known as atoms, which are learned from the
data itself. The resulting collection of atoms, known as the dictionary, can then be used for
a variety of signal processing tasks [28, 25|, often as a plug-in replacement for classical bases
based on cosines, wavelets, or Gabor filters. The advantage of a learned dictionary over these
classical bases is that it is tuned to the input dataset and can therefore provide a sparser
representation for each input signal that uses fewer atoms.

The problem of learning a dictionary that provides the sparsest representation is nonconvex
and highly difficult to solve, both in theory and in practice. In this paper, we focus on learning
a complete dictionary, whose number of atoms matches the dimensionality of the data, via the
following optimization problem:
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(L) win || ¥ — DX} + /| X o

Here, Y € R™*P is a data matrix whose columns are observed signals, and our goal is to find a
square dictionary matrix D € R™*™ and corresponding sparse code X € R"*P to approximately
represent Y while minimizing its ¢y-pseudonorm (denoted as || - ||o) which counts its number
of nonzero elements.

The ability to solve (CDL) to optimality would allow us to strike the best-possible trade-
off between the sparsity of the representation and its quality of fit (according to the preference
expressed by the parameter ¢ > 0). Unfortunately, the fy-pseudonorm presents a significant
difficulty, as it is not only nonconvex, but also discrete and combinatorial. Even rigorously
verifying that a learned dictionary is first-order locally optimal could require exhaustively
enumerating all 2™ possible sparsity patterns. It is therefore understandable that the most
widely used heuristics like KSVD [2] and MOD [12] do not actually guarantee convergence to
an optimal solution, not even when provided with a near-optimal initial guess. Instead, the
state-of-the-art for provable optimality relies on relaxing the combinatorial £y-pseudonorm
into the convex ¢;-norm [1] or the convex f4-norm [43]. Under assumptions like mutual
incoherency [4], restricted isometry property (RIP) [1], or large sample complexity [40, 43],
the relaxation is exact and an optimal solution to the original combinatorial problem can be
recovered. However, when the relaxation is inexact, the recovered solution may be drastically
different from the solution to the original (CDL).

In this paper, we revisit the combinatorial £p-pseudonorm in (CDL), motivated by the fact
that the orthogonal instance (in which the dictionary D is constrained to be orthonormal) is
significantly easier to analyze. In the orthogonal setting, alternating minimization is simple,
in that the minimizations over D and X at each iteration have simple closed-form solutions.
We give the first proof that the resulting sequence converges to the ground truth model under
minimal conditions, provided that the algorithm is initialized properly. To extend to general
complete dictionaries, which are not necessarily orthogonal, our key idea is to use a data-
driven preconditioning step to “orthogonalize” the data. Surprisingly, this preconditioning
step allows us to extend our linear convergence guarantee to general complete dictionary
learning without significant modifications. As shown in Figure 1, the resulting preconditioned
algorithm learns more powerful dictionaries that strike a better balance between the sparsity
of representation and the quality of fit than the commonly used heuristic KSVD.

1.1. Summary of results. At the heart of our method to recover a pair (D*, X™*) is an
efficient alternating minimization algorithm for the orthonormal dictionary learning problem,
which reads

(ODL) g?iBHY—DXH%ﬂLCHXHO s.t. DeO(n),
where O(n) denotes the set of n x n orthonormal matrices. While the orthogonality con-

straint adds another nonconvex component to the original formulation, we point out that the
minimization of X for a fixed orthonormal D € O(n) has a cheap closed-form solution,

arg)r(nin |Y — DX||% +¢|| X |lo=HT(D'Y),

Copyright (©) by SIAM. Unauthorized reproduction of this article is prohibited.



Downloaded 02/01/26 to 130.126.101.135 . Redistribution subject to SIAM license or copyright; see https://epubs.siam.org/terms-privacy

ALTERNATING MINIMIZATION SOLVES COMPLETE DICTIONARY LEARNING 857

KSVD

Corrutd Image

100

120

140

50 100 150 50 100 150 50 100 150

Figure 1. A comparison of image denoising using dictionaries learned via our proposed method (Algo-
rithm 2.3) and via KSVD. We choose a random landscape image and artificially corrupt 50% of the pizels.
Reconstruction is done via orthogonal matching pursuit with the learned dictionaries. The corrupted original
image is shown on the right, and the two reconstructed images are shown on the left. We see that the dictionary
learned via our method achieves a much better denoising result than one learned via KSVD. We refer the reader
to section 4.2 for the details of setup.

via a hard-thresholding operator HT¢(-) at level ¢, which is defined as

A it Ayl >

(HT (4)), = {4 [Aij] > G,
0 if |AZJ‘ <.

Similarly, the minimization of an orthonormal D € O(n) for a fixed X also has a well-known

closed-form solution via the so-called orthogonal Procrustes problem

argmin ||Y — DX|[3 + ¢[| X |jo =Polar(Y X ),
DecO(n)

where Polar(A) = UV} and U4X 4V} is the singular value decomposition (SVD) of A.
Therefore, the iterations

(1.1) Xt — HTg(D(t)TY), D) = Polar(YX(Hl)T)

correspond exactly to an alternating minimization solution of problem (ODL). While (1.1)
has been derived before, we give the first rigorous proof that the sequence locally converges
at a linear rate with minimal conditions on the sparsity rate of X*. Concretely, we prove
that when the data are generated as Y = D*X™, with D* an orthogonal dictionary and
X* a sparse random matrix, (1.1) converges linearly to a ground truth (D*, X™), when it is
initialized within an O(ﬁ) Frobenius neighborhood of this solution.

We use a data-driven preconditioning step to generalize (1.1) to general instances of (CDL),
for which the square dictionary matrix D* is not necessarily orthonormal. The basic idea is
to learn an orthonormal dictionary D with respect to the preconditioned data matrix Y =
(YY T)"'/2Y | and then to output a complete dictionary D = (Y'Y T)*1/2D by reversing the
preconditioning. Indeed, if the data are generated as Y = D*X™* with D* deterministic and
X* a sparse random matrix satisfying E[X*X*T] = I,,, then IE[YYT] D*E[X*X*T|D*T =
D*D*". Therefore, the preconditioned data are generated as Y ~ D" X* with respect to an
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orthogonal dictionary D™ = (D*D*T)*/2D* and the same sparse code X*. We show that
such preconditioning can be efficiently implemented via low-rank updates of the corresponding
Cholesky factors. One of our main contributions is to show that this simple preconditioning
step allows us to extend our linear convergence guarantee from orthogonal dictionaries (ODL)
to general complete dictionaries (CDL), even in the online and mini-batch settings.

A key strength of our convergence guarantee is that it does not rely on any incoherency/RIP
assumptions. In fact, we can recover very ill-conditioned dictionaries that are highly coherent,
although at the expense of a higher sample complexity. Moreover, we can recover codes with
sparsity levels in the order of O(n); in contrast, existing methods based on alternating min-
imization can handle sparsity levels of at most O(n®) for some a < 1/2. Another technique
that achieves a near-linear sparsity level O(n'=7) for v > 0 is based on sum-of-squares hierar-
chy [8], which is indeed inefficient in practice. Using Riemannian optimization techniques, [39]
was the first to show that (CDL) with linear sparsity level can be solved in polynomial time.
However, the Riemannian optimization algorithm can be expensive, and the associated sam-
ple complexity has a dependency of (n%) for orthogonal dictionaries and (n”) for complete
dictionaries [39].

In practice, the iterations (1.1) admit highly efficient implementations, which can fully take
advantage of the massive parallelism inherent in modern hardware. The hard-thresholding
operator is embarrassingly parallel, while the SVD operation that constitutes the polar op-
erator can be implemented using hardware-optimized LAPACK implementations. The most
expensive part of (1.1) is actually its need to iterate and sum over all p columns of the data
matrix Y at every iteration. To address potential scalability issues with a very large p, we
propose a mini-batch version,

. T
(1.2) XEf:)l) =HT.(DWTY ;) VieQ, DD — pPolar <Z Y(,ji)XEi-:)l) ) ’
1€Q

that approximates Y X+D7T ~ Yico Y(.VZ-)X?:)I)T over a mini-batch Q C {1,2,...,p} and
updates only the sparse codes X gt;r)l) associated with the mini-batch samples ¢ € 2. We show
that the preconditioner can also be incrementally updated via an efficient low-rank update
formula for the Cholesky factor, which is comparable to the classical Sherman—Morrison—
Woodbury formula for updating the determinant/matrix inverse. We show that the accuracy
of the recovered dictionary is explicitly lower bounded by the statistical error of the precon-
ditioner. We also show that such an error will diminish in the online setting as more samples
come in. This is the first time that efficient updating is applied to methods that use the
preconditioning for (CDL).

Despite its mini-batch nature, we show that our method enjoys the same sharp linear
convergence to the true solution. Finally, we extend our technique to the online dictionary
learning, where the data samples arrive sequentially over time. To the best of our knowledge,
existing methods for online dictionary learning work with batch sizes of at least O(n) (see,
e.g., [32, Theorem 1] and [3, Theorem 2]). In contrast, our proposed preconditioner admits
an efficient triangular rank-one update with as few as one new sample, thereby making it
particularly appealing in the online setting.

Copyright (©) by SIAM. Unauthorized reproduction of this article is prohibited.



Downloaded 02/01/26 to 130.126.101.135 . Redistribution subject to SIAM license or copyright; see https://epubs.siam.org/terms-privacy

ALTERNATING MINIMIZATION SOLVES COMPLETE DICTIONARY LEARNING 859

1.2. Related work.

Optimality conditions. As the first question, we must first verify whether a ground truth
(D*, X™) is a global minimizer of (CDL) for the generative model Y = D*X*. Of course,
if this were not the case, solving (CDL)—even to global optimality—may not be enough to
recover a ground truth (D*, X™). A series of work [18, 14, 20, 17, 34, 11, 19] studied the local
optimality of the ground truth for (CDL) by replacing fy-norm with ¢;-norm. The work [38§]
elegantly showed that the ground truth is the unique global minimizer to (CDL) when ¢ — 0.
Specifically, when p = Q(nlogn), they showed that any ground truth (D*, X™*) is the global
minimizer to minx p || X||o subject to the constraint ¥ = DX. The question remains to be
answered: how to design a provable algorithm for recovering (X*, D*).

Alternating minimization. The empirical success achieved by methods like MOD and KSVD
has encouraged the emergence of many alternating minimization algorithms [23, 27, 7]. To-
wards providing a provable guarantee for alternating minimization, it is common to replace the
{p-pseudonorm with its convex surrogate ¢1-norm [1, 10, 29, 41]. Such a compromise is due to
the prohibitive computational cost and formidable analytical challenges of the £y- pseudonorm.
However, /1 relaxation is biased towards solutions with smaller entries, thereby leading to an
inferior sparsity level [44]. On the algorithmic side, methods based on /;-relaxation need to
solve variants of the LASSO problem at each iteration either exactly [1, 10] or approximately
via an automatic differentiation with backpropagation [29, 41]. In this work, we focus on the
formulation of (CDL) without any convex relaxation, which is the original intention of sparse
dictionary learning. Unlike the ¢; method, the theoretical underpinnings of the alternating
algorithms for the ¢y formulation are far less explored. In [35, 19, 36, 30], the authors study
the convergence behavior of a variant of KSVD. Specifically, the dictionary update step is
performed by maximizing the absolute norm of the S-largest responses where S is the number
of nonzero entries in each signal. In [33], authors propose an alternating scheme based on
sorting the nonzero entries of sparse codes. However, the success of these algorithms relies on
restrictive generative models like symmetric decaying [34] and fixed sparsity S [33].

Riemannian manifold optimization for complete dictionary learning. One line of work focuses
on solving (CDL) via Riemannian manifold optimization techniques [31, 43]. Notably, the work
[40] was the first to show that a smoothed variant of (CDL) based on ¢;-relaxation is devoid
of spurious local solutions. Similar benign landscape results have also been independently
discovered in the analysis of other problems like matrix factorization [13]. As a result, one
can provably recover one dictionary atom at a time via the Riemannian trust-region method.
The work [16] showed that similar results can be achieved by first-order methods on the
Riemannian manifold. In a different approach, the work [43] studied the ¢4,-maximization on
the Steifel manifold, which is further generalized in [37] to {,-maximization. Akin to our own
work, preconditioning the data matrix plays an important role in these algorithms.

Online dictionary learning. Another line of research has focused on the online variants of
(CDL). The work [27] first proposed an online algorithm that solves ¢;-relaxation of (CDL),
but it only guarantees convergence to a critical point. The work [26] enhanced the usability and
practicality of ¢;-relaxation but provided no theoretical guarantees. The work [3] proposed an
alternating algorithm that can recover the ground truth (X*, D*), which is further improved
in [32]. However, both variants have a specific requirement on the size of the input for each
iteration and cannot deal with situations where samples are received one by one.
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1.3. Notation. Weuse A(; ), A j), and A;; to denote the ith row, jth column and (4, j)th
entry of A, respectively. We use || A||2 to denote the spectral norm of A, || A||r to denote the
Frobenius norm of A, ||A||;2 to denote the maximum 2-norm of the columns of A, ||A||g to
denote the total number of nonzero entries in A, and ||Al|; to denote the entrywise ¢; -norm
of A. The symbol I; denotes the d x d identity matrix, and O@(n) denotes the orthogonal
group in dimension n. We use supp(A) to refer to the set of indices of nonzero entries of A.
The symbol o;(A) denotes the ith largest singular value of A, and x(A) denotes the condition
number of A. Given a matrix A, its polar decomposition is defined as Polar(A) = U AV;,
where U oX AoV )y is the SVD of A. We also define the operator £(A) = L},, where LaL}, is
the Cholesky factorization of a positive semidefinite matrix A. For an event &, its indicator
function is denoted as 1¢. Given two sequences f(n) and g(n), the notations f(n) < g(n) and
f(n) = O(g(n)) imply that there exists a universal constant C' > 0 satisfying f(n) < Cg(n)
for all large enough n. Similarly, the notations f(n) 2 g(n) and f(n) = Q(g(n)) imply that
there exists a universal constant C' > 0 satisfying f(n) > Cg(n) for all large enough n. We use
f(n) =w(g(n)) if for all constants C' > 0 we have f(n) > Cg(n) for all large enough n. We say
an event happens with high probability if it occurs with probability of at least 1 —n~“®) with
respect to all randomness in the problem.

2. Our method. We consider a noiseless model, where the data matrix is generated ac-
cording to Y = D*X*. For any signed permutation matrix II, the pair (D*II,IIT X*) is
also a valid ground truth that satisfies ||[IIT X*||o = [|X*[|o.! Let M = {(D*II,ITIT X*) :
IT is a signed permutation}. Our goal is to recover an arbitrary element (D*IT,II" X*) € M.

2.1. Orthogonal dictionary learning. We first assume that the dictionary is an orthogonal
matrix D* € O(n). This leads to Algorithm 2.1, an alternating minimization algorithm based
on the closed-form solutions (1.1).

We note that Algorithm 2.1 has been studied before. The paper [6] reports the empirical
performance of Algorithm 2.1 on an image restoration task. The paper [33] provides a the-
oretical analysis for a variant of Algorithm 2.1 based on sorted thresholding. One may even
argue that Algorithm 2.1 is similar to the method of optimal directions (MOD). However, the
existing theoretical guarantees for Algorithm 2.1 are indeed restrictive (see the discussion on
alternating minimization in section 1.2). To bridge this knowledge gap, we first introduce our
assumption on the sparse matrix X.

Algorithm 2.1. Alternating minimization for (ODL).
: Input: Y, DO, ¢
: fort=0,1,...,7 do
Set X) =HT(DWTY)
Set DY) = Polar(Y X))
end for
return D(T),X (T)

A v

LA signed permutation matrix is a generalized permutation matrix whose nonzero entries are =+1.
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Assumption 2.1 (model for sparse code). The sparsity pattern of ground truth X* follows
a Bernoulli distribution with parameter 6 = (0, 1]. In particular,

Lx: z0=Bij, where B;; i B(0) forall 1<i<n, 1<j<p.

The nonzero values of X™* are independently drawn from a sub-Gaussian distribution with
mean zero and constant variance o2. Moreover, the magnitudes of nonzero entries of X* are
lower bounded by some constant I'. More specifically, we have

* * 0\ *2\ _ 2 .. *
| X5 =T, E(X7;)=0, and E(X;)=o0" forevery (i,j) € supp(X").

Now, we are ready to show the convergence of Algorithm 2.1.

Theorem 2.2. Suppose that Y = D* X™, where D* is orthogonal and X* satisfies Assump-
tion 2.1 with sparsity level 0 < 0 < 1/2. Suppose that the initial dictionary DO satisfies

DO — D*||p < ﬁ for some (D*, X*) € M. Moreover, suppose that n/0*> <p < n? for

some constant v > 0. Then, with probability at least 1 —n=*M) | for any T > 1, the output of
Algorithm 2.1 with ( =T'/2 satisfies

IDT) — D*||r <0.97 D - D*||p, | X7 - X*|r <0.97| X — X*|

Theorem 2.2 improves upon the existing results on two fronts.

Linear sparsity level. We allow a constant fraction of entries in X* to be nonzero, thereby
improving upon the best-known sparsity level of O(y/n/logn) for alternating minimization [3].
Moreover, the imposed upper bound on the sample size asserts that it must be bounded by a
polynomial function of n. This mild assumption is only included to simplify the presentation
of our main result.

Linear sample complexity. In order to recover D* exactly, we only need to observe O(n)
many samples, which is log(n) factor smaller than the sample complexity required for the
uniqueness of the solution when & — 0 [38]. This sample complexity is optimal (modulo
constant factors) since it is impossible to recover the true dictionary with a sublinear number
of samples even if X* is known. Note that the theoretical convergence of Algorithm 2.1 is
contingent upon a good initial dictionary. As shown in Lemma 3.1, the imposed condition
on the initial dictionary automatically guarantees the recovery of the support for any X
with ¢ > 0. In subsection 2.4, we discuss possible ways to obtain such an initial dictionary in
theory and practice. We also suspect that our initialization requirement can be improved to
|D©® — D*||; 2 < O(1/logn) with fresh samples at every iteration, which is the best-known
radius for alternating minimization [3].

Despite its desirable properties, Algorithm 2.1 suffers from two fundamental limitations.
First, its convergence depends on the orthogonality of the true dictionary, which may not
be satisfied in many applications. Second, it does not readily extend to huge-scale or online
settings, where it is prohibitive or even impossible to process all data samples together. To
address these challenges, we next extend our algorithm to complete (nonorthogonal) dictionary
learning with mini-batch and online data.
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2.2. Mini-batch complete dictionary learning. To distinguish from (ODL), we denote the
ground truth dictionary as A* (i.e., Y = A*X™). Towards dealing with large p, we subsample
from the columns of Y. To address the nonorthogonality of the dictionary, we consider a

preconditioner P defined as
1 -\
P=L YY .

Using this preconditioner, we obtain a new (preconditioned) data matrix Y = PY. To
explain the intuition behind this choice of preconditioner, note that pGLQYYT ~ A*A*T for
large enough p, which allows us to write ¥ ~ L((A*A*T)"1)A*X*. Upon defining D* =
L((A*A*T)~1)A*, one can check that D* € O(n) and Y ~ D* X*. Indeed, this is an instance
of (ODL) and can be solved via Algorithm 2.1. The detailed implementation is provided in
Algorithm 2.2. We note that the dependency of the preconditioner on § and o2 is purely to
simplify the presentation and can be replaced by a simple normalization step in practice. Our
next theorem characterizes the performance of Algorithm 2.2. Without loss of generality, we

assume that ||A*||]2 =1 and set & to be the condition number of A*.

Theorem 2.3. Suppose that Y = A*X ™, where X* satisfies Assumption 2.1 with sparsity
level 0 < 0 < 1/2. Suppose that the initial dictionary A©®) satisfies |A©) — A*||p < I%ml/% for
some (A*, X*) € M. Moreover, suppose that n/6> <p <n?, &'?n3log?p/0 <p, T <nP, and
logn 2 B+~ for some constants v, 3 > 0. Then with probability at least 1 — n~*W) | the output
of Algorithm 2.2 with ( =T"/2 satisfies

(2.1) HA(T) — A

T 0 * n"%6
<0.97)|AQ —A*|p+0( —— ).
F 0\/p
Theorem 2.3 states that Algorithm 2.2 converges linearly to the true dictionary up to
a statistical error O(%). This statistical error is due to the deviation of the precondi-
tioner from its expectation, which diminishes with p. A key distinction of our result is that
we do not impose any incoherency requirement or RIP on A*, which are common assump-
tions in existing results. We also highlight that the upper bound on 7T is indeed very mild.

Algorithm 2.2. Alternating minimization for mini-batch (CDL).

: Input: Y, A0 ¢
: Set P=L((;5=YY ")), Y=PY, and DO'=pPA).
:fort=0,1,...,7—1do

1

2

3

4:  Sample p many columns from Y to be Y(t).
5. Set X =HT (DOTY!Y).

6: Set D(HD) = Polaur(f"(t)j(f(t)T
7: end for

8

).

: return AT =P 1D a5 an approximation to A*
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To demonstrate this, note that, in order to guarantee 0.97[|A®) — A*||p = O(%), it suffices

to have T' = Q(Rei‘{in), a condition that satisfies T = O(n®) for some § > 0 for all practical
purposes.

2.3. Online dictionary learning. Although the computational efficiency of Algorithm 2.2
is largely improved compared to its full-batch counterpart, it may not be implementable
in huge-scale or online settings due to the dependency of the preconditioner on the entire
dataset with size p. Both situations call for a cheap method to update the preconditioner
more efficiently in an online fashion.

To update P with a new sample y, a naive approach would be to recompute it from
scratch, which would cost O(n?) operations. However, we show that P can be updated more
efficiently in O(n?) operations by taking advantage of the more efficient rank-one updates on
matrix inversion and Cholesky factorization. To this goal, we first use the Sherman—Morrison
formula to update (Y'Y T)~! as

~1/2
YY" +yy" ) P=YY ") '—vv', where v= (1 + yT(YYT)_ly) (YY) ly,

which, given (Y'Y T)~!, can be obtained in O(n?) operations. Given the above rank-one
update for the inverse, the Cholesky factor L((Y'Y " +yy')~!) can be obtained within O(n?)
operations by performing triangular rank-one updates on L((Y'Y ")~1) [22]. We explain the
implementation of this method in Appendix C.

Inspired by the above update, we propose an online variant of Algorithm 2.3. We start
the algorithm by initializing the preconditioner and the data matrix using p; and py samples,
respectively, both potentially significantly smaller than p. When a new sample arrives, we
update the preconditioner P® via the triangular rank-one update and update the data set
accordingly. Our next theorem establishes the convergence of Algorithm 2.3.

Algorithm 2.3. Alternating minimization for online dictionary learning.

1: Input: A0 ¢, p1, P2

2: Set Zi(r?i = (Y}_’T)*l, PO — E(p1002Zi(23,)T, where Y is constructed with p; samples
and DO =pPO AO)

3: Initialize Y with po2 samples.

4: for t=0,1,...,7—1do

5. Given a new y, set Y=Y =1 ] and remove the first column of Y'®).

6: Update P® and Zl(f])v using pt-1, Zi(f;l), and y via Algorithm B.1.

7. Set v = pOY®,

8: Set X =HT (DOTY!Y).

9:  Set D+ = Polar(f’(t)j((tﬁ).

10: end for

11: return (PT=)=1D) a5 an approximation to A*.
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Theorem 2.4. Suppose that Y = A* X", where X satisfies Assumption 2.1 with sparsity
level 0 < 0 < 1/2. Suppose that the initial dictionary A©) satisfies | A — A*||p < — =
for some (A*, X*) € M. Moreover, suppose that n/0> < py <n?, &2n%log?pe/0 < p1, and
T <nP for some constants v, > 0. Then, with probability at least 1 — n~“W) the output of
Algorithm 2.3 with ( =T'/2 satisfies

(2.2) HA(T> — A

~6
nk
<0.97|A0 — A*|F+ O <> :
P00 I+ O\t
The convergence result of Algorithm 2.3 is similar to that of Algorithm 2.2, with a key dif-
ference that the statistical error O(-—22_) now decreases with T, which is due to the fact that
the preconditioner becomes progressively more accurate as new samples continue to arrive.

01 +T

2.4. Initialization. The theoretical success of Algorithms 2.1-2.3 requires, at least in the-
ory, a good initialization with O(1/v/8n) distance to the ground truth. Such initialization can
be provided by the initialization scheme introduced in [1] and [3], albeit with slightly more
restrictive conditions on the sparsity level. For the same generative model as described in
Assumption 2.1, computationally intensive and data-intensive algorithms, such as the Rie-
mannian trust-region method (RTR) [39], can also be employed to design initial dictionaries
that satisfy the conditions outlined in Theorems 2.2-2.4. Specifically, for (ODL), [39, Theo-
rem 3.1] demonstrates that the RTR can obtain an initial point with a distance of O(1/v/0n)
from the ground truth, albeit with an increased sample complexity of p = (n°). Similarly,
for (CDL), [39, Theorem 3.2] illustrates that RTR can yield an initial point with a distance
of O(1/+/0n) from the ground truth with a sample complexity of p = Q(n”). Combining
these results with Theorems 2.2-2.4 allows for an end-to-end global guarantee at the cost of
increasing the sample complexity to (n®) for (ODL) and (n") for (CDL).

However, we note that these tailored initialization schemes are not easily implementable,
especially in a huge-scale regime. In practice, we observed that a simple warm-start algorithm
would yield similar performance. Consider a variant of Algorithm 2.1 with a diminishing
threshold presented in Algorithm 2.4 (the warm-start schemes for Algorithms 2.2 and 2.3 are
similar and hence omitted for brevity).

Notice that a large ¢y will force X® to be an all-zero matrix and make D®*1 an identity
matrix. As we shrink the threshold (;, the matrix X ) eventually becomes nonzero, and

Algorithm 2.4. Algorithm 2.1 with warm-start.
: Input: Y, (o, ¢, € (0,1)
: Set DO =1,,.
: fort=0,1,...,7y do
Ce+1 = max{B¢, C}.
Set X) =HT,(DWTY).
Set DU =1, if X® =0,, and DV =Polar(Y X®T) if X®) £0,,.
end for
return D)

IR A i
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Figure 2. The plots above show the iterates of Algorithm 2.4 with p = 100, n =5, and 6 = 0.3. The left
figure shows the error in the sparse code. The right figure shows the number of nonzero entries of Supp(X™) —
Supp(X(t)). The number is 126 at the beginning, which is the total number of nonzero entries in X™*, and 0 in
the end, which indicates the full recovery of the support of X*.

the iterates D©) start to gradually move towards the basin of attraction of D*. Figure 2
demonstrates how our proposed warm-start algorithm generates an initial dictionary that is
sufficiently close to the true dictionary. We also observe that, in practice, the convergence of
iterates from I, to the basin of local convergence is not linear. However, once the iterates
reach this basin, they exhibit linear convergence to the ground truth, which is theoretically
guaranteed by Theorem 2.2. We also note that our proposed warm-start algorithm can serve
as an effective initialization scheme for other DL algorithms, including those discussed in
section 1.2. The theoretical analysis of this warm-start algorithm is left as an enticing challenge
for future research.

3. Proofs. In this section, we present the proofs of our main theorems.

3.1. Proof of Theorem 2.2. We use induction to prove Theorem 2.2. We consider the
following induction hypothesis:

1
ovn

As will be shown later, this induction hypothesis will lead to the desired linear convergence
result. The base case is verified, given the initial condition. We next present the following
two key lemmas, the proofs of which can be found in Appendix B.

(3.1) |D® — D*||p=0 ( ) at iteration s.

Lemma 3.1 (exact support recovery). Consider Y = D*X*, where D* € Q" and X*
satisfies Assumption 2.1. For all D satisfying | D — D*||12 = O(ﬁ), with probability at
least 1 — 2exp(logp — Cn), we have supp(HTp/g(DTY)) = supp(X™).

Lemma 3.2 (guaranteed improvement on polar decomposition). Consider Y = D* X ™, where
D* € Q" and X* satisfies Assumption 2.1 with sparsity level 0 < 6 < 1/2, and suppose that
p=Q(n/6?). Then, with probability at least 1 —2exp(logn —n), the following inequality holds

for every approzimation X of X* such that % =0(1) and supp(X) = supp(X™):

X - X*
|Polar(¥ XT) — D) p < 0.01% ~X7lle
X2
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Lemma 3.1 together with our induction hypothesis (3.1) implies that

(3.2) supp (X(S)> = supp (HTF/Q(D(S)TY)> =supp (X™).

We can use the exact recovery of support to bound the error on the sparse code:
(a)
IX) = X*||p = [HTp/;o(D®TY) = X*||p < |[DY - D*|||[Y |2,

where we used (3.2) for (a). The above inequality implies that

(3.3)

X - x X - x* X - x+ 1
[ e _ | e _ | I 2 D=0 (20).

X [ID*X7s Y]l o\/on

Invoking Lemma 3.2 with X = X () together with (3.3) leads to

0.9 X® — X*|»
| X2

| DY) — D¥||p < <0.9]|D® — D*||.

Therefore, the induction hypothesis (3.1) holds for ¢ = s+ 1. Consequently, the linear conver-

gence for ”X(H;(%TliHF follows from (3.3) and the above inequality:

XY — X*||p
X[

IX® — X"
X2

<|ID¥Y — D*||r <0.9

The proof is complete by noticing a lower bound of the probability that both Lemma 3.1 and
Lemma 3.2 hold is 1 — 2exp(logp — Cn) — 2exp(logn — n) = 1 — n~*() | which follows from
our assumption p=0(n?). This completes the proof.

Next, we provide the proof of Theorem 2.4. As will be shown later, the proof of Theo-

rem 2.3 readily follows from this proof.
3.2. Proof of Theorem 2.4. The linear convergence of A7)

gence of the preconditioned dictionary D) towards

hinges on the linear conver-

D* :,C((A*A*T)_l)TA*
To establish this fact, we first prove the following inequality:
(3.4) DY — D*||p <0.9|DY — D*||p + O (HP<5>A* — D*HF) , 5=0,2,...,T—1.

We present, the following intermediate lemmas, the proofs of which are in Appendix B.

Lemma 3.3 (bounding preconditioner error). Suppose that X* satisfies Assumption 2.1.
Then, with probability at least 1 —2exp(—n), we have

1\ T .6
PO _r (A*A*T> <o(E /).
) 0\ p1+t
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Lemma 3.4 (spectral property for sparse code matrix). Suppose that X™* satisfies Assump-
tion 2.1 and p = Q(tn/0?) for an arbitrary T > 0. Then, with probability at least 1 —2exp(—n),
we have

”X*H2§(1—|—7“i>\/ﬁ07 Un(X*)Z(l—T_i> e m(X")< 14—

1—7"

N

-

As with the proof of Theorem 2.3, we will use the induction hypothesis | D) — D*||p <

O(m}%). The base case is easy to verify given the initial condition and Lemma 3.3:
|D® — D7l = [POAC — £((A*AT) )T A"

_ ||P(O)A(O) —[,((A*A*T)_l)TA(O) —I—ﬁ((A*A*T)_ ) E((A*A*T)_l)TA*HF
<[ PO —£((AA ) ) || AP g+ || £((A*A*T) ™ )TH |A©) — A%||p

<o(Gynva) o (s ) =0 (7m)
o 0\ p kovon ovon )

Moreover, after achieving (3.4) for each s, we have DY — D*||p = O(a\}%) since

N T 1
P(S)—£< A*A*T ) D* :0().
(a4 ) D=0 (7

For the remainder of this section, we abuse the notation and use X* to denote the sparse
code that generates Y(®) = A*X*, where Y is obtained by adding the latest sample as
the last column and removing the oldest sample from its first column (see steps 6 and 7 in
Algorithm 2.3). Indeed, X ™ is different from iteration to iteration, but it plays a similar role in
the proof to the ground truth matrix in the full-batch case. We also define X as X = D*TY( )
which is again a different sparse code for different iterations since Y( - = P®Y®) and both
P®) and Y change from iteration to iteration. Let us assume that the initial sample size
and batch size satisfy p; = Q(r1n°log? poo?i!2/(AT2)) and py = Q(r4n/6?) for parameters
71,72 >0 to be defined later.

Towards proving (3.4), we first show that X (<) recovers the sparsity pattern of X™ if we
use a large enough number of samples to construct the preconditioner. To show this, we
consider one entry (D(S)Tff(s))ij of DOTY™ and write

(3.5) (D<S>T?(S)>

|P®A* — D*||p <

= (DYTD (X - x7)) +(DYTDx )j

/

ij
::.Ai,j IZBi]‘

ij

The first term in the right-hand side can be bounded as

[Aij| < IDYTD* |2 X = X |12 = 1X — X" |12
<|ID*TPYAX" — X*|12 < | PP AT — Do X”

(36) < HP(S) _r <(A*A*T) 1)

~.6
K
2| X 1,2 S 7

X*
11X 12

Copyright (©) by SIAM. Unauthorized reproduction of this article is prohibited.



Downloaded 02/01/26 to 130.126.101.135 . Redistribution subject to SIAM license or copyright; see https://epubs.siam.org/terms-privacy

868 G. LIANG, G. ZHANG, S. FATTAHI, AND R. Y. ZHANG

with probability at least 1 — 2exp(—n), where the last inequality is due to Lemma 3.3. The
expectation for the norm of each column, based on Assumption 2.1, is ov/60n. Therefore,
according to Theorem A.2 (see Appendix A), the random variable || X7 ;|2 — ovfn is sub-

Gaussian with sub-Gaussian norm O(v/0c). As a result, the kth column of X* satisfies
(3.7) IP’(H “ ol 220\/9@ < 2exp (—Cn)
for some constant C. Upon taking a union bound over different columns, we have

(38) X" lhe = max X7 jlle < 20+/nlogpe

with probability at least 1 — 2exp(—Cn). Combining this inequality with (3.6), we have

~6 2
Ayl < n*logpy
Vo pi+T

for every (i,7). Based on the above inequality and with the choice of p; 2 %, we

have |A;;| <T'/4. Following the proof of Lemma 3.1, the deviation of the second term B;;
from X ;-“j can also be upper bounded by I'/4 with high probability, which will not be repeated

here. Therefore, we have |(D(5)Tl~’(s))i]~] <I'/2 when X7; =0 and |(D(5)Tl~/(s))ij] >1"/2 when

X7; # 0, which leads to supp(X(S)) = supp(X™) with probability at least 1 — 2exp(—n) —
2exp(—Cn) — 2exp(logps — Cn). For any matrix M € R"*P2 we define the projection oper-
ator P as

(P(M)),; =

)

M;; if (i,j) €supp(X™),
0 if (i,7) ¢ supp(X™).

Given the exact support recovery, we have
< (5) o )T~ (5) o DT 5
IX* = P(X)|p=P(DUTY™) - P(X)|p <IDUTY™ - X| p
= DOTY" DTV p < |DY — DY |2 = |DY — D7 ]| X 2.

As a result we have

(3.9)
o (9) - = (s) S - -
| X —]?(X)HF _ X —~77(X)HF IIP{Ilz <D - D* || p— II{CHQ ]
IP(X)]l2 1 X1[2 [P(X)]l2 [ X[]2 = [[ X = P(X)]2
X (a) X
< ||D(S) - D*HF = Hg(”2 - < HD(S) _ *HF _ ”){H2
[ X|l2 = | X —P(X)|lF ||X\|2—||X—X*J|F
® 1X - X7 r S
< ||D¥ —D*||p 1+ = <D — D*||p | 1+ =
[ X2 = 2| X — X*||r _%

(i)HD<S> D*|p |1+ o —Tl_lyD@) D*||
- | 1-92x L 77’1—2| B
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Here inequality (a) is due to the decomposition of X — X* onto and outside the support
of X*. Specifically, define P, (-) as the projection onto the complement of P(-). We have
P%(X—P(X)) =P, (X —X*)and P(X —P(X)) =0, which in turn implies |1 X -P(X )[F <
1 X~ X*|[r. The inequality (b) is due to | X*l»— | X~ X[ < [|X* 2~ | X — X*[> < | X[

The inequality (c) holds due to W <1/71, which is a result of Lemma 3.3:

(3.10) IX - X*|p =D TPYA X" — X7||p <||PP A" — D*|[p| X"

A6
<VAIPOA - DX 2 5 %

X*
b o

and p; = Q(myn3log? poo?i?/(6T2)).
)
So far, we have upper bounded W with |D®) — D*||p. Next, we provide an

upper bound on DY — D*||p in terms of W We have

(3.11)
(s x ~(5) - (s)T % v <T "
IDEHD — D[ = [Polar(Y VXY - D*|p = |Polar(D*X X7 - D*| 5
— |Polar(D*X X' T) — Polar(D*P(X) X" ") 4 Polar(D*P(X) X" — D*||
— |Polar(D* X X' T) — Polar(D*P(X) X T) | p+ | Polar(D*P(X) XY — D*|| .
To control the first term on the right-hand side, we invoke Theorem A.3 (see Appendix A):

HPolar(D*XX(S)T) - Polar(D*P(X)X(S)T) e

< < (s sT
_on(D*XX() )+o—n(D*73( )X T
@ (X)X -PX)lr
on(X*) — | X = XHQ—HX*—P(X)Hz
<X NIX - PX)|lr 1
| X7 |2 2 X =X 1X*=P(X)]2
w(X™) HX B X~
®  nm-1) XX -PX)|lr
T r(re+1)—m+1 1 X*|2 ’

where (a) follows after normalizing both the numerator and the denominator with || X ® ||2-
Moreover, (b) follows from (3.10), Lemma 3.4, and ps = Q(74n/6%). Next, we provide a bound

on K(X(S)), and we do so by first bounding x(P(X)). By Lemmas 3.4 and 3.3, we have

(3.12) K(P(X)) = HP(X)~||2 HX*Hf‘i'HP(j{)—X**HQ
on(P(X)) ~ on(X7) — [|P(X) — X*|2
[ X o +[[P(X) =X 2 7+l

X o/ R(X ) = [P(X) = Xp T )y

IN
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Upon assuming 71 > 10 and 75 > 10, we have
% vy %) % % (%) X
(X< POl PX)=X""[la . 1+ [P(X) = X" ||r/|P(X)]]2
- % N Ol % % % (5) %
on(P(X)) = [P(X)=X""]la 1/6(P(X)) = [[P(X) = X |[r/[P(X)]2
@ 149/32
< ————— <4,
= 79/121 - 9/32 ©
For (a), we used (3.9) and the fact that |D*) — D*||z <1/4. To conclude, we have
121X - P(X)r _ 12X~ P(X)]r
X[l B X[l

Next, we turn our focus to ||[Polar(D*P(X)X " )~ D*||r, which is the second term of (3.11).
We first introduce the following lemma, which is borrowed from [33].

()T

[Polar(D* X XT) — Polar(D*P(X) X7 |1 <

()T

Lemma 3.5 (approximation error for dictionary (see the proof of Lemma 2.4 in [33])). For
any matriz X* € R"*P and Y = D* X™* where D* € Q", consider an approrimation X to X*
with E := (X — X*)/|| X*||2 satisfying | E|r < 1/x*(X*). Then, for some constant Cp >0,
D =Polar(Y X ") satisfies:

(X[ XTE - EXT,
2 1 X[l

~ < (s) -
To invoke Lemma 3.5, let E'(s) = %}gﬁf)

=(s), @9 (s) N 9 79\ 2 (b) 1
E < —-||D¥ —D <—<|—) £ ———
1EY)r < 2 Ir<55=(591) = mcEy
where (a) and (b) follow from (3.9) and (3.12), respectively. Therefore, Lemma 3.5 can be
invoked:

(3.13)

ID - D*|[r < +Cr| E| %

, and notice that

w(p(i |[POET - BYP(X)T|

2 IP(X)]2

)T

[Polar(D*P(X) X" ")~ D*||» < L+ orl|E|}.

By recalling supp(X (S)) = supp(X™), we follow the same argument in the proof of Lemma 3.2

and conclude that
S\ (s)T ~ (s S AR ~(s
HP(X)E() _ B P(X)THF max; <e<n MkP(X)MkH2||E()||F
<

2|[P(X)]2 B IP(X)l2

where M, and M, are defined in the same way as in the proof of Lemma 3.2. Since both
M ;. and M are linear operators, we have

)

)

maXi<kg<n MkP(X)Mk“Q maxi<k<n MkX*MkHQ + H'P(X) — X*H2
= < " _ -
[P (X)||2 [ X 2(1 = IP(X) = X*|[p/[[ X7 ]l2)
T maxlgkgn MkX*MkH2 1
3.14 < - + =
o m—1 X2 m
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Following the proof of Lemma 3.2, we have that with probability 1 — 2exp(logn — n) and
p2=QU(myn/6%)

maxlgkgn

MkX*MkH

3.15 .
1) X ned

Combined with (3.13), we have

o7 w(poy |[PEOET - BYPX)T

* o\ o * F = ()12
|[Polar(D*P(X)X " ) — D*||p < = +Cr||E|
2 IP(X)]2 "
+1 1 ~ ~ (s ~ (s
g( i (TQ \/5+) R(P(X))* + Cr|| B )HF) 1B .
m—1\m—1 ial

Therefore, we have a bound for the second term on the right-hand side of (3.11). Recall

that k(P(X)) < Lll due to (3.12) and 0 < 6 < 1/2. Therefore, similar to the proof of

T2 —1)
Tot1

Lemma 3.2, for sufficiently large 7 and 79 and ||E(S) lr < ﬁ, (3.11) can be rewritten as
12| X" —P(X)|r

[ X2
(3.16) <0.9|D® — D*|| 4+ 12| P®) A* — D*||

()
1D — D*|[p < 0.9| DY) — D¥||p+

where (a) follows from (3.9). This completes the proof of the induction step (3.4). For each
induction step, our analysis holds with probability at least 1 — O(exp(logps — n)). After
taking the union bound, the first T steps of the induction hold with probability at least
1 — O(exp(log T +logps — n)), which is 1 —n~%®) when T = O(n?) and py = O(n?). Finally,
we use (3.16) to complete the proof of Theorem 2.4. To this goal, notice that

(3.17)

-1
HA(5+1) o A*”F _ HP(erl)lD(s+1) _ (E((A*A*T)—l)T) D*

F
-1
< ||D(s+1) . D*HF + HP(erl)l . (ﬁ((A*A*T)fl)T>

F

1\ T

)

N T
pi+l) _ o <<A*A*T> >

)

Via a similar argument, we can write

AT
(3.18) ID® — D*||p < |A® — A%||p+O (HP(S) "y <(A*A*T) )

Combining (3.17) and (3.18), we have
A A <09 A — A%

+0 ( ‘P@) iy ((A*A*T> _1> :

+[POA"- D+
F

J
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By invoking Lemma 3.3, we can bound ||[P®) A* — D*||p, |P® — L(A*A*T)"))T ||z, and

||P(S+1) — L((A*A*T)")T || p with O(’%f1 /pIZLrT). This completes the proof. [ |

3.3. Proof of Theorem 2.3. Theorem 2.3 is a special case of Theorem 2.4, where we use
one precalculated preconditioner throughout. In particular, it is easy to see that (3.16) in the
proof of Theorem 2.4 holds after replacing P®) with P:

(3.19) |DEHY — D*||p <0.9]|D®) — D*||p + 12| PA* — D*|| .
Therefore, we have

| DY — D*||» <0.9|D® — D*||p 4+ 12||[PA* — D*|
<0.9°|D© —D*||p+(0.9+ --- +0.9°) 12| PA* — D*||
=0.9°| DY — D*||p + O(|| PA* — D*||r).

Given the above inequality, one can use the same argument as in (3.17) and (3.18) to establish
the linear convergence of A®). The details are omitted for brevity. [ |

4. Numerical experiments. In this section, we validate our theoretical results using syn-
thetic and real data. All experiments are performed on a MacBook Pro 2021 with the Apple
M1 Pro chip and a 16 GB unified memory for a serial implementation in MATLAB 2022a.
The code is available at: https://github.com/lianggeyuleo/CompleteDL.git.

4.1. Synthetic dataset. We validate our theoretical results using a synthetic dataset.
We consider the generative model Y = A* X™* where A* is a randomly generated orthogonal
or full-rank dictionary. Moreover, X* is generated from a Gaussian—Bernoulli distribution
followed by a truncation step, where the entries X7, with |X7;| < T = 0.3 are replaced by
X7 =sgn(X ;). Consequently, the threshold ¢ in each algorithm is set to I'/2 = 0.15.

First, we compare the efficiency of our method in solving (ODL) to other state-of-the-art
techniques. In this experiment, we vary the signal dimension n from 50 to 800 and set the
sample size p = 100n, which corresponds to the linear sample size condition in Theorem 2.2.
We invoke the warm-start method in Algorithm 2.4 to generate the initial points. For each
trial, we stop the algorithm when the consecutive iterates are close to each other (|[D¢~1) —
D® ||, <1077) and record the running time and final error (|[D) — D*| ).

Many algorithms for dictionary learning exhibit poor scalability in this setting. For in-
stance, the convergence time of the KSVD method [2], which is perhaps the most well-known
alternating minimization algorithm for dictionary learning, exceeds 300 s even for our smallest
instance n = 50. Another example is the alternating minimization based on /¢1-regularization
[1], which suffers from a similar scalability issue. Instead, in Figure 3, we consider two other
candidate algorithms that have comparable scalability with ours: (1) Gradient-based method
[3]: In this method, the dictionary update step (step 4 in Algorithm 2.1) is replaced by a
gradient step DU+ = p®) — nV pw L where L is the objective of (ODL). Here, we pick
n=107° after fine-tuning, which is the largest step-size to guarantee convergence in practice.
(2) L4-mazimization—based method [43]: The work [43] introduces a projected gradient ascent
for maximizing the objective function f(D)=||[DTY|}. This method is shown to have supe-
rior performance compared to SPAMS [21] and the subgradient descent method [5]. As can be
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Figure 3. We compare three different dictionary learning methods with their running time and final error
until convergence. The results above are averaged over 5 independent trials. All methods use the same initial
point. The stopping criterion is when consecutive iterates are close to each other (|D® Y — DV, <1077).
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Figure 4. Results of Algorithm 2.2 with n =5, 8 = 0.3, p = 100, and varying p. The specific number of
iterations to reach convergence varies with the sample size since it depends on the distance between the ground
truth and initialization.

seen in Figure 3, our method converges faster while achieving a smaller error. Particularly, the
gradient-based method will require more time to converge, while £4-maximization is restricted
by its poor accuracy.

In Figure 4, we report the performance of Algorithm 2.2 with warm-start for varying
sample sizes. The true dictionary A* is a randomly generated full-rank n x n matrix, and we
choose n =5 and § =0.3. We set p = 10? and vary p. Our experiments support our theoretical
results in the following aspects: (1) We observe the fast convergence of our algorithm for
different p, which is in line with Theorem 2.3. Similar to Figure 2, the effect of the warm-up
phase is evident in the early stages of the iterations. (2) We see clear improvement in the
accuracy of the final solution with a larger sample size. Such improvement is characterized
by Theorem 2.3 with the additional error term, which diminishes to zero as p — co.

Finally, we numerically test the stability and sample complexity of our algorithm as A*
becomes increasingly ill-conditioned. In Figure 5 (right), we present the results, illustrating
the sample size required to achieve a final error of 1A —A%llr

p d A=
of A* varies from 1 to 1000. Surprisingly, our practical findings indicate that the relationship

< 0.1 as the condition number
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Stability w.r.t x(A*) Sample complexity w.r.t £(A*)
06 1150

1100

1050

1000

Figure 5. Left: Final error of Algorithm 2.2 in relation to condition number k(A*) and varied noise levels

(T) _ A
B for a fized sample size of p=p=10°. Right: Required sample size to achieve W

of the condition number k(A™). In both settings, we fit n=>5, 0 =0.3, and T = 1000.

<0.1 as a function

between sample size and the condition number differs from what our theoretical framework
suggests, showcasing a more favorable scenario in practice.

To further underscore the robustness of our algorithm, we investigate its performance in
a noisy setting, where Y = A*X™* 4 £, with £ representing a noise matrix whose elements
follow a Gaussian distribution with zero mean and variance 32. As illustrated in Figure 5
(left), our algorithm remains unaffected by the increasing condition number x(A*) in the
noiseless scenario. However, it encounters difficulties in recovering A* when both noise and ill-
conditioning are present. We acknowledge that a theoretical explanation for this phenomenon

in the noisy setting remains a topic for future investigation.

4.2. Real dataset. In this section, we showcase the performance of Algorithm 2.3 in
learning a dictionary for the Landscape Dataset [15] consisting of 7,000 colored images of
different landscapes, 20 of which are set aside as a test dataset. To gauge the quality of our
learned dictionary, we use our dictionary to perform a denoising task on these images.

Dataset. Each figure in our dataset is a colored image of size 150 x 150 x 3. Instead of
directly learning a dictionary for the whole dataset, we follow the procedure in [2] and divide
each figure into 225 patches of size 10 x 10 x 3. Each patch is then reshaped into a 300 x 1
vector. Collecting all 225 patches over all 7000 images results in 1,575,000 patch samples. We
downsample this dataset to 10,000 patch samples so that KSVD can also be applied to this
dataset. This results in a data matrix Y of size 300 x 10,000 with n» = 300 and p = 10,000.
Our goal is to learn a dictionary A of size 300 x 300 for this data matrix.

Image denoising. We gauge the quality of our learned dictionary by using it to denoise
noisy images. Here, we corrupt each image with 50% missing pixels. In other words, we
select 50% of the 150 x 150 pixels in each image uniformly at random and then set the pixel
values across all three RBG channels to 0. Our goal is to learn a dictionary and use it to
denoise this image by filling in the missing pixels. For reconstruction, we choose a sparsity
level of approximately 10%, which simply corresponds to 30 atoms for reconstruction. With
a given dictionary, the reconstruction is done using a standard implementation of orthogonal
matching pursuit (OMP) found in the SPAMS library in MATLAB [28].
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For both the image denoising examples in Figures 1 and 7, we set p1 = po = 500 in
Algorithm 2.3 (corresponding to a batch size of 500) and run it for a total of T' = 2000
iterations, which took 125 seconds for the constructed data matrix Y. We randomly sample
20 images from the dataset, which are then corrupted with noise. The images before and
after the denoising are shown in the first two rows of Figure 7. Here we see that our learned
dictionary reconstructs the original image almost exactly.

Additionally, we compare our learned dictionary with that of KSVD, which is implemented
using a standard sparse learning library [28] in MATLAB. We allow KSVD a total running
time of 1100 seconds. A comparison of denoised results using dictionaries learned with Al-
gorithm 2.3 and KSVD is shown in Figure 1. Here, we also see that the dictionary learned
by Algorithm 2.3 greatly outperforms KSVD, achieving a much better reconstruction of the
original image despite being 10 times faster. Furthermore, we plot the similarity score between
the reconstructed image and the original image versus the running time of both algorithms.
In particular, at each iteration of both algorithms, we use the dictionary at that iteration to
reconstruct a denoised image and compare it with the original. We see in Figure 6 that our
algorithm achieves a similarity score of 0.9 in 120 s, while KSVD can only achieve a similarity
score of 0.28 in 2500 s.

Image inpainting. To further gauge the efficacy of our learned dictionary, here we consider
the more challenging task of inpainting. Here instead of corrupting each image with 50%
of missing pixels, we opt to black out entire pixel blocks. We segment each image into
patches with dimensions of 25 x 25 to facilitate inpainting for larger areas of obscured pixels.
Much like our previous approach, we execute Algorithm 2.3 for a total of T = 2,000, which
consumed approximately 2,100 s. For the reconstruction process, we maintain a sparsity level
of approximately 10%, as we did previously.

Our reconstruction results are depicted in Figure 7. We randomly black out blocks of
dimensions 3 x 3, 5 x 5, and 10 x 10. In all three scenarios, the total count of obscured blocks
equals the total number of patches. It is evident that for smaller blacked-out blocks, our
dictionary performs well in reconstructing the images. However, when dealing with larger

similarity score versus running time for our algorithm similarity score versus running time for KSVD

°

IS

similarity score
5

0 20 40 60 80 100 120 500 1000 1500 2000 2500
seconds seconds

Figure 6. Similarity score between reconstructed image and original image. We display the similarity score
between the denoised image and the original one for our algorithm (left) and KSVD (right). As time progresses,
the dictionary obtained from our algorithm improves, leading to increasingly better reconstructions. On the other
hand, while the dictionary obtained from KSVD improves with time, the reconstruction quality exhibits a slower
rate of improvement.
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50% pixels
missing

3X3 patches
blacked out

5X5 patches
blacked out

10X10 patches
blacked out

Figure 7. Image denoising and inpainting. Given a dataset of multiple landscape images, we divided each
1mage into patches and combined them to form a large data matriz. A dictionary is learned using our mini-
batch alternating minimization algorithm. A total of 20 noisy images are shown with different noise patterns,
alongside their respective reconstructed versions.
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10 x 10 blocks, the inpainting task becomes more challenging. In this case, we observe that
the reconstructed images exhibit some imperfections within the blacked-out regions.

5. Conclusion. In this paper, we study the dictionary learning problem, where the goal
is to represent a given set of data samples as linear combinations of a few atoms from a
learned dictionary. The existing algorithms for dictionary learning often lack scalability or
provable guarantees. This paper shows that a simple alternating minimization algorithm
provably solves both orthogonal and complete dictionary learning problems. Unlike other
provably convergent algorithms for dictionary learning, our proposed method does not rely
on any convex relaxation of the problem and can be easily implemented in realistic scales.
Through synthetic and realistic experiments on image denoising, we showcase the superiority
of our proposed algorithm compared to the most commonly used algorithms for dictionary
learning.

Appendix A. Preliminary. To prove our main theorems, we will rely on several preliminary
results from high-dimensional statistics and matrix perturbation theory, which will be essential
for our arguments. We denote the sub-Gaussian norm and L?-norm of a random variable with
| - lp, and || - ||z, respectively.

Theorem A.1 (concentration of sample covariance matrix [42]). Let x be a sub-Gaussian
random vector in R™ with covariance matriz 3, such that

@, 2) |y, < Cecll(®; 2) |22 for any z € R",

for some Cpe > 1. Let X € R" P be a matriz whose columns have identical and independent
distribution as . Then, for any u >0 and with probability at least 1 — 2exp (—u), we have

1 n+u n4+u
\ ! <2 (,/ T ) IS]e.
D 9 D p

Theorem A.2 (concentration of norm [42]). Let © € R™ be a random vector with independent,
sub-Gaussian coordinates x; that satisfy Ex? = 1. Then, ||z|2 — vnlly, < CK?, where
K =max; ||x;|ly, and C is an absolute constant.

XX'-3%

We next introduce a perturbation bound for the polar decomposition.
Theorem A.3 (perturbation bound for polar decomposition [24]). Let A, A € R™™ be full-
rank matrices with polar decompositions A=UP and A=UP. Then
2
on(A) 4 0, (A)

Appendix B. Proof of auxiliary lemmas.

IU-Ullr < lA—Allp.

B.1. Proof of Lemma 3.4. Consider each column vector of X* as a random vector. Upon
defining ¥ x~ as the covariance matrix of , we have X x = 0o?I,,. We now use Theorem A.1
to prove Lemma 3.4. For any unit-norm z € R and any ith column of X™*, we have

2
ot} =[S x00s|| =Sl

<0102

P
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for some constant C7 > 0. The last inequality follows from the fact that, for a sub-Gaussian
random variable, the sub-Gaussian norm is always bounded by its variance. Moreover,

2
=E(X7 Z»),z>2 =z Yx-z=00>

|xta2)| , =Ext.

We are now ready to invoke Theorem A.l1. By choosing C.. = C/V0, we have for some

constant Cy >0
SC'Q( In+u N n—l—u) o2,
2 p p

with probability 1 — 2exp (—u). Upon setting u = n and assuming p > 8C37n/6?, one can
bound the right-hand side by

2
Cy n+u+n+u % <20, 2—n02§9L.
V » P V p T1/2

Combining the above inequality with (B.1) leads to the desired inequalities. |

“X*x*" —005%I,

(B.1) ;

E

B.2. Proof of Lemma 3.3. Let us define p=p; +t. We start by noting that
1 T 1 T T
—YY =A"| —X"X* A"
pho? pho?
Moreover, according to Theorem A.1, we have

1
(B.2) HpX"‘X*T — 002,

n—+u

2
<o

9 p

with probability at least 1 — 2exp(—u). With the same probability, we have

<@ n+u

YYT o A*A*T <
2 0 p

1
pho?

1
= HA* <p902X*X*T — IWL) AT
2

where in the last inequality, we used ||A*||2 =1. We define A; = #YYT — A*A*". Using
the Taylor expansion, we have

<1YYT> o (A*A*T + Al) -

_ <(A*A*r)1/2 (IW+ <A*A*r)—1/2A1 (A*A*T)_l/Q) (A*A*T>1/2>

_ (A*A*T>_1 — (A*A*T)_l A, (A"‘A*T>_1 +O(A7).

~4
‘ 0311 n—+u
oV »p

2

As a result, we have

<p9102YYT> - (a7aT) h
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for some constant C5 > 0. Similarly, by Corollary 4.8 from [9], we have

c ((pWYYT) 1) "y <<A*A*T)_1) 2

< Csk <<A*A*T H YYT> -1 <A*A*T>_

~.6
K n—+u
<C3— .

2 0 P
We conclude the proof by setting u=n. |

pho?

B.3. Proof of Lemma 3.2. Upon choosing 7 =1 in Lemma 3.4, we have x(X™*) < 11/9
with probability 1—2exp{—n}. Then, by setting £ = (X —X")/[|X*||2 and X = X"/|| X*||2,

we immediately have

X
(B.3) ID-D <™

*)4 —~ ~x T
) HX ET - EX HF +Cr| B}
after invoking Lemma 3.5. Now define 7 (-) to be the operator that replaces all the diagonal

entries of a matrix with zeros. It is easy to see that ||/)Z*ET A*THF < HT(/X\*ET)HF
To further investigate this bound, we introduce two Inatrlces Let rnatrlx M, denote an n xn
diagonal matrix of ones and a zero at location (k, k:) Left multiplying x by M, corresponds
to replacing the kth row of b e Wlth*ZeI‘OS Let M, denote an p x p diagonal matrlx that has
ones at entries (i,7) for i € supp(X;.)) and zeros elsewhere. Right multiplying X" by M,
corresponds to replacing all the columns that are zero at the kth row with zeros. Now, we
make the following observation:

—~ o~ ~ 2
[r& sn)], = | S & = | S| (4% 1) B |
<\l X e I < s, [ 5111

The second equality is due to supp(E) C supp(X *) and that the normalization step X =
X*/||X*||2 does not change the support of X . We first focus on max<p<p || MpX*Mp||2.
Define G* € R("="D*P a5 the matrix M X* M), after removing its kth row. One can see that
|G¥||2 = || M X*M_||2. Without loss of generality, we assume k = n, which means that we
remove the last row. Recall that right multiplying X* by M, will replace each column of X*

whose kth row is zero by an all-zero column vector. Therefore, G has the following property:
Lk 20 = ByjBij, where By, Bij L B@) for1<i<n—-1,1<j<p.

In short, G* is a matrix that satisfies Assumption 2.1 with parameter 2. Therefore, we
can invoke Lemma 3.4 to bound ||G¥||y for each k. Given p > 7(n + u)/6?, we have that
|IG*|la < (1+77Y4)/pho for some specific k, with probability 1 — 2exp(—u). To bound
maximal ||G*||, for 1 <k <n, we take the union bound and obtain

(B.4) max
1<k<n

* _ < 1/4)
MX I, = s 1641 < (14717 vt
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with probability 1 — 2exp(logn — u) as long as p > 7(n + u)/6%. Combining this result with
(B.3), we have

ip-pp < " XL X BT BT+ crlml
k(X*)* max) <<p, MkX*MkH
: S
o (B27) (1470 o
- (1—7-Y4)/pbo

2| E|lr+Crl| Bl

147714 °
HE|1F+0T||E||%§((1_TM) VB+Cr|Ellr | Bl

with probability 1—2exp(logn—u). Inequality (a) is due to Lemma 3.4 and (B.4). Recall that
6 < 1/2. Therefore, for sufficiently large constant 7, we have (if::ﬁjf’\/é < 0.8. Moreover,
Cr||E| r <0.1, provided that |E||r <1/(10Ct). Therefore, we have | D — D*||p < 0.9| E||F.

The proof is complete upon choosing u =n. |

B.4. Proof of Lemma 3.1. The (i,5)th entry (D"Y);; of D'Y can be written as

B5  (D'Y) = (P, Y ()= (D DLy X5+ 3D, D o) X
k#i

Z:Aq‘,j

I:Bi]'
The first term A;; can be decomposed as
Aij = (D (i), D) X5 + (D iy, D{ iy — D)) XG5 = X35 + (D iy D iy — Diay) X

As a result, when X7j; = 0, we have A;; = 0. Moreover, when X7, # 0 we have |A;j| >
(1—||D* — D|;2) > > 3L, where the last inequality holds for every n > 15, The choice of
the constant 3/4 is to streamhne the proof and can be replaced by any constant in ( 1). To
prove the lemma it suffices to show that, for all D such that ||D — D*||12 < Cy/n for some
C1 to be defined later, we have |B;;| <I'/4 with high probability. Note that this will lead to
|(DTY);] > |Aij| — |Bij| >T/2, thereby proving the statement. We have

(B.6) |Bij| = <D<',i>7ZDf-,k> Zj>

ki

— <D(.7Z~) — Dzk.yi),ZDE‘,jk)X;;j>

ki

), 122 Pl X
ki

IN

D(y-D

2
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Algorithm B.1. Rank-one update for the preconditioner.
: Input: L, A, y.
tSetv=-—r2Y A =A-—vv',L=—L _ w=v,and b=1.

ity T Ay’ (pr+t)0c2’

:for j=1,...,ndo

_ fr2 1, _ 72 2
Set L); = \/Lj; — yw; and v = L};b —w3.

1

2

3

4:

5: for k=j+1,...,ndo

6 L iz
7

8

9

. v L.

— _wir. . P Zhif,, . i

Set wy, = wy, I, L;; and ij i Ly; L wy.
end for

2

Set b="b— +.

L

: end for

10: Set L' =+/(p1 +t+1)002L’.

11: return L’ and A’.

(B.7)

IA

S

:
St

n
k=1

B = Do, 1Y call,

— D(~,i)_DEﬁ~7i) 2HX('J)H2'

('vi) 2

2

Following the argument of (3.7), we have || X ;|l2 < 20v60n with probability at least 1 —
2exp(—Cn). With the same probability, we have the following for any D that satisfies ||D —

* r .
D ||1’2 S 80v0n "

|Bij| < HD(.,Z-) - D{ <T/4.

X ealls
Upon taking the union bound over all the entries of the jth column of X, we have |B;;| <T'/4
for all (i,7) with probability 1 — 2exp(logp — Cn). This completes the proof of the second
statement. ]

Appendix C. Rank-one updates for the preconditioner. We define
-1 -1
A= (YYT) C L=Pt D A= (YYT v ny) . L'=pPW.

The above rank-one update algorithm for Cholesky decomposition (Algorithm B.1) is already
implemented in the MATLAB function cholupdate.

REFERENCES

[1] A. AGARWAL, A. ANANDKUMAR, P. JAIN, AND P. NETRAPALLI, Learning sparsely used overcomplete
dictionaries via alternating minimization, STAM J. Optim., 26 (2016), pp. 2775-2799, https://doi.org/
10.1137/140979861.

[2] M. AHARON, M. ELAD, AND A. BRUCKSTEIN, K-SVD: An algorithm for designing overcomplete dictio-
naries for sparse representation, IEEE Trans. Signal Process., 54 (2006), pp. 4311-4322, https://
doi.org/10.1109/T'SP.2006.881199.

Copyright (©) by SIAM. Unauthorized reproduction of this article is prohibited.


https://doi.org/10.1137/140979861
https://doi.org/10.1137/140979861
https://doi.org/10.1109/TSP.2006.881199
https://doi.org/10.1109/TSP.2006.881199

Downloaded 02/01/26 to 130.126.101.135 . Redistribution subject to SIAM license or copyright; see https://epubs.siam.org/terms-privacy

882

3]
[4]
[5]
[6]
[7]
8]
0
[11]
[12]
[13]
[14]
[15]
[16]

[17]

[18]

[19]
[20]

[21]

22]

23]
[24]

[25]

[26]

G. LIANG, G. ZHANG, S. FATTAHI, AND R. Y. ZHANG

S. ARORA, R. GE, T. Ma, AND A. MOITRA, Simple, efficient, and neural algorithms for sparse coding,
in Conference on Learning Theory, PMLR, 2015, pp. 113-149.

S. ARORA, R. GE, AND A. MOITRA, New algorithms for learning incoherent and overcomplete dictionar-
ies, in Conference on Learning Theory, PMLR, 2014, pp. 779-806.

Y. BA1l, Q. JiaNG, AND J. SuN, Subgradient Descent Learns Orthogonal Dictionaries, preprint,
arXiv:1810.10702, 2018.

C. Bao, J.-F. Ca1, aND H. J1, Fast sparsity-based orthogonal dictionary learning for image restoration,
in Proceedings of the IEEE International Conference on Computer Vision, 2013, pp. 3384-3391.

C. Bao, H. Ji, Y. QUAN, AND Z. SHEN, {9 norm based dictionary learning by proximal methods with
global convergence, in Proceedings of the 2014 IEEE Conference on Computer Vision and Pattern
Recognition, 2014, pp. 3858-3865.

B. BARAK, J. A. KELNER, AND D. STEURER, Dictionary learning and tensor decomposition via the
sum-of-squares method, in Proceedings of the Forty-Seventh Annual ACM Symposium on Theory of
Computing, 2015, pp. 143-151.

R. BHATIA, Matriz factorizations and their perturbations, Linear Algebra Appl., 197 (1994), pp. 245-276.

N. CHATTERJI AND P. L. BARTLETT, Alternating minimization for dictionary learning with random
initialization, in Advances in Neural Information Processing Systems 30, 2017.

J. E. CoHEN AND N. GILLIS, Identifiability of complete dictionary learning, STAM J. Math. Data Sci., 1
(2019), pp. 518-536, https://doi.org/10.1137/18M1233339.

K. ENGAN, S. O. AAsE, AND J. H. Husoy, Method of optimal directions for frame design, in 1999 IEEE
International Conference on Acoustics, Speech, and Signal Processing, IEEE, 1999, pp. 2443-2446.

R. GE, C. JIN, AND Y. ZHENG, No spurious local minima in nonconvex low rank problems: A unified
geometric analysis, in International Conference on Machine Learning, PMLR, 2017, pp. 1233-1242.

Q. GENG AND J. WRIGHT, On the local correctness of {1-minimization for dictionary learning, in 2014
IEEE International Symposium on Information Theory, IEEE, 2014, pp. 3180-3184.

B. GHIMIRE, Landscape Color and Grayscale Images, https://www.kaggle.com/datasets/theblackmamba
31/landscape-image-colorization (accessed 2023).

D. GiLBoA, S. BUCHANAN, AND J. WRIGHT, Efficient dictionary learning with gradient descent, in
International Conference on Machine Learning, PMLR, 2019, pp. 2252—-2259.

R. GRIBONVAL, R. JENATTON, AND F. BACH, Sparse and spurious: Dictionary learning with noise
and outliers, IEEE Trans. Inform. Theory, 61 (2015), pp. 6298-6319, https://doi.org/10.1109/
TIT.2015.2472522.

R. GRIBONVAL AND K. SCHNASS, Dictionary identification—sparse matriz-factorization via £i-
minimization, IEEE Trans. Inform. Theory, 56 (2010), pp. 3523-3539, https://doi.org/10.1109/TIT.
2010.2048466.

J. Hu AND K. HUANG, Global identifiability of £1-based dictionary learning via matriz volume optimiza-
tion, in Advances in Neural Information Processing Systems 36, 2023, pp. 36165-36186.

R. JENATTON, R. GRIBONVAL, AND F. BACH, Local Stability and Robustness of Sparse Dictionary Learn-
ing in the Presence of Noise, preprint, arXiv:1210.0685, 2012.

R. JENATTON, J. MAIRAL, G. OBOZINSKI, AND F. R. BACH, Prozimal methods for sparse hierarchical
dictionary learning, in Proceedings of the 27th International Conference on Machine Learning, 2010,
pp. 487-494.

O. KrRAUSE AND C. IGEL, A more efficient rank-one covariance matriz update for evolution strategies,
in Proceedings of the 2015 ACM Conference on Foundations of Genetic Algorithms XIII, 2015,
pp. 129-136.

H. LEg, A. BATTLE, R. RAINA, AND A. N@G, Efficient sparse coding algorithms, in Advances in Neural
Information Processing Systems 19, 2006.

R.-C. L1, New perturbation bounds for the unitary polar factor, SIAM J. Matrix Anal. Appl., 16 (1995),
pp. 327-332, https://doi.org/10.1137/S0895479893256359.

M. Liu, L. Nig, X. WANG, Q. TiaN, AND B. CHEN, Online data organizer: Micro-video categorization
by structure-guided multimodal dictionary learning, IEEE Trans. Image Process., 28 (2018), pp. 1235—
1247, https://doi.org/10.1109/TIP.2018.2875363.

C. Lu, J. SHI, AND J. J1A, Online robust dictionary learning, in Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition, 2013, pp. 415-422.

Copyright (©) by SIAM. Unauthorized reproduction of this article is prohibited.


https://arxiv.org/abs/1810.10702
https://doi.org/10.1137/18M1233339
https://www.kaggle.com/datasets/theblackmamba31/landscape-image-colorization
https://www.kaggle.com/datasets/theblackmamba31/landscape-image-colorization
https://doi.org/10.1109/TIT.2015.2472522
https://doi.org/10.1109/TIT.2015.2472522
https://doi.org/10.1109/TIT.2010.2048466
https://doi.org/10.1109/TIT.2010.2048466
https://arxiv.org/abs/1210.0685
https://doi.org/10.1137/S0895479893256359
https://doi.org/10.1109/TIP.2018.2875363

Downloaded 02/01/26 to 130.126.101.135 . Redistribution subject to SIAM license or copyright; see https://epubs.siam.org/terms-privacy

ALTERNATING MINIMIZATION SOLVES COMPLETE DICTIONARY LEARNING 883

27)
28]
[29]
30]
31)
32)
33
[34]
35]
136]

[37]

[38]
[39]

[40]

[41]
[42]
[43]

[44]

J. MairaL, F. BacH, J. PONCE, AND G. SAPIRO, Online dictionary learning for sparse coding, in
Proceedings of the 26th Annual International Conference on Machine Learning, 2009, pp. 689-696.

J. MAIRAL, M. ELAD, AND G. SAPIRO, Sparse representation for color image restoration, IEEE Trans.
Image Process., 17 (2007), pp. 53-69, https://doi.org/10.1109/TIP.2007.911828.

B. MALEzZIEUX, T. MOREAU, AND M. KOWALSKI, Understanding approximate and unrolled dictionary
learning for pattern recovery, in International Conference on Learning Representations, 2021.

M.-C. PALI AND K. SCHNASS, Dictionary learning—from local towards global and adaptiv, Inf. Inference,
12 (2023), iaad008.

Q. Qu, J. SuN, AND J. WRIGHT, Finding a sparse vector in a subspace: Linear sparsity using alternating
directions, in Advances in Neural Information Processing Systems 27, 2014.

S. RAMBHATLA, X. L1, AND J. HAuPT, NOODL: Provable Online Dictionary Learning and Sparse Coding,
preprint, arXiv:1902.11261, 2019.

S. RAVISHANKAR, A. MA, AND D. NEEDELL, Analysis of fast structured dictionary learning, Inf. Inference,
9 (2020), pp. 785-811.

K. SCHNASS, Local identification of overcomplete dictionaries, J. Mach. Learn. Res., 16 (2015), pp. 1211—
1242.

K. ScHNAss, Convergence radius and sample complexity of ITKM algorithms for dictionary learning,
Appl. Comput. Harmon. Anal., 45 (2018), pp. 22-58, https://doi.org/10.1016/j.acha.2016.08.002.

K. ScHNASs AND F. TEIXEIRA, Compressed dictionary learning, J. Fourier Anal. Appl., 26 (2020), 33,
https://doi.org/10.1007/s00041-020-09738-6.

Y. SHEN, Y. XUE, J. ZHANG, K. LETAIEF, AND V. LAu, Complete dictionary learning via £p-norm
mazimization, in Proceedings of the 36th Conference on Uncertainty in Artificial Intelligence, PMLR
124, 2020, pp. 280—289.

D. A. SPIELMAN, H. WANG, AND J. WRIGHT, Ezxact recovery of sparsely-used dictionaries, in Conference
on Learning Theory, JMLR Workshop and Conference Proceedings, 2012, pp. 37-31.

J. SUN, Q. Qu, AND J. WRIGHT, Complete dictionary recovery over the sphere, in 2015 International
Conference on Sampling Theory and Applications (SampTA), IEEE, 2015, pp. 407-410.

J. SuNn, Q. Qu, AND J. WRIGHT, Complete dictionary recovery over the sphere 1: Overview and the
geometric picture, IEEE Trans. Inform. Theory, 63 (2017), pp. 853—-884, https://doi.org/10.1109/TIT.
2016.2632162.

B. TorLoosHAMS AND D. BA, Stable and Interpretable Unrolled Dictionary Learning, preprint,
arXiv:2106.00058, 2021.

R. VERSHYNIN, High-Dimensional Probability: An Introduction with Applications in Data Science, Camb.
Ser. Stat. Probab. Math. 47, Cambridge University Press, 2018.

Y. ZHAL, Z. YANG, Z. L1ao, J. WRIGHT, AND Y. MA, Complete dictionary learning via £*-norm maxzi-
mization over the orthogonal group, J. Mach. Learn. Res., 21 (2020), 165.

C.-H. ZHANG, Nearly unbiased variable selection under minimaxz concave penalty, Ann. Statist., 38 (2010),
pp. 894-942, https://doi.org/10.1214/09-A0S729.

Copyright (©) by SIAM. Unauthorized reproduction of this article is prohibited.


https://doi.org/10.1109/TIP.2007.911828
https://arxiv.org/abs/1902.11261
https://doi.org/10.1016/j.acha.2016.08.002
https://doi.org/10.1007/s00041-020-09738-6
https://doi.org/10.1109/TIT.2016.2632162
https://doi.org/10.1109/TIT.2016.2632162
https://arxiv.org/abs/2106.00058
https://doi.org/10.1214/09-AOS729

	Introduction
	Summary of results
	Related work
	Notation

	Our method
	Orthogonal dictionary learning
	Mini-batch complete dictionary learning
	Online dictionary learning
	Initialization

	Proofs
	Proof of Theorem 2.2
	Proof of Theorem 2.4
	Proof of Theorem 2.3

	Numerical experiments
	Synthetic dataset
	Real dataset

	Conclusion
	References
	Appendix A. Preliminary
	Appendix B. Proof of auxiliary lemmas
	Proof of Lemma 3.4
	Proof of Lemma 3.3
	Proof of Lemma 3.2
	Proof of Lemma 3.1

	Appendix C. Rank-one updates for the preconditioner

