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Abstract

Contrastive learning is a powerful framework for learning discriminative repre-
sentations from image-text pairs. Despite its success, its theoretical foundations,
especially when the image-text pair exhibits misalignment, remain underexplored.
This paper provides the first theoretical analysis of contrastive learning under data
misalignment, proving how the ground-truth modality-paired features are amplified
while spurious features are suppressed through the training dynamics analysis.
Specifically, we study two nonlinear encoders trained jointly with a contrastive loss
and demonstrate that noisy (or misaligned) data pairs result in mixed representa-
tions and degrade the model’s generalization ability. In contrast, recaptioning and
filtering improve the data alignment, which in turn purifies the features learned by
neurons and subsequently enhances generalization. Our analysis identifies feature
purity as a key factor in the success of contrastive learning and offers insights
into how data quality and training procedures impact representation learning and
downstream generalization. Theoretical insights are supported by experiments on
standard benchmarks.

1 Introduction

Vision-language models (VLMs) have achieved strong performance across diverse multimodal tasks
such as vision-language understanding and generation. State-of-the-art methods like CLIP [37] and
SimVLM [50] use contrastive learning to train dual encoders on large-scale image-text pairs scraped
from the web, aligning embeddings by pulling paired samples closer in a shared space. These models
excel in zero-shot scenarios, requiring no task-specific fine-tuning.

However, web-sourced captions are often noisy or misaligned, containing irrelevant or spurious details
that hinder cross-modal alignment and reduce representation quality. For example, [34] cites an
image of a blue Mercedes-Benz in a parking lot paired with the caption: "2003 Mercedes-Benz C240
sedan, Leather, MUST BE SEEN — $6199." The price information in this caption is only superficially
correlated with the image and does not contribute meaningfully to understanding the image context.
To mitigate this issue, many works [13, 34, 46, 3, 38, 16, 45] adopt text generation methods during
VLM training to produce high-quality synthetic captions more faithful to the corresponding images.
Models like LaCLIP [13] and BLIP [25] show that such recaptioning improves both the quality and
diversity of training data, leading to significantly better performance. Further, [34] demonstrates that
the cosine similarities between BLIP2 generated captions [24] and their paired images is higher than

39th Conference on Neural Information Processing Systems (NeurIPS 2025).



Table 1: Comparison with existing theoretical works on contrastive learning.

Train . Zero-shot . Multi- Joint
Work Dyn. Nonlinear Gen. Recaption modal | Encoder
(Wen & Li, 2021) [51] v v
(Nakada et al., 2023) [33] v v v
(Chen et al., 2024) [10] v v v
(Lee et al., 2021) [21] v v
(Zhang et al., 2023a) [60] v
(Pareek et al., 2025) [35] v v v v
This paper v v | v | v A

that of raw captions. [22] analyzes conformity on MSCOCO and finds that it correlates with how
common or rare an image—caption embedding is, reflecting its degree of alignment within the dataset.

Despite the impressive success of VLMs and the practical advancements driven by recaptioned texts,
their theoretical foundations remain relatively underdeveloped. Several critical questions remain
mostly open:

How do contrastively pre-trained VLMs align modalities, extract feature representations, and
achieve zero-shot capabilities? How does text recaptioning on noisy image-text pairs provably
enhance generalization performance?

Notably, even the theory of vanilla multimodal contrastive learning is still incomplete. For instance,
[15, 60] extend spectral contrastive loss to multimodal settings, showing that the objective can be
related to matrix factorization. [35] provides a theoretical characterization of when data filtering
improves multimodal contrastive learning, offering a complementary, data-centric perspective to
objective-level analyses. Also, [17, 21, 59] show that, under certain conditions, multimodal models
outperform unimodal ones with better representations. However, these works assume an optimal
solution to the non-convex problem without analyzing the training dynamics that lead to strong
generalization. The zero-shot ability of VLMs also lacks full theoretical study. To the best of our
knowledge, only [10] analyzes CLIP’s zero-shot performance, showing it learns shared features while
ignoring modality-specific ones. Yet, their setup does not consider real-world issues like misalignment
between image and text. Beyond standard contrastive learning, [33] proposes a modified loss using
unpaired data to detect ground-truth pairs and improve results, but only for linear models. So far, no
work has theoretically studied the effect of text recaptioning on VLMs.

Contributions: To the best of our knowledge, this is the first theoretical work explaining why text
recaptioning improves zero-shot generalization in VLMs, especially under image-text misalignment,
where text may include spurious or missing features. We analyze the training dynamics of stochastic
gradient descent (SGD) in multimodal contrastive learning and derive the generalization behavior
of the learned model. Our analysis uses a one-hidden-layer ReLU network, which remains the
state-of-the-art model in theoretical studies of contrastive [51] and supervised learning [2, 61]. All
findings are validated empirically on practical VLMs like CLIP. A comparison to prior theory works
is shown in Table 1. Key contributions include:

1. Theoretical training dynamics and generalization analysis of contrastive learning in nonlinear
VLMs. We provide a theoretical analysis of jointly training two nonlinear encoders with contrastive
loss. Prior works on training dynamics in contrastive learning [51, 10, 33] either analyze a single
encoder or are restricted to linear neural networks. In contrast, our analysis captures the joint learning
behavior of both nonlinear encoders with ReLU activation functions.

2. Theoretical characterization of the impact of misaligned image-text pairs on pre-training
performance. We analyze a data model with modality misalignment, where some texts may contain
features spuriously correlated with the image and others may omit relevant features. We show that
spurious and missing features cause neurons to entangle true and irrelevant representations, which
hinders the ability of the vision-language model to disentangle semantic components, ultimately
degrading generalization performance.



3. Theoretical justification of enhanced out-of-domain generalization through pre-training
with text recaptioning. We first analyze the training dynamics of the text generation process and
formally prove that the resulting text after recaptioning has reduced spurious correlation and enhanced
semantic relevance with the corresponding images. When these filtered texts are used for contrastive
pre-training, the resulting model exhibits improved feature purity and succeeds in out-of-domain
zero-shot classification, whereas the model trained on raw data provably fails.

1.1 Related Works

Vision-Language Models: VLMs [58, 48, 37, 19, 28, 26] are trained via contrastive learning on
large web-sourced image-text pairs. Following CLIP, later models [30, 1, 56] aim to boost zero-shot
performance. Data quality has become a key bottleneck, leading to recent filtering efforts [13, 24,
49, 20, 27]. For example, LaCLIP [13] uses LLM-generated caption rewrites as augmentation, and
BLIP [25] leverages synthetic captions to drop noisy pairs, enhancing feature quality and robustness.

Theoretical Exploration on Contrastive Learning. Recent studies explore why contrastive learning
yields effective representations. [47] identifies alignment and uniformity as key properties of con-
trastive loss. [15] shows that solving auxiliary prediction tasks improves contrastive representations.
[44] highlights the role of inductive biases in shaping learning dynamics. [29] proves that multimodal
contrastive learning can recover shared latent factors under a generative model.

Generalization analyses of Neural Networks (NNs). Various approaches have been developed to
analyze the generalization of feedforward NNs. The neural tangent kennel (NTK) approach shows
that overparameterized networks can be approximated by kernel methods in the limiting case [18, 2].
The model estimation approach assumes the existence of a ground-truth one-hidden-layer model with
desirable generalization and estimates the model parameters using the training data [63]. The feature
learning approach analyzes how a shallow NN learns important features during training and thus
achieves desirable generalization [31, 23, 43].

2 Problem Formulation and Algorithm

VLMs leverage large-scale web-based datasets containing paired visual and textual data to pre-train
two separate encoders: an image encoder f and a text encoder h, parameterized by weights W and
V, respectively. Contrastive learning serves as the core framework, ensuring the learned embeddings
of matching pairs are closer while separating mismatched pairs.

Specifically, let S be the indices of the image-text pairs, e.g., (Z,, yp) With p € S. (zp, yp) is referred
to as a positive pair, while (z,, y,,) with p # n is referred to as a negative pair. We minimize the
following spectral loss function:
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where the hyper-parameter 7 > 0 is referred as the temperature. The spectral contrastive loss L in
(1) has been extensively utilized in recent theoretical works [15, 42, 60]. Although it differs from
the commonly used SimCLR [9] in practice, the spectral contrastive loss closely resembles SimCLR
numerically, as shown in [15].

2.1 Training Framework

Let S = Sp U Sy, include human-annotated high-quality image-text pairs with indices in .S;, and
noisy web low-quality dataset with indices in S,,. Due to the inherently noisy nature of web data,
the learned embeddings from (1) may be suboptimal. To mitigate this, many practical training
methods [25, 13] incorporate recaptioned text to improve the quality and diversity of image-text pairs.
While specific implementations vary, most frameworks follow a similar four-stage approach:

(S1) Image-text contrastive pre-training (ITCP) on raw data: The image encoder f and text
encoder h are trained using the image-text pairs {(z,, ¥p) }pes by minimizing the contrastive loss as

in (1). Let W and V denote the learned weights in f and h. We then estimate the image and text



embeddings of (zp,yp) by 2, = fir(xp) and 2, = hs7(yp). Due to the low-quality data in S,
when training the encoders, these estimations might not be accurate.

(S2) Generating text captions: The high-quality data pairs in S}, are used to finetune an image-
grounded text decoder G, which maps an image x,, to text through G(x,). Then, the learned G is
applied to every image z, in S,, to generate a synthetic caption ¢, = G(x,). Next, the estimated
text embedding of ¢, is computed as 2, = hy () = hs7(G(xp)), where V represents the weights
of h learned from Stage (S1).

(S3) Filtering: For every (x,,y,) in S,, we compute the cosine similarity between the image
embedding z;p and the text embeddings of the original caption zl’/p and the synthetic caption 2, ,

respectively. If the pair (27, , 2, ) has higher similarity to each other than the pair (27, , 2y, ). (¥p, ¥p)
is replaced with (z,, /). Let S,, denote the index set of the resulting data pairs. By filtering noisy

captions in S, with synthetic captions that better align with image embeddings, S,, becomes a
cleaner dataset.

(S4) ITCP on filtered data: The image encoder f and text encoder h are trained by minimizing the
contrastive loss in (1), repeating the procedure from Stage (S1) with the only difference being that the

original dataset S is replaced by S = S, U S,,. The resulting loss is denoted by i( fyh). Let W and
V denote the resulting learned weights. f and gy can produce improved embeddings compared
with fe and gs7.

We employ stochastic gradient descent (SGD) with step size ) and batch size B, following standard
practice. Despite the non-convexity of (1), we present a detailed analysis of the resulting training

dynamics and establish convergence guarantees in Section 4. This stands in contrast to existing works
[39, 53, 10] that assume the attainability of a global optimum.

2.2 Downstream Tasks

As a demonstration of the performance of the learned model ( f;, g ), We consider a downstream
image classification task in a zero-shot setting. Unlike the regression and binary classification tasks
to evaluate the uni-modal contrastive learning in [51], we consider a K -classification problem for any
constant K > 2. Each class label is associated with a given text prompt y, where k € [K]. For any
image = with its ground-truth label I,, € [K], the zero-shot predicted label by the pre-trained models
(f3» 9% ) is computed as arg max.ex](f (), 95 (Y& )). This approach follows the typical setting
of zero-shot image classification using VLMs [10, 19, 25]. The prediction is considered accurate if

and only if arg maxyc (k] <fv~v(x), 95 (k) = le.

3 Technical Assumptions and Setups

We introduce a set of assumptions that are either derived conceptually from the real data distribution
or follow existing approaches in contrastive learning theory.

3.1 Backbone of the Encoders

We use a two-layer neural network with ReL.U activation functions as the image and text encoders,
respectively. Formally, we have

Definition 3.1. The image encoder fw : R* — R™ and text encoder hy : R™ — R™ is
F@) = (fi(@), fu(@)) " €R™, with  fi(@) = o (wi,@) b)) — 0 (= (wi,) = bs), (2)

h(y) = (), hm(®)" €R™, with  hi(y) = o ((vi,y) = bi) — o (= (vi,y) = bi), 3)
where o is ReLU function, and W = [w1,wa, . .., W] ", V = [v1,v2, ..., v,,] T € RM*d,

Because deep neural networks are highly nonlinear, analyzing the training dynamics and resulting
generalization performance of learned models remains challenging. As a result, existing theoretical
studies are largely limited to one-hidden-layer neural networks [2, 61, 51, 33], where the learning
problem is already nonconvex. In this paper, we extend this line of research to a more complex
setting, where two such encoders are jointly trained for image and text modalities.



3.2 Data Model for ITCP

Our data model in Assumption 3.1 builds on the sparse coding framework, which has been widely
used in both uni-modal contrastive learning for images [2, 51] and multi-modal image-text contrastive
learning [10]. This sparse coding model has been employed in theoretical analyses [4, 7, 14] because
it effectively models the practical NLP [5, 6, 36, 11] and image data [55, 52, 54].

Assumption 3.1 (Sparse coding model for image-text pairs). Each image-text pair (z,,Yp), p € S,
is generated i.i.d. from the following sparse coding form:

Tp =Mze, + &, yp = Hzy, +&,, )
where z,,y, € R4, 2z, 2y, € RY, and d, = poly(d). We assume:
(a) Image dictionary: M = [My, ..., My] € R4*4 is column-orthonormal.
(b) Text dictionary: H = [Hy, ..., Hy| € R4*4 is column-orthonormal.
(c) Additive noise: &;,,&,, ~ N(0,071q,) withw(1/d;) < 0F < O(y/logd/d*+).
(d) Sparse latent vector: z,, = (z;p, cee zgp) with zgp € {0, %1}, where |z;p| ~ Bernoulli(C,/d).

Notably, we operate in a regime where the noise magnitude can dominate the signal: since w(1/d;) <

o7 < O(y/logd/d**e)', we have [[]|3 > ©(1) > |[Mz|2, indicating that the overall noise energy
significantly exceeds that of the signal. Nevertheless, we will show that contrastive learning remains
effective even under such high-noise conditions, due to the encoders’ ability to extract denoised and
purified features, as characterized in Theorem 4.4. An intuitive explanation for why feature recovery
is still possible lies in the different alignment properties of the signal and noise: for any active feature
z; # 0, the signal aligns well with its corresponding basis: |(Mz, M;)| = ©(1), while the noise

contribution remains small, |(¢, M,)| < O(1/V/d).

We introduce Assumptions 3.2 and 3.3 to capture the characteristics of the dataset S = Sj, U Sy,.
Notably, the number of high-quality pairs in S}, may be significantly fewer than that of low-quality
pairs in S,,, with |Sy,| = ©(d?) and |S,,| = poly(d) > w(d?).

Assumption 3.2 (High-quality image-text pairs). Every high-quality image-text pair (z,,y,) with
p € Sy, satisfies z,, = z,,, i.e., the image and text have the same latent vector.

Compared to high-quality pairs in S}, low-quality pairs in S,, show modality misalignment due to
spurious image-text correlations and missing descriptions of key visual features.

Assumption 3.3 (Low-quality misaligned image-text pairs). There exists a constant Cs €
(w(1/logd),1/2) such that for every low-quality pair (z,,y,) in Sy, and every image feature
M; (5 € [d]) in xp, we have

Pr (zg/; = zgp | |zip| = 1) =C,, Pr (zip =0| |z;p| = 1) =C,, (5)

where the first term in (5) is the probability that a text feature H;: (j' # j) is spuriously correlated to
the image feature M, and the second term is the probability that H; is missing in the text while the
image feature M exists.

Consider the blue Mercedes-Benz example from [34]. Here, M; denotes the car’s visual feature,
while H; refers to unrelated price information spuriously correlated with M, illustrating the first
term in (5). The correct text feature “Mercedes-Benz” is H; its absence reflects the omission of a
relevant feature, as captured by the second term in (5). We focus on a single spurious pair (7, j') for
simplicity. Since our analysis depends on the total spurious feature probability (bounded by C;), the
results extend to multiple spurious features as long as their total probability stays within C.

3.3 Image-Grounded Text Decoder G in Stage (S2)

Recall that G is employed in Stage (S2) to generate synthetic text captions. In practice, the core
idea behind the widely adopted approaches [25, 58, 48] is to train the encoder-decoder model GG and

'"The columns M; and H are column-orthonormal with each entry bounded by 9] (1/+4/d1), ensuring small
inner products with isotropic noise.



leverage the high-quality image-text pairs .S, to improve its performance. In this paper, we consider
a simplified form of G, given by:

G(x,) = V'o(Wz,), (6)
where o denotes the ReLU function. The parameters W and V are learned by solving
. ]. T 2
wmin Lo = > 3 IVie(Wap) =yl Q)

PESH

initialized at W and V, using SGD with step size 7. Although G in (6) is a conceptual simplification,
where 0(Wx,,) acts as the encoder and V" as the decoder, it serves as a realistic abstraction to
illustrate the underlying advantages of synthetic text caption generation.

3.4 Zero-Shot Generalization on Image Classification

We consider an out-of-domain (OOD) setting for testing images and text prompts as follows.
Image: Each test image = can be approximated by a sparse coding model with dictionary M,
=Mz +&, lzlo=001), [zlnx=0(1), ®

where M/ = MP,, and max; ; |(P1);; — d;;| < O(1/V/d) . The noise &, matches the training
distribution (Assumption 3.1(d)) and d;; denotes the Kronecker delta function.

Text: Each class k € [K] has a prompt that has a sparse decomposition
v =Hz, +&,., 2, lo=0@1), |2, [lmax = O(1). )

!
Yk

1C22) 2 Ml > 1 (20) T2yl VA # K (10)

This formulation reflects the intuition that x belongs to class k if its sparse representation is most
similar to the sparse representation of class k’s text prompt.

If = belongs to class k, then among all K binary vectors Zzlm’ z! is maximally aligned with z

4 Main Results

4.1 Intuition and Informal Insights

Before presenting our main results, we first offer an intuitive explanation of the encoder-learner’s
success. To learn the latent representation z from input pair (z,y), a well-trained image encoder f
and text encoder g must ensure that each feature pair (M, H;) is captured by at least one neuron
pair (w;, v;), without interference from spurious signals. We call this a purified feature, meaning
the neuron pair encodes only one true feature with no contamination. In this case, (w;, *) ~ 2J and
(v3,y) =~ zi, so f and g recover the full latent space z. But in real data, where high-quality pairs
in .S, are rare and noisy pairs with misaligned image-text pairs in .S,, dominate, achieving this is
difficult. See Appendix B.1 for proof sketches and we summarize main findings below:

(I) SGD provably solves the nonconvex training problems (1). The existing training dynamics and
convergence analyses are limited to either single-modal contrastive learning [51] or linear networks
[10, 33]. Theorem 4.1 provides a convergence analysis of SGD for solving the nonconvex ITCG
problem when the network contains nonlinear activations for both modalities.

(II) Failure of learning due to spurious correlations. Theorem 4.2 provides a negative result: if f
and g are directly trained on the raw data S, the model inevitably learns M; and M together via
some w;, and H; and H;, together via some v;. As a result, the model fails to distinguish between
these spuriously correlated features.

(III) Successful learning with recaptioning and filtering. Theorem 4.3 demonstrates that recap-
tioned texts significantly suppress spurious features and enhance relevant feature alignment. Building

on this, Theorem 4.4 states that training f and g on the recaptioned data S enables the resulting en-
coder pair to learn purified representations of M; and H; accurately, as if trained solely on sufficient

high-quality data. This highlights the advantage of leveraging the recaptioned data Sy



(IV) Enhanced zero-shot image classification accuracy due to text recaptioning. The advantage
of using synthetic text captions is further validated in downstream tasks. As shown in Theorem 4.5,

for a zero-shot out-of-domain multi-class image classification task, ITCP trained using S achieves
high accuracy, whereas ITCP directly using S fails to generalize accurately.

4.2 Feature Purity Improvements in Converged Models via Recaptioned Data

We first characterize the training dynamics and convergence of solving (1) using SGD in Stage (S1)
and (S4) in Section 2.1. Let L* and L* denote the optimal values of the contrastive loss on the raw
dataset S and the filtered dataset S, respectively. Note that (W, V) and (\7\7, \N/') are the converged
weights from contrastive training on S and S in Stage (S1) and (S4), respectively.

Theorem 4.1 (Convergence of ITCP). Suppose Assumptions 3.1 to 3.3 hold. Let the model
complexity be m = d*O, initialized at w(o), vgo) ~ N(0,031,,), where 0 = © (m). After

T = © (d*logd) iterations with batch size B = Q(d) and 1 = O(1), the returned weights achieve
a loss that is sufficiently close to the optimal loss in Stage (S1) and (S4), respectively, i.e.,

(Lo hy) = L)/ 1L < o)), (Efghg) = L)/ |

Remark 4.1. Theorem 4.1 demonstrates that SGD iterations can converge to weights that achieve
a near optimal loss of (1), respectively. This result is of independent interest, as existing training
dynamics and convergence analyses for contrastive loss are limited to linear networks. Here, we
extend such analysis to nonconvex optimization settings where the network contains nonlinear ReLU
activations. Next, we characterize the feature purity of the learned models.

< o(1). (11)

Theorem 4.2 (Unsuccessful learning of ITCP on raw data S with low feature purity). For each
neuron pair (w;,v;) in (W, V), there exists a spurious feature pair (j,j’) € [d] such that

w; = OtiJ'Mj + OZZ‘J/M]‘/ +r;, v; = Oéiijj + OliJ'/Hj/ +s; (12)

where of ;, 07 ;o = © (||wi||3 + ||0:]13) and ||r; |13, [Isil|3 < O(([lwill3 + [[0:]13)/d). Moreover for

every spuriously correlated pair (j, j'), there exist at least Q)(1) neuron pairs (w;, v;) that primarily
learn the mixed feature pair (M;, M, H;, H;/).

Remark 4.2. Theorem 4.2 indicates that the model learned by ITCP on raw data achieves only
limited feature purity. Specifically, a neuron pair (w;, ¥;) learns a mixture of image and text features,
respectively. M; and M, are always mixed together, as are H; and H;/. As a result, the learned
weights W and V fail to produce purified representations, making it difficult to distinguish between
features j and j’, which ultimately degrades downstream performance shown in (15).

Theorem 4.3 (Spurious feature suppression and relevant feature preservation by recaptioned
texts). After T' = ©(dlogd) steps of SGD, the decoder G in (6), finetuned by solving (7), converges

to weights (W, V') with expected loss Lc < ©(1/d). The recaptioned texts in S, are computed by
Up = G(xp). Then for any index j € [d] such that |2}, | = 1, the decoder output satisfies:

Pr(z) =1]]2,|=1)>1-0(1/d), Pr(z) =1]]z,|=1)<O(1/d), Vi #j (13)

Remark 4.3. After captioning and filtering, the resulting text contains fewer spurious features
and more aligned feature pairs than raw data. Compared with Assumption 3.3, the probability of
spurious features can be reduced from a constant C in S, to ©(1/d) in S‘w, while the probability
of retaining all aligned feature pairs increases from C in S,, to 1 — © (1/d) in S,,. The resulting
dataset S = S, U S,, has better-aligned image-text pairs, enabling higher feature purity in contrastive
training. We next show how ITCP trained on S improves feature purity.

Theorem 4.4 (Successful learning of ITCP on filtered data S with high feature purity). For each

neuron pair (W0;,0;) in (W, V), there exists j € [d] such that (W;, v;) primarily learns (M, H;)
w; = 651'7ij +1;, U= (N)éi,jHj +s; (14)

where G2 — O(|[ii]3 + |7:]3) and |73, 18:13 < O ()3 + |15:]3)/d). Moreover, for every

ij
feature j € [d], there exist at least (1) neuron pairs (w;, ¥;) that primarily learn purified feature

]»
pair (M, H;).



Remark 4.4. Theorem 4.4 indicates that the model learned by ITCP on filtered data achieves a
purified representation. Specifically, a neuron pair (;, ;) learns one single feature pair (M, H;),

respectively. As a result, W and V yield purified representations that effectively separate individual
features, enabling improved downstream performance shown in (16).

4.3 Performance Comparison on Downstream Tasks
We next compare the performance of the models (fsz7, g37) and (f, g) on the zero-shot image
classification problem with out-of-domain data described in Sections 2.2 and 3.4.

Theorem 4.5 (Zero-Shot Image Classification). For the OOD zero-shot K -class image classification
problem, the model ( f7, gv7) from ITCP using raw data has a constant failure probability:

Pr (arg i (feg () 97 01) = zm) —1-6(1);. (s)

In contrast, the model ( 5, g57) from ITCP using filtered caption succeeds with high probability:

Pr (arg s (fgp ). g9 w)) = zm) —1-o1). (16)

Remark 4.5. Theorem 4.5 first demonstrates that the zero-shot performance of ( fg7, g57) is unsatis-
factory, resulting from the low feature purity in (fqy, gv7), as established in Theorem 4.2. Theorem
4.5 further shows that (f;, g5) achieves accurate classification. This success is attributed to high
feature purity in (g7, g5 ), as described in Theorem 4.4. Note that Theorem 4.5 holds for image data
with a distribution shift from the training data.

5 Experiment

5.1 Simulated Experiment
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Figure 1: Performance comparison of ITCP on raw data and filtered (recaptioned) data when
the probability of spurious correlation C changes. (a) Number of features that have purified
representation in the model (b) Average magnitude of purified presentations (c) Zero-shot out-of-
domain classification accuracy (d) Silhouette Score with cosine distance.

Experiment Setup. We first validate our results via simulated experiments, using the same framework
from Section 2.1. We adopt a more general spurious correlation model than Assumption 3.3, allowing
each M; to be spuriously linked with multiple H;/ (j° # j), while keeping the total spurious
correlation probability at Cs. We set d; = 2500, d = 50, |S,,| = 5000, |S,| = 1000, and use
m = 80 neurons. Matrices M, H are drawn from standard Gaussians and orthonormalized via
QR decomposition. Sparse codes z, follows Bernoulli(0.1) Noise variance O'g = 1/d. SGD runs
with batch size 500 and step size 0.001. Downstream evaluation uses 5-way classification with test
zz ~ Bernoulli(0.2); class codes z,, partition the d-dim space. Results are averaged over 20 trials.

Models (W, V) and (W, V) are trained on raw and filtered data, respectively.

Improved feature representation using filtered (recaptioned) data. We say a weight w; learn a
purified representation of M if its projection along M achieves the largest magnitude and satisfies

[{w;, M;}|/||w;|| > 0.5. The same applies to (W, V). Figure 1(a) shows the number of features M,
(out of d = 50 total features) for which at least one neuron in W (or W, respectively) learns a purified



Table 2: of CLIP and LaCLIP on Accuracy (%) and Silhouette Score.

Food-101 CIFAR-10 Caltech-101 CIFAR-100 Pets STL- 10

Model Acc SS Acc SS Acc SS Acc SS Acc Acc

CCI12M CLIP 50.8 0.034 64.9 0.113 774 0.225 38.5 0.005 64.1 0.069 91. 0.195
CC12M LaCLIP 60.7 0.038 | 75.1 0.157 | 83.3 0.276 | 43.9 0.029 72.4 0.070 | 95. 1 0.273
RedCaps CLIP 81.5 0.125 70.4 0.100 72.8 0.210 39.9 —0.002 | 82.7 0.091 | 92.8 0.226
RedCaps LaCLIP | 85.0 0.175 | 74.8 0.107 | 76.4 0.233 | 40.7 0.011 78.2 0.074 914 0.275
LAION CLIP 85.5 0.116 93.0 0.181 91.2 0.258 71.7 0.078 90.1 0.122 97.3 0.223
LAION LaCLIP 86.5 0.148 | 93.5 0.215 | 92.4 0.306 | 73.9 0.108 90.9 0.152 | 98.4 0.260

representation. The results show that ITCP trained on filtered data learns purified representations
for nearly all features, even at high spurious correlation levels (Cs = 0.3). In contrast, ITCP on
raw data degrades significantly, with purity dropping faster as C increases. Moreover, Figure 1(b)
shows the average of the largest projection magnitudes among neurons that learn purified features.

The magnitude from W (ITCP on filtered data) is consistently higher than that from W, indicating
stronger purified representations. This aligns with Theorems 4.2, 4.4 and Remark 4.4.

Improved zero-shot out-of-domain performace using filtered (recaptioned) data. Figure 1(c)
compares the classification accuracy of both models on zero-shot out-of-domain data. The model
trained on filtered data consistently outperforms the one trained on raw data, with the performance
gap widening as spurious correlations in the raw data increase. We also adopt the widely used
Silhouette Score (SS) with cosine distance [57, 32, 62] to evaluate feature embedding quality in
different clusters, as shown in Figure 1(d). A higher SS indicates better intra-class alignment and
inter-class orthogonality, reflecting more purified representations. These results verify Theorem 4.5.

Impact of feature purity. When C; reaches 0.35 in Figure 1, even the filtered data fails to maintain
full feature purification: the number of neurons learning disentangled representations of all d = 50
features drops significantly (Figure 1(a)), and the SS (Figure 1(d)) and classification accuracy
(Figure 1(c)) both decline sharply. This highlights that feature purity—the extent to which each
neuron aligns to a single semantic direction—is a key bottleneck in contrastive pretraining and
downstream generalization. We provide extra results in Appendix A.1.

5.2 Experiments on Practical Data and Models

LaCLIP improves generalization over CLIP via recaption. Tables 2 compare CLIP [37] and
LaCLIP [13], which share the same architecture and datasets, except LaCLIP replaces part of the
original captions with LLM-generated rewrites. “CC12M CLIP” denotes a CLIP model pretrained on
raw CCI12M [8], while “CC12M LaCLIP” uses the same model and data but with LLM-rewritten
captions. Other models are obtained similarly using RedCaps [12] and LAION [40] datasets. We
evaluate their zero-shot classification accuracy and Silhouette Scores on various downstream datasets.
LaCLIP generally outperforms CLIP in both metrics, empirically validating that higher-quality
captions improve zero-shot generalization. Additional ImageNet results are reported in Table 3 of
Appendix A.2.

Next, we study the feature purity using a CLIP model pretrained on CC3M [41]. Both the image
and text encoders are 12-layer transformers that produce features in R758, which are subsequently
projected into a shared embedding space of R®'? through final linear projection layers, as illustrated
in Figure 6 of Appendix A.2. The final linear projection layer has 512 neurons and is functionally
aligned with V in our theoretical model. We now present two key findings from this setting:

Purified neurons enhance generalization. To investigate the effect of feature purity on general-
ization, we prune the neurons in the final linear layer in different ways and evaluate the resulting
zero-shot classification performance. Specifically, we rank the 512 neurons by their average pairwise
absolute cosine similarity to all other neurons, from lowest to highest. The absolute cosine similarity
of neurons vj, v, is computed as |(vj,v;/)|/|lv||[|v;/|| for all 4,7 € {1,2,...,512}. A lower
average indicates higher feature purity (i.e., more orthogonal representations), while a higher value
suggests feature mixing. We evaluate three pruning strategies: (1) retaining high-purity neurons,
i.e., with lowest similarity, (2) retaining low-purity neurons, i.e., with highest similarity, and (3)
retaining a random subset of neurons. The number of retained neurons is varied from 200 to 500. As
shown in Figure 2 (a-c,e-g), downstream performance is the best when retaining high-purity neurons,



followed by random selection, with low-purity neurons performing the worst. These results highlight
the critical role of purified features in downstream generalization.

Data misalignment reduces feature purity. To study how image-text misalignment affects feature
purity, we randomly shuffling texts across image-text pairs in CC3M with probability C,,, as
illustrated in Figure 7 of Appendix A.2, thereby introducing a controlled probability of modality
misalignment. We then use the shuffled dataset to fine-tune the last linear projection layer only
of the pretrained CLIP model, freezing other layers. We then compute the cosine similarities
of all 512 neuron weight vectors v; € R of the fine-tuned model. Figure 2 (d) reports the
average absolute cosine similarity of all neuron pairs, while (h) presents a histogram of cosine
similarity (v;,v;/)/(||v;ll||lvj-|). One can see that as C,, increases, the average absolute cosine
similarity increases, and the neurons become less orthogonal to each other and tend to encode mixed
representations, resulting in lower feature purity. This coincides with the decreases classification
accuracy in downstream tasks, as shown in Table 4 of Appendix A.2.
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Figure 2: Left (a—c,e-g): Retaining high-purity neurons outperform random and low-purity neurons
in downstream tasks. More datasets shown in Figure 8. Right(d,h): When C,, increases, the neurons
have higher cosine similarity and reduced feature purity.

6 Conclusion

This paper provides a theoretical analysis of contrastive learning with nonlinear networks, linking
training dynamics to generalization. We identify feature purity as central to generalization and show
that text recaptioning enhances purity and zero-shot performance. The theory is empirically validated
on benchmarks. Future work includes extending to Transformer models and tasks like retrieval and
visual question answering.
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The overall structure of the appendix is as follows. Each appendix provides supplementary information
that supports the main content of this document but is not included in the main body to maintain
clarity and flow.

* Appendix A: Extra Experiments
Additional experiments including both synthetic simulations and CLIP/LaCLIP evaluations
on omitted datasets.

— A.1 Extra Simulated Experiment
Complements Section 5.1 with further analysis of neuron behavior trained on simulated
data.

— A.2 Extra CLIP/LaCLIP Experiment
Complements Section 5.2 by evaluating on datasets omitted due to space.

¢ Appendix B: Preliminaries
Mathematical preliminaries and notation used throughout the paper. A proof sketch is also
provided to outline the key ideas behind the main results.

¢ Appendix C: Technical Lemmas
Full statements and proofs of supporting lemmas used in the theoretical analysis.

* Appendix D-J: Proofs and Theoretical Analysis
— Appendix D-F: ITCP on Raw Data (Phase I-11I)
Theoretical proof of ITCP across three training phases on raw data.
— Appendix G: Captioning
Theoretical proof of reception using high quality data.
— Appendix H: Filtering
Theoretical proof of filtering noisy caption-text pairs.

— Appendix I: ITCP on Synthetic (Recaptioned) Data
Theoretical proof of training dynamics when using synthetic recaptions.

— Appendix J: Downstream Task Evaluation
Theoretical implications for performance on downstream tasks.

¢ ChecKklist
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A Extra Experiment

All experiments were conducted on an internal compute cluster using 8 NVIDIA A5000 GPUs with
24 GB memory each, and each run completed within 50 GPU-hours. No large-scale pretraining or
resource-intensive tuning was performed beyond the reported experiments.

A.1 Extra Simulated Experiment

This section extends the analysis in Section 5.1 by providing additional simulated experiments on
neuron behavior under synthetic data training.

Neurons trained on filtered data exhibit a more concentrated distribution. Figure 3 visualizes
the histograms of |(v;, H;)|/||0;|| and |(;, H;)|/||0;|| for all ¢ € [m] and j € [d]. The values
of [(9;, H;)|/||?;|| are more concentrated, typically around 0.05 and 0.7. In contrast, the values
for |(v;, H;)|/||v;|| are less concentrated. This phenomenon is consistent with Theorem 4.4, which
indicates that for every H ;, certain neurons ¢; in V predominately learns H;. In such cases, |(7;, H;)|
approaches 1, while |(3;, H;/)|/||%;|| approaches O for j’ # j. The concentrated values of 0.05 and
0.7 observed in Figure 3 are due to noise in the data. In contrast, feature alignment is less significant
for V, leading to less concentration of the corresponding values. Similar results are obtained for
image encoder |(w;, M;)|, deferred to Figure 4.

0.12 Raw Data Raw Data

0.10 Synthetic Data 0.0025 Synthetic Data
‘ 0.0020
30.08 >
5 1]
20.06 3_0.0015
g g
“0.04 £0.0010
0.02 0.0005
- i s
0.00 0.0 ; - 0.0000

Figure 3: Histogram of |(%;, H;)|/||0;|| for ITCP on raw data and |(%;, H;)|/|| ;|| for ITCP on filtered
data (split into two figures to hlghhght the significant differences in the Value distributions).
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Figure 4: Histogram of |(w;, M}|/|w;| for ITCP on raw data and |(0;, M) |/w; for ITCP on filtered
data (split into two figures to highlight the significant differences in the value distributions).

Enhanced class separation of downstream tasks by ITCP with recaptioned data. Figure 5
visualizes the t-distributed stochastic neighbor embedding (t-SNE) of the feature embeddings gen-
erated by the two models, computed as fy7(2),) and f; () for each z,,, respectively. The t-SNE
method projects the high-dimensional embeddings onto a two-dimensional map. One can see that the
embeddings from different groups are more distinctly separated in the model trained using ITCP on
recaptioned data, indicating that this approach achieves better feature alignment.

A.2 Extra Experiment on CLIP and LaCLIP

To complement the results in Section 5.2, we report additional experiments on CLIP and LaCLIP
using datasets omitted from the main text due to space constraints.

ImageNet Results. The LaCLIP variants consistently surpass their CLIP counterparts on both
Top-1 and Top-5 accuracy. Higher silhouette scores further indicate cleaner feature separation after
recaptioning, in line with our theoretical predictions.

CLIP architecture. Figure 6 illustrates the CLIP architecture used in our experiments. Both image
and text inputs are independently encoded by 12-layer transformer backbones, each producing a
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Figure 5: t-SNE visualization of text embedding with spurious correlation probability Cf.

Table 3: Comparison of CLIP and LaCLIP on ImageNet: Top-1 (%), Top-5 (%), and Silhouette Score.

Model | Top-1(%) Top-5(%) Silhouette
CC12M CLIP 35.04 62.10 -0.014639
CCI12M LaCLIP 42.62 70.17 —0.008141
LAION-400M CLIP 58.34 84.73 -0.029893
LAION-400M LaCLIP 62.27 86.34 —0.056593
RedCaps CLIP 37.66 63.31 -0.022045
RedCaps LaCLIP 39.66 66.06 —0.012269

768-dimensional feature vector. These features are then projected into a shared 512-dimensional
embedding space through learned linear projection matrices W € R768%512 and V ¢ R768%512,
corresponding to the image and text encoders in our theorem, defined in Eq. (2). The resulting
embeddings are aligned via a contrastive loss that maximizes similarity for matched image-text pairs
while minimizing similarity for unmatched pairs. This architecture forms the foundation for our
analyses on neuron selection and feature purity in the shared embedding space.

12-Layer Transformer Linear Projection Image Embedding

_’ _»
Output Dim: R768 W € R768%512 R512 —\

Image-Text Contrastive Loss

Image Data —

12-Layer Transformer Linear Projection Text Embedding _/
Text Data p—— —> —>

Output Dim: R7%8 V € R768x512 R512

Figure 6: Architecture of CLIP used in our experiments. Both image and text encoders are 12-layer
transformers that output features in R7%8, which are then projected into a shared R®'? embedding
space via final linear projection layers W and V, corresponding to Eq. (2) and Eq. (3) in our
theoretical analysis. Contrastive loss is computed between the resulting image and text embeddings.

Simulating Modality Misalignment via Caption Shuffling. Figure 7 illustrates how modality mis-
alignment is introduced by randomly shuffling text captions across image-text pairs with probability
C, resulting in noisy supervision for contrastive learning.

Purified neuron selection enhances generalization. Figure 8 presents additional experimental
results on CIFAR-100, Pets, and STL-10, complementing the main results reported in Figure 2. Due
to space constraints, we include only Food-101, CIFAR-10, and Caltech-101 in the main text. All
experiments follow the same protocol, evaluating zero-shot classification accuracy and Silhouette
Score under different neuron selection strategies. These results consistently support our core finding:
selecting high-purity neurons leads to improved downstream performance across diverse datasets.

Higher shuffling probability leads to reduced generalization and feature purity. Table 4 presents
additional experimental results on CLIP models finetuned with different levels of randomly shuffling
probability C,,, to simulate spurious correlation, showing that both accuracy and Silhouette Score
consistently decrease as C,,, increases.
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Figure 7: Simulating Modality Misalignment via Caption Shuffling. Starting from original aligned
image-text pairs, a controlled probability C,,, of misalignment is introduced by randomly shuffling
the text captions. This results in noisy pairs that reflect varying levels of spurious correlations.

CIFAR100 Accuracy

CIFAR100 Silhouette Score

Figure 8: Zero-shot classification accuracy (top) and Silhouette Score (bottom) under different
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neuron selection strategies for CIFAR-100, Pets, and STL-10 datasets.

B Preliminaries

We first restate some important notations used in the Appendix, which are summarized in Table 5.

B.1 Proof Scratch

Theorem 4.1 is proven by integrating the convergence analyses in Appendix F and Appendix L.
Appendix F establishes convergence for ITCP on raw data, while Appendix I extends the convergence
result to ITCP on synthetic data. Together, they verify that SGD with ReLLU networks achieves

near-optimal contrastive loss on both datasets.
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Table 4: Accuracy (%) and Silhouette Score of CLIP models finetuned with varying C,,, on six
datasets.

Dataset Cmn=0 Cm =0.1 Cmn =0.3 Cm =05 Cn =038
Acc SS Acc SS Acc SS Acc SS Acc SS

Caltech101 | 59.7 0.160 | 482 0.124 | 479 0.121 |43.6 0.117 |445 0.115
CIFAR-10 | 579 0.030 |50.7 0.012 |49.5 0.013 |46.5 0.013 |44.1 0.011
CIFAR-100 | 264 —0.038 | 19.5 —0.042 | 17.8 —0.043 | 174 —0.044 | 16.2 —0.048
Food-101 129 —-0.073 | 10.9 —-0.052|10.9 —-0.056|11.1 —0.057 | 11.1 —0.059
Pets 139 —-0.005|13.3 —0.006 | 13.2 —0.009 | 13.4 —0.011|12.6 —0.012
STL-10 8.3 0.164 |79.8 0.103 |79.2 0.102 |78.8 0.100 |783 0.097

Table 5: Summary of Notations

Notations Annotation

M e R*4 H e R“*4 M is the image dictionary matrix, H is the text dictionary matrix.

W e R™*4 vV ¢ R™*4 W is the weight of image encoder, V is the weight of text encoder.

zp, € R4y, € R%

x, and y, represent an image and a text data, respectively.

d
Zzps 2y, €R

2z, and z,,  are the sparse signals of image and text, respectively. z,,
is the sparse signal for the text prompt y.

2,20 2] is the j-th coordinate of z,,; 2] is the j-th coordinate of 2, .

L, L¢ L is the loss for ITCP; L is the loss for Image-grounded Text De-
coding.

S =SLUSy Sy 1s the noisy web low-quality dataset; S}, is the human-annotated
high-quality dataset.

S =5,USu Sy replaces noisy captions in .S, with synthetic captions.

T Phase I of ITCP with b\ = 0.

T Phase IT of ITCP with b\' ™) = (1 + 2)p(".

T Phase ITT of ITCP with b{" ") = p{">)

Tc Stage of training caption generators.

S sure The set of well-initialized neurons (w;, v;) on features (M, H;).

Theorem 4.2 is proven across Appendix D, Appendix E, and Appendix F. Specifically, Appendix D
models Phase I training (¢ < 77) and proves that neurons simultaneously align with true features
and spuriously correlated features due to comparable gradient contributions, preventing pure feature
separation. Appendix E analyzes Phase II training (77 < ¢ < T3) and shows that this spurious
alignment continues to strengthen, as neurons with initial mixed alignment further amplify their
entanglement during continued SGD updates. Appendix F establishes the convergence behavior
during Phase III (T» < t < T3), showing that the network stabilizes into mixed solutions where each
neuron represents a combination of multiple features. These detailed stages collectively prove the
failure of purified feature alignment as formalized in Theorem 4.2.

Theorem 4.3 is proven across Appendix G and Appendix H. Specifically, Appendix G analyzes the
captioning stage, where the decoder is fine-tuned on clean data to generate synthetic captions. It
proves that for neurons aligned with true features, the alignment towards the true features grows
exponentially while the alignment towards spurious features remains negligible. This ensures that
the synthetic captions preserve relevant features and suppress spurious ones. Appendix H then
formalizes the filtering process, demonstrating that after replacing noisy captions with synthetic ones,
the resulting dataset satisfies much stronger feature purity conditions, with spurious correlations
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suppressed to ©(1/d) and true features preserved with probability 1 — ©(1/d). These results directly
support the purified feature learning described in Theorem 4.3.

Theorem 4.4 is proven in Appendix I, which integrates the proofs of Phase I, Phase II, and Phase III
for ITCP on synthetic data. Specifically, Appendix I first establishes in Phase I that purified training
pairs allow neurons aligned with true features to grow exponentially without spurious interference. It
then shows in Phase II that these alignments continue to strengthen while suppressing non-informative
neurons, leading to clear feature separation. Finally, it proves in Phase III that the model converges,
achieving a bounded final loss and dominant true feature alignment. Since the overall proof structure
closely mirrors that of Theorem 4.2 (which was proven separately across Appendix D, Appendix E,
and Appendix F), we consolidate all stages into a single appendix for brevity and clarity.

Theorem 4.5 is proven in Appendix J, which analyzes the downstream zero-shot classification.
Appendix J shows that for ITCP on raw data, spurious features cause a constant classification error,
while for ITCP on synthetic data, true and spurious features become separable with high probability,
leading to an o(1) error rate. This directly supports the main text conclusion on downstream
generalization.

B.2 Feature Coupling and Expected Values in .S,

The following Assumption B.1 corresponds to the more specific forms of Assumptions 3.2 and 3.3
discussed earlier.

Assumption B.1 (High and low quality pairs). The high-quality image-text pairs in Sy, have size
|Sh| = ©(d?). The low-quality image-text pairs in S,, have size |S,,| = poly(d)| > w(d?).

In Sy, for a positive pair (z,,,yp), we assume perfect alignment, meaning z,, = z,,. Consequently,
the following holds:

E [z;pzf/p} = %, E {z;pzi;} =0 <de) , 4§ A (17)

To model the misaligned features in low-quality pairs in S.,,, where spurious misalignment occurs at
a non-negligible level, we assume [d] can be divided into d/2 disjoint sets, each containing exactly
two entries. Let (j, ') C [d] denote one such set, referred to as a “spuriously correlated set.” The
following assumptions capture the nature of spurious and true alignments:

y . 1
Pr(lz2 | =11z |=1)=06(1) < =,
(| =111, 1= 1) = 6(1) < | .

Pr(lzg | = 11122, | = 1)+ Pr(jz) | = 1] ]2} | =1) = L.

These assumptions imply that true alignment dominates, with Pr(|zép\ =1| |z;p| =1) > 1, while
spurious alignment exists at a constant percentage level, making it non-negligible. The intuition
behind this assumption is that each feature j is paired with exactly one spuriously correlated feature
4, ensuring that j is not associated with any other feature 5"/ # j'. This design simplifies the analysis
while effectively capturing the key challenges posed by low-quality data.

Then, for a positive pair (z,, y,) with p in S, we have:

E {z%pz;p] +E [zipz;;} = %,
o 1 . (19)
E[:,2] =6 (d) <5
where (7, j') is a spuriously correlated set.
For negative pairs (z,, yq), where p # ¢, and p,q € .S, we have:
E [zgzgj] -0 (d12) . Yj,5 € [d. (20)

In S,,, mismatched text and image pairs are prevalent compared to Sy,. For a postive pair (zy, yp), we

log(1/co)
2logd

assume < Pr(|zgl;\ =1] |Z§c,,| = 1) < 3. To model this, we assume that for each primary
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feature j € [d], there exists exactly one spurious feature j' such that j and j' are uniquely coupled.
This implies that j cannot be associated with any other feature ;" # j'. Mathematically, the coupling
is defined as: . _ ' _

Pr(lz) | =11z, =1) +Pr(lz) | =1] [z, [=1) =1 21

For a positive pair (x,,yp) in S, the probabilities of spurious and aligned features are further
constrained:

log(1/co) ’ - 1
— 2 <Pr(lz | =1 J =1 — 22
Sog g < Prll =111, =1) < 5. 22)
The lower bound is established in Lemma C.8.
and: _ _ . _
Pr(|z{!p\ =1 |z%p| =1)=1- Pr(|z§p| =1 \zfcp| =1). (23)

Under these assumptions, the expected values for the aligned and spurious features are calculated as
follows:

For the aligned feature j, we have:

E [zf 2 ] = Pr(z | =1,]2 | = 1)

0 %0
=Pr(lz) | =1l |=1)-Pr(lz] | =1) (24)
= Pr(lzf, | =111, =1)- &

For the spurious feature j’, we have:

E[zﬂ 2 ] Pr(l2f | = 1,12 | = 1)
= Pr(2, | =1 |2, | =1)-Pr(|z] | = 1) (25)
= Pr(l=f | =1 |, 1 =1)- &

The total expected value across both aligned and spurious features satisfies:

E[zj zj}—i-E[zj zj}:% (26)

TpTY TpTYp d
Here, 7’ denotes the spurious feature associated with j.

B.3 Gradient

The contrastive loss in vision-language models (VLM) is defined as follows:

(7@ > e )< )

L9, h0) =3 [_ FO@), k) + 3

peS Ty €N/

@7

O (@), (ga)))
+ Z ( 2T - ) }’

Yyn €N’

where 7 > 0 is a temperature parameter.

We perform stochastic gradient descent (SGD) on this contrastive loss. Let f(*) and A®*) be the image
encoder and text encoder networks at iteration ¢, respectively. The network parameters are updated as

follows:
w™ o w® — v, L(F®, h0), (28)

o W v, L(FO, RO, (29)

where b(t) the bias term, is manually tuned during training and thus excluded from gradient updates.
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The gradient of L( f), h(*)) with respect to wgt) at iteration ¢ is given by:

t
L(f® 00) = — (0 )z, - 1|(w(t),a: [z 1|<v£t),yp>‘2b£t)

b3 WO O e

. T [ 2] 250w 42000
Tn €
(FD (), BD (y)) (0 g )
P D ® 100 ) 250" Ll [0
' (30)

Similarly, the empirical gradient of L(f®, h()) with respect to vgt) is:

VmL(f(t)a h(t)) == <wgt),$p>yp : 1’@5”,%)‘2175” ‘ 1|<v§f>,yp)‘2b§f>

t t (t)
3 WO B

T [ ) [250 " [0l ) |20
T, EN
)
(fDO (), hD (y)) (Wi, 2 )y
Py T ot |20 0l 2
Yn €N
(31)

B.4 Alignment Updates

We analyze how each neuron i € [mn] aligns with the feature M; during each iteration of SGD. The
alignment can be described by the following update rule:

(wi™ M) = (!, My) — (Vi L(FP, D), M)

K3

— (0D M. J 200 H. I (0 HN+ E (32)
<UJZ ) ]> —|—7’]2ny<’01 ) _7> +77Zzzy <Uz ’ j/> TTe.
Similarly, for (v, (t+1 ), H;), the update rule becomes:

(o H) = () ) — (V0 L0, 1) H) -

= <v§t),H >+772]z]< Y ¢ >+77,z]z7 (w; ®) Mj) £+ Erry.
Using Lemma C.6, we know that with high probability, }_, . M < O(3), so
in Eq (30) the sum of second term and third term is always less than the first term, until

(f O (), h(t)(yp)> =0(d).
The updates for the components (w(t+1),Mj>, MY H)), <U),Et+1),Mj/>, and (v{""V H,/)

7
(where j' represents the spurious aligned feature corresponding to j) can be expressed con01se1y in

matrix form as follows:

W M) | e b0 e [ M)
(t+D) 1. b 0 *) 1
<U&+1)’ b |b e e <”gt)’ i) + Erry, (34)
(w; M) 0 a b| [{(w;’, My
W H) | e 00boa] | (0 Hy)

where the coefficients are defined as:

_ J o0 .
a=1, b= Zy 2y - 1’<w£t)’wp>‘2b1(:t) 1|<v§t)’yp>‘2bgt)7

v

= .
C zzzy 1|<w§t)’zp>|2b§t) 1|<U£t)’yp>’2b§t).

22



Therefore, we have

(a+b+c)+(a+b—c)t
4

(w® M) = (vl H;) =

9

(35)
a+b+ce) —(a+b—2c)
+( i 4( : (<wz(0)7MJ’> +<U£O)7HJ’>)
and
¢ Y
M) = ol By = SR (v + )
a+b+ce)t —(a+b—2c)t
b D=0 (0,0 M) 4 0l 1)

This matrix representation highlights the interactions between the alignment of true and spurious
features during SGD updates. The diagonal elements a dominate the contribution from existing
alignments, while the off-diagonal terms b, ¢ capture the mutual influence between paired features
and spurious alignments. Note that if ¢ is very small, it indicates that the spurious alignment (;’) has
minimal influence, allowing w; to focus on learning purified features. Conversely, if c is large, the
spurious alignment could significantly interfere with the learning process, hindering the purification
of features. The error term Err; accounts for higher-order noise or unmodeled effects in the update
process.

Assuming a single spurious feature is a simplification for presentation that was made for ease
of presentation in the proof and can be extended to a more general setting without altering the
underlying insights. If each feature j has K —1 spurious correlates, (34) becomes a 2K x 2K matrix,
and N; = j, 7' in the last sentence of Theorem 4.2 contains j and other K —1 features. Our analysis
relies on the total spurious feature probability (bounded by C5), not the number of correlated features,
so as long as the sum of all spurious feature probabilities is upper bounded by C;, the core
mechanism and insights of the theorem remain unchanged.

C Technical Lemmas

Definition C.1 (Neuron Characterization). Let us define a few notations to characterize each neuron
wgt) ’s behavior. For every constant co € (0,1) and vy € (0,0.1), by choosing ¢c1 = 2+ 2(1 — v)co
and co = vyco, we define:

I Let S C [m] be those neurons i € [m] satisfying

J,Sure
n t 1—co) logd t
© G i My ))? < g MM w3

=1 7

ST (wf My))? > Latenlond v T |3

=1 [

S=

2. Let SJ(-QM C [m] be those neurons i € [m] satisfying

o (wf My)? > Lazelload NV T ()2
Lemma C.1 (Geometry at initialization). We initialize the parameters by wZ(o) ~ N(0,0314,), where
o2 =0 (m) We have with probability > 1 — o(1/d®) over the random initialization, for all

j€ld:

‘8]('2”’6 =0 (d%(o) =: &
’SJ(',(;))OI <0 (d7%) = =

Proof. 1f g is standard Gaussian, then for every ¢ > 0,

L (1) g L1 2
e e < Pr >t < —-—e / . 37
Vort?+1 g~N<o,1)[g } Vor (t) 37)
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We initialize the parameters by w'” ~ N(0,0214 ), where 02 = © ( dlpolly( d)). We have

L M) ~ A (0,%).

Therefore, for every ¢ € m and j € d, we have
1< ’ 3
p1 =Pr |:(n Z<w§0)’M1>> > (Cl+02)07-1010gd:|
_o( L ). 1 (38)
logd d(citc2)/2

o1 1
- logd) d-d(-7/2)0

(

e Ly, 1 (39)
logd d(c1—c2)/2

_of 1 1
- Viogd) d-d(=37/2co

2 2
p2 =Pr (wio),MJA) > (a1 — 02)0—0 log d]
n

SAES
i

Let Sﬁlre C [m)] be those neurons ¢ € [m] satisfying

n 0 c1+c2) logd 0
o (L () My))? > (atendload g, (0)) 2

n Lui=1\%

o (L7 (Wl My))? < lazenlond v Ty, ()12

3

By concentration with respect to all m choices of i € [m], we know with probability at least 1—o (35)
. . 0 a
it satisfies ‘S;gm =Q(di%).

Let SJ(%L( C [m] be those neurons i € [m] satisfying

o (w®, M;)? > Cmelosd N Ty ()| 3

By concentration with respect to all m choices of i € [m], we know with probability at least 1 —o (5 )

a3
: : 0) | _ c

it satisfies ‘Sj,pot = O (d*7*0).

More details of the proof can be found in Lemma B.2 of [2]. O

Lemma C.2. With high probability 1 — m, for every i € [m), the following holds:

1 n 1 2 1
Pr l(% > M) — (M) > d;?blogd] >1-0(—) (40)

i=1
#@l), for every i € [m), the following holds:

Lemma C.3. With high probability 1 — 5

~ /1 ~ /1
IMM w2 + |HH v{” |2 € 2do2 {1 -0 (ﬁ) 140 (\/gﬂ . 41)

Proof. Let X ~ x2. By standard properties of the chi-squared distribution, we know that with
probability at least 1 — 6,
| X —n| < 24/nlog(1/4). (42)
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HMMTwEO)H%Jrl\HHTvEO)H%

In our case, we consider p ~ x% 4 Setting § = m, we have n = 2d, and
thus, with high probability 1 — poly( g the following holds:
MMy |§J’£ [HH o3 2d| < 21/2dlog(poly(d)). 43)
Rearranging and incorporating the scaling factor o, we get:
IMM w2 + |HH 0”2 € 2do2 {1 -0 (;&) 140 (\}gﬂ . (44)

O

Lemma C.4 (Noise Projection Bound). For the spurious dense noise &, ~ N (0, agldl ), where the

variance satisfies w ( ) < 05 <0 ( ) the following holds with high probability 1 — e~(d1) ;

(wi, )2 < O (”“”"5> Vi € [m] 45)
19 - d1+00 b .

Proof. For all j € [d;], by the properties of the Gaussian distribution, we have:

1 -
Pr [<Mj,§>2 <0 (dHﬂ >1— e %), (46)
Now, consider the term |{w;, & >|2 We decompose it as:
|(wi, & Z |(w;, M |<Mja£>|2 Z |<wz7M]L>|2 ’ ‘<Mj'7§>|2~ (47)
jeld] J€[d1]\[d]

For the first term, since |(M;, £)|? < O (5= ) with high probability, we have:
[ (wi, M;)|?
D Hws, M) - (M, )] < ZO(C}M; . (48)
j€ld] j€ld]

Similarly, for the second term:

wML
S e MBEME P < S o( “’dHCO”). @9)

j€[di]\[d] j€ldi]\[d]

Combining these, we have:

(O <O (nmil\la;zuin% . ||ML314;TwZ||2> 50

Since MM "w; |3 + MM "w; |2 = [|wi]|3, we conclude:
(i, €) 2 SO(EZT;'!?). (51)
Thus, the lemma holds. O

Lemma C.5 (Tail Bound for Matrix Product). Let Q € R™*" be a symmetric matrix, and let w, v be
independent zero-mean Gaussian random vectors with covariance matrix 1,,. Define

= Z Qijwﬂ}j. (52)
i,j=1
Then, for any § > 0, the following tail bound holds:

52
R ) . 53
r[|Z] > 4] < eXP( 4Q||2F+46IIQIOP> )
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Lemma C.6 (Bound Inner Product). Consider the inner product between the feature vectors at
initialization:
m

(f(@),h(y)) = (Wz, Vy) = Zwl oylo = Z zl y;)w] v, (54)

1=11,5=1

Here, using Lemma C.5, Q = zy ", with ||Q||,, = O(1), =0O(1)and o} = © (W).

Then, at initialization (t = 0), the following holds:
Pr{| (£ (), k1 ()] = Q(1)] < e, (55)

Lemma C.7 (Concentration bound for empirical loss and gradients). There exist N > poly(d) for
some sufficiently large polynomial and all ||w;||, < O(d), i € [m], it satisfies

1 1
¥ 2 LU R @) = Eayyen LY 0Y; (@, )] < O(5)  (56)
PE[N]
1
5 3 Vu LG (@) — By yen (Vo LU 05 ()| < 0(5) )
pE[N] 2

Proof. The proof can be done by trivial VC dimension or Rademacher complexity arguments similarly

to Lemma A.2. [2]. O
Lemma C.8 (Misalignment Probability Bound). The probability of spurious alignment satisfies:
log (2 C ) . ./ 1
——2 L <Pr(E | =1 | =1) < - (58)
21og 4 o P » 2

Proof. By concentration over all m choices of i € [m], we find that with probability at least 1—o (75 ),
the number of neurons satisfying:

2
1 < o2
- M) | < 4ep)—2logd 59
(n ;(w y>> (c1+ 4c2) 108 (59)
is o(1).
In addition, for all neurons, we have:
(T1) |2 (T1) |12
max ((w(T1)7M]/>2) S Cl + 362 logd . ||wl H2 + HU ||2 (60)
v 2 d 2
Define:
a+b—c)h
a0 = CEP T 00 ) 4 ® 1) - @ M) - 60 B[ 6D
Thus:
2 _ log d (T1) 2 (T1)
<U),L(T1)7Mj’>2 — ‘max (<U}£T1),M]/>) _ A(Tl) > C1 5 C2 02 . ||U) HQ _2|_ ||U || . (62)

We begin by expressing a + b — ¢ and a + b + ¢ as functions of P, = Pr(|zip| =1 \z%;| =1)and
Py =Pr(|z] | =12} | =1), where P, + P, = 1:

(P1 — PQ)CZ loglogd

at+b—c=1—nA+n ¥ ,

(63)
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(P1 + PQ)OZ loglogd

a+tbt+ec=1-—nA+n 7 (64)
Using Eq (62), Eq (35) and Eq (36), we derive:
2
(a+b—c)*h \/01+302 \/01—02 9
< — < 2¢5. 65
(a+b+c)2T1 — 2 2 S 26 ( )
Substituting back, we find:
log ( - ) 1
0 o< (66)
21og 4 4 2
For example, setting ¢y = 0.1, v = 0.005, d = 100, and d; = 10000, we calculate:
1 1
7 <Pra, =11 =1) < 5. (©7)
This concludes the proof by bounding Pr(|z§p| =1 \zg;| = 1) under the given conditions. O

D ITCP on Raw Datal

In this section we analyze Phase I of ITCP on Raw Data as the training iterations ¢t < T3, where
(T1) (T1) )2
T, =0 (%) is the iteration when all 12 H2+Hv Iz > le(O)H% + ||U§O)||§. When ¢ < T3,

we set bl(-t) = 0. For every neuron ¢ € [m], the weights w; and v; exhibit an increase in alignment
along the direction of informative features M and H, while showing negligible increase in alignment
along the direction of noise features M and H.

Based on subsection B.2, we have Pr(|2) | =12} [ =1) = ©(1),50E [2]2]] and E [zj 2 } both

in © (). In this case, w( 5

comparably to the updates

is jointly influenced by M; and M., with both features contributing

To simplify our analysis, we consider the worse case where Pr(|zj, =112, |=1)=Pr(l2], | =
11122 | =1)= % suchthat E szJ =E zjzj =% 5o using Eq (35), Eq (36) and b() =0,
zp 2 2d
we have
(a+b+c)t 0 0 0 0
(i, M) = T (M) + 0 H) + (0 M) + 00 Hy))(68)
® (a+b+o) 7, () 0) © 0 69
(w;”, My} = ———— (<wi M)+ (v Hy) + (w7, M) + (v 7Hj'>) (69)

This represents the worst-case scenario as the contributions of the aligned feature [E [zj 2 ] and the

spurious feature E [z;zil] are identical. Under real circumstances, we expect [E [zJ zﬂ} <E {z;zg! }

which would result in (w, (1) M, 5y > <w£t+1), M;). However, in this worst-case scenario, the
equality of contributions prevents the network from prioritizing purified features, resulting in equal
magnitudes for (wgtﬂ), M;) and (wftﬂ), M), thereby hindering effective feature separation.

We first provide a lower bound for ||MMTw§t) |2 for iterations ¢ < ¢;. From Eq (122) and Eq (69)
we have:

d 2

a+b+c) a+b+c)

Mo = 3 [ (v + 0l ) + LR (M) 4 01|
i=1

(1 nC- ) MM T3 + [HE o 3
T 8

(70)
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1
poly(d)

M) Tl (14 ) I Tl )
The detailed proof of Eq (71) can be found in Hypothesis C.4 of [51].
A similar result holds for HHHT%@ |% and | H* (HL)TUEQ 3.

Eq (70) and Eq (71) shows that the image and text dictionary features M, H can grow exponentially,
while the noisy features M+, H+ remain almost unchanged when ¢ < T}.

For Mj- where j € [di] \ [d], using Eq (71), we obtain:

(T1) 2 (T1) )2
1 1 w,; + [|v;
|<w§t+1),Mj‘>|2 <0 (d1) HwEO)H% <0 <d1> . il 5 lv: ”2 (72)

This result demonstrates that the noisy features MjL experience nearly no increase during this phase,
remaining insignificant in their contribution to the alignment of w;.

D.1 Lower Bound of Alignment for i € S sure

This section provides a analysis of the alignment growth for neurons i € S; . Specifically, we
()

demonstrate that for every j € [d], if i € S} sure, the alignment (M, w;"’)? and its spurious alignment

(M, wf”)Q increase exponentially when ¢ < T7.

We now prove the lower bound of |<w§T1), M;)|? fori € S ure:

T
[(wi™), M) 2

2
(1 - nCZ)QTl <<w£o>,Mj> (o Hy) 4wl My) + <v§0%H]‘>)
4

0 C:\*" (c1+co)logd [|MM w2 + [HH {3
>\ 1+n— : -

d d 8
© (c1+cp)logd MM w{™ |3 + |[HH o™ |3

d 2
T T 0 0

& (e +co)logd [uw™ |3+ [of™ 3 — [[wi I3 — |01
- d 2
& (1+co—qeo)logd Jwi™ |3 + [|of™[3

d 2

(73)
(T1)

(T1) 2 2
i Tl 0 0
I H22Hv 2 > ||wz( )H%+||U'E |I3.

In > we use Definition C.1. In ) we use Eq (70). In & we use
In & we use ¢1 + ¢c2 > 2(1 4+ ¢o — 7ycp).

Similarly, |(w!™*), M;/)|? have the same lower bound.

D.2 Upper Bound of Alignment for i ¢ S, pot

In this subsection, we analyze the alignment of neuron i ¢ S ;o With the feature M ; and provide an

upper bound for |<w§Tl)7 M,;)|?. While neurons i ¢ S o still exhibit exponential growth in their
alignment, their weaker initialization results in significantly smaller alignment compared to neurons
in S} sure, limiting their contribution to learning the feature M.
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To establish the bound, we begin with the following expression:

2T, ©) M. © ., ©) M., © g\
™ M = (1405 ) <<wz M) + (o By + 0 My + 0 H)

K 1

(1) (amc)logd IMMTw | + [HH v |3
- d d 8
_ (e —e)logd MM Twi™ |3 + [HH o3

d 2

(74)
Here, in <}, we use Lemma C.1, which captures the reduced alignment for neurons outside S por.
Similar to the analysis for i € S; sure, the alignment strength for i ¢ S pot is weaker, as ¢; — ca is
less than 2(1 + ¢o — 7y¢p), leading to:

(1+co—3yco)logd [lw™ |3 + Jlv]

d 2

)2

[(wi™ M) <

K2

(75)

This inequality highlights the slower alignment for neurons outside S po, distinguishing their behavior
from neurons in S; . Consequently, ¢ S, pot contributes less significantly to the alignment of
M, reinforcing the importance of initial affinity for effective alignment.

D.3 Summary
At this stage (t < T7), we do not consider the worst-case scenario where the probability bounds for
feature coupling satisfy
log(1/co)
2logd
(as assumed in SubSection B.2). Thus, we summarize the results when ¢t < 77 as follows:

./ . 1 . .
<Pr(lz [=1]]2 |=1) < 3 < Pr(lz; | =112 [=1) <1

1. For @ € S} sure, the alignment strength satisfies:

14 co —yeo)logd  [lw'™ (T))12
|<wZ(T1),Mj>|2 > |<wZ(T1)7Mj’>‘2 > ( + Co deCO) oga ”wz HQ ; ||'U ”2’ (76)
where j' represents the corresponding spurious alignment feature.
2. For i ¢ Sj por, the alignment strength satisfies:
1 _ 1 d (Tl) 2 (Tl) 2
() ny < (F = Beologd ™I + 10"l -
3. For M- where j € [d1] \ [d], we have:
1 (1) o (T1) 2
|<w£t+1),Mj'>| <0 <d1> [|ws 13 5 H HQ (78)

These results demonstrate that when t < T3, all features in M increase, but the alignment for
1 € S sure, including the corresponding spurious alignment, grows significantly larger due to favorable
initialization. In contrast, noisy features M+ remain unchanged.

E ITCP on Raw Data II

The Phase II of ITCP on Raw Data is defined as the training iterations 77 < t < T, where

TQ—TF@(%).

At the beginning of this phase, we set the bias threshold as:

p(T) _ \/(1 + ¢o — 27¢p) logd ‘ ||wz(T1)||2 + HU(Tl)H2

d 2 (79
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During training, the bias threshold is iteratively updated as:
b§t+1) = (1 + g) bgt), (80)

until all neurons satisfy:
™13 > Q@)™ 3. 81)

In this phase, the dynamics of alignment vary depending on whether a neuron belongs to .S; ure OF
not:

» For i ¢ S, p0: The weights w; and v; show negligible alignment growth with both the
informative features M;, H; and the noise features ML, HL. This is due to their weaker
initialization, as shown in Phase I, and the effect of the indicator function when t > T}
which prevents them from being activated. As a result, their capacity to learn meaningful
alignments during this phase is significantly limited.

e For i € Sjsr: The weights w; and v; exhibit continued alignment growth with the
informative features M ;, H;. Additionally, their alignment with the corresponding spurious
features M, H - also increases due to their strong initialization, as shown in Phase I, and
the effect of the indicator function when ¢ > T7, which ensures they are always activated.

By the end of this stage (t = T5), the weights w;, v; will predominantly focus on the features M ;, H;
if i € S, sure, While largely ignoring the features M;, H; if ¢ ¢ S j,pot> as well as the noise features
M-, HL. This separation lays the foundation for the Phase II of ITCP on Raw Data, where spurious
alignments are expected to further diminish due to the dominance of true feature alignments.

Similarly to the proof of ¢ < T3 To simplify our analysis, we still consider the worse case where

Pr(\zgp\ =1| |z§3p| =1)= Pr(|z§p| =1] |z%p| =1) = suchthat E [zi,zi] =E {zgz{/} = %.

E.1 Alignment for i € S; sure

This section provides a analysis of the alignment growth for neurons i € S; sure. Specifically, we
(t)

demonstrate that for every j € [d], if i € S sure, the alignment (M ;, w; ’)? and its spurious alignment

<M;-, wl@>2 increase exponentially when T} < t < Ts.

For @ € 5 sure, using Lemma C.4, the following holds with high probability 1 — e~¥d1) when
T <t<Ty:
2
® o |« *)
‘(wl 7£>‘ S O d1+602 < bz (82)

Therefore, with high probability 1 —e~*2(41), using Eq (76) and Eq (79) the indicator function satisfies
the condition when t = 77:

B R [ R S ®9
we can ensure that:
E |2)2) - L) ) 540 1\<vgt>,yp>\2bgt> %. (84)
Using Eq (116) we know that (1 +75%) > (1 + 2) and using Eq (34) we have
(Y M) > (14 D)0 = b, (85)

d
This implies that when ¢ > T7, the alignment strength of informative features surpasses the updated

bias threshold bgt). Consequently, the indicator functions become consistently activated 77 < t < T5
such that

1|<w§t)_’1p>|2bgt> . 1‘<v§t>,yp>‘2b§” =1, (86)
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Using Eq (34), the weight dynamics for \(wgtﬂ), M,)| can be expressed as when T < t < T5:
() (t) (t) 1 (t)
C, w; M) + (v; 7, Hy) + (w7, Mim) + (v; 7, H;
|<w£t+1)7Mj>| — <1+nd> << i ]> < i J > 0 < 4 j > < i j>> ) (87)

(1))

Similarly, |(w;

, ML;/)|? have the same result.

E.2 Alignment for i ¢ S; yot

In this section, we analyze the alignment behavior for neurons i ¢ S, yor. Specifically, we demonstrate
that for every j € [d], if i ¢ S; por, the alignment (M, wgt)>2 exhibits negligible growth during the
interval T < t < T5.

For i ¢ S; o, using Eq (156), Eq (79) and Eq (76), we have with high probability 1 — e=$}(d1),
similarly to the proof of i € \S; sure, the indicator function satisfies the condition when ¢ = 77:

1|<w7(;t),zp>|2b’(£t> . 1‘<’U£t)7yp>‘2bgt) = 0, (88)
We can ensure that:
o 1
E Ziz; . 1|<w£t),xp>|2b§t> . 1‘<v§t),yp>|2b§t):| <o <d2> . (89)
Using Eq (116) we know that (1 + o(Fk)) < (1+ Z) and using Eq (34) we have
(@D M) < (14 Db = b+, 90)

This implies that when ¢ > 77, the alignment strength of informative features does not surpass the

updated bias threshold bgt). Consequently, the indicator functions become consistently not activated
Ti < t < T5 such that

1|<w§t)_’$p>|2b§t> . 1‘<’U§t)7yp>‘2b§t) =0, 91

Using Eq (34), the weight dynamics for \<w£t+1), M;)| can be expressed as when T < t < Ty:
(T1) (Tv) (Tv) ()

tf (w7, M) + (v, Hy ) + (w My ) + (v, H;

(t+1)7Mj>|§(1_~_0(77)> << i i) + (v, i)+ i)+ o j)

[(w; 2 1
92)
Because (1+ o (;%))TQ <1+ o0(4),the growth in |<wET2)7 M;)| is negligible. Consequently, we
have:
1
™ M) < (140 (3) ) o™ M ©3)

E.3 Summary

When T, = © (dlo—ngd» we know (1 + n%)T2 = poly(d). Using Eq (76), we can ensure that when
all neurons satisfy the following condition:

o™ Iy = Q)™ |2, 94)
we terminate the training process at 7o = © (%) . This ensures that the alignment has sufficiently
progressed for effective learning.
Thus, using Eq (93) and Eq (71) we have

T T T T T
™) M)+ (™ M) P = o™ - > @™ My = Y ™ M
JE[d],jEN; j€ld1]\[d]

T 1 T T T
> [Juy™ 113 = (1 o()) (™5 = (™, M) [* = [ (wi™ M) [)
(T1) 12
w.:
> ool — [l ™) - o112

95)
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Thus, at this stage (77 < t < T»), we do not consider the worst-case scenario where the probability
bounds for feature coupling satisfy

log(1/¢o)

. . 1 . ,
S <Pl =11 |,1 = 1) < 5 <Pr(s,| =1 |, =1 <1

We summarize the results when 77 < t < T5 as follows:

1. For i € S} sure, the alignment strength satisfies:

T: T:
o Llwf™ I3 + 11of™ 13

[(wf™ M) > (™ M) > 5 5 (%)
where ;' represents the corresponding spurious alignment feature.
2. For i ¢ Sj por, the alignment strength satisfies:
(T2) 12 (T2) 12
1 w, + v,
|<w§T1),Mj>|2 < O(&) . ” ”2 5 ” HQ (97)
3. For Mj where j € [d;] \ [d], we have:
(T2) 2 (T2) 12
1 w, + v,
|<w,(t+1);Mj'>|2 <0 <d1> . I 112 5 [ Hz (98)

These results demonstrate that when 77 < ¢ < T, the alignment for i € Sj gy, including the
corresponding spurious alignment, grows significantly larger. In contrast, the alignment strength for
i ¢ S pot and noisy features M- remains unchanged. Similar results also hold for v;.

F ITCP on Raw Data III Convergence

In the previous section, we demonstrated that for ¢ < T5, the neurons (w;, v;) are sparsely activated
and remain consistently activated for ¢ € S} sure. Building on this result, this section establishes the
convergence of these neurons to sparse solutions, providing a detailed analysis of their behavior
during Phase III of ITCP on Raw Data. The following theorem outlines the convergence guarantees
under these conditions.

The Phase III of ITCP on Raw Data is defined as the training iterations 75 < ¢t < T3, where
T3 — T, = O(d). At the beginning of this phase, we fix the bias threshold as b(t) bTZ for
T, <t < T3. Because bETz) = (1 + g)e(dlog d/m bz(.Tl), it is easy to know that for ¢ > T, only
when (z, y,) and (z,,, y,) contain the true feature j and its corresponding spurious feature j', the
indicator functions remain consistently activated for ¢ € S} qure.

Consequently, using Eq (27), Eq (30), and Eq (31), the loss function L becomes convex with respect to
w; and v; independently when (x,, y,) and (,,, y»,) contain the true feature j and its corresponding
spurious feature 5’ .

At the end of Phase II, using Eq (81), we know that ||w£T2) l2 > Q(d). Consequently, we cannot
only consider —(f®(x,), h® (y,)), and the error term Err; becomes non-negligible.

Specifically, based on Eq (27), it can be observed that the term —(f () (z,,), h(*) (y,))) is convex and
Lij1 = ||lzpll2|lypll2 = ©(1)-smooth. This ensures that the true features contribute consistently to
the optimization process.

((f(t)(xn) h(t)(!/p»)
Addltlonally, L; is also convex, and we further establish its smoothness to
provide a rlgorous understandlng of its behavior.

To analyze the [; ; o-smoothness, we aim to find an upper bound that satisfies:

|V v L2 (wi 1, vi1) = Vi, o La(wi 2, vi2) |2 < lijall(win — wi2,vin — vi2)]|2- (99)
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The gradient difference for w; is given by:

H ("W Viy) z(viay) " — ("W Vay) x(vz‘,w)THQ

Ve, Lij2(wi1,vi,1) — Vi, Li j2(wi2, vi2)][2 = 57

lwi,l

< or —wizll2 + 1;7_2 [lvi,n — vi2|2,
(100)
where Ly, 1 = |23 ]lyp13]vi,1ll2 2 < O(d) and Ly, 2 = [[znl3]lypll3 ([[vi1ll2]lwizll2 +
[[wi,ill2 2) <O(d).

Similarly, the gradient difference for v; is:

Lo 1 lvi,
[V, Lij2(wi1,vi1) = Va, Li j2(wi2,vi2)|]2 < 2“ |wi,1 — wiz2ll2 + 272 [vin — viz2ll2,
(101)
where [,,, 1 < O(d) and [, » < O(d).
Combining the results, we find:
I \/l%u 1 + l12u ,2 + lv, 1 + l121i,2 O 1 102
7,,],2 - 27_ = ( ) ( )
Thus, the total smoothness constant is:
lij =lija+lij2=06(1). (103)

These results demonstrate that the loss function L remains convex and I; ;-smooth for neurons (w;, v;)
when (z,, y,) and (z,,, y»,) contain the true feature j and its corresponding spurious feature j' during
Phase III of ITCP on Raw Data, ensuring their convergence to sparse solutions while maintaining
consistency in their activation patterns.

We verify that the following inequality holds

Lj(w(tﬂ) v(tﬂ)) < Lj(w(t) v(t))
(1) _ (0 4D (1)
-+<V (w v; —vi)> (104)
lij 41 ¢ t+1 t
0 )

Let L = max;em(lij/(27)) = ©(1) and n = 1 to ensure a monotonic decrease, plug Eq (28) and
Eq (29) into Eq (178), we have

t+1 t+1 t t t t
L o) < Lyl o) = 2Ll o) (105)
Under our data assumptions for S,, and conclusion in Eq (96) , we define w; = of ;M; +

af My, vf = of ;Hj + of ,Hj. Thus, L; j(wf, vy) captures both the alignment with the true
feature M;, H; and the spurlous feature M., H , representing the minimal loss achievable under
the influence of both true and spurious features in the optimization process. Using Eq (81), we know

w!™) = O(d), so L;(w?,v}) = —O(d).

By the property of smoothness, we have

2
IVL; w3 = £ (L, 0l") = Li(wi,v)) (106)
Take the telescope sum of from 75 to T3, we have
Ty 9
1 ® () N A
ZLJ( i 1Y )<Lj(wzﬂvz)+
-1 = I3 -1y (107)
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% 7 i Y

where Ag = Lj(w(Tl)m(Tl)) — Lj(w;,v}) =06(d). In$, weuse Tz — Tp = O(d), and L = O(1)

Generalized to every j € d, the same convergence holds for all i € S; sue When (z,, yp) and (2, yn)
contain feature 7, j/. For all (z,,y,) and (2, y,,) in Sy, the following inequality holds:

1
3 -15

Ts
ST L™, RT) < L h7) + 6(1). (108)

t=T5

As aresult, the relative difference is bounded by:

L(FT) W) L(f*, 1) (1)
e(-).
L, )] = (109

d

F.1 Summary

ITCP trained on raw data S undergoes Stages D-F. After T" = @(dzliog; i) SGD iterations with batch

size B = Q(d) and learning rate n = O(1), the resulting weights (W, V') minimize the contrastive
loss in Eq. (1) up to a vanishing relative error:

L(fwr, hsy) — L*

(waY> = <o(1). (110)

However, each neuron pair (w;, v;) in (W, V), for i € [m], predominantly encodes a mixture of
features indexed by a subset V; C [d], with |N;| > 2. Specifically, we have:

w; = Z a; ;M; + Z BiiM; + Z i My,

JEN; JE[d\N; jeldi)\[d] (111)
o= o Hi+ Y B H+ > v HS
JEN; JEd\N; jeldi)\[d]

where a?}j = O(||w;||3 + ||v:]|3), and the interference from other features is small: 3; ;/c; ; <
O(1/Vd), iz /e < O(1/V/dy).

Moreover, for every spuriously correlated feature pair (7, j') satisfying Assumption 3.3, there exists
at least an (1) many of neurons ¢ € [m] with N; = {j, 5}, indicating the prevalence of feature
mixing due to data misalignment.

G Captioning
In this stage, the model fine-tunes the pre-trained encoder parameters W and V to obtain the updated
parameters W and V through Image-Text Contrastive Pre-training (ITCP) on raw data.

Given an image-text pair (z,, yp) in Sy, the decoder generates synthetic captions g, = VTU(WQ:,,),
where o(+) denotes the activation function. The Image-Grounded Text Decoder, initialized with W
and V from the pre-trained encoders, is fine-tuned on S}, by minimizing the following loss function:

1
Lo =E,yesn |3 V7o (Wa,) - y|[2] (112)

where || - ||2 denotes the Euclidean norm. This fine-tuning process refines the model to generate
captions that are more closely aligned with the target text data in .Sp,.

During the capti.oning,.we sample a batch of imagfe-texF pairs S,(lt) = {(xp, yp)}le C S,. We
perform stochastic gradient descent on L. At each iteration, we update as

w™ ! — v, LY (113)
ot o™ v, LY (114)
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At the beginning of this phase, we set the bias threshold as:

(T2) 12 _ 1., (T1) 2
o _ \/ ™3 — ™ ws)
2
During training, the bias threshold is iteratively updated as:

bt = (1 n g) bV, (116)

The gradient of L with respect to w,gt), ’ugt), ‘W, and V at iteration ¢ is given by:
ngch = vgt)(yp - VTpr):rg : 1‘<w<”,xp>(zb<.‘> 117)
va) LC = wgt)xp(yp — VTpr)T . 1|<w(,t)7l‘p>|2b,(~t) (118)

The alignment can be described by the following update rule:
(i M) = (), M) = (Y Lo, M)

(119)
= (" M) +n- (" (y, = VI W, )a] M

' 1\<uwp>\zb5”)

W Hy) = (ol Hy) = (Vo Lo, Hy)

(120)
= (" Hy) + - tr(wl  ay (y, - VIWa,)TH; 1‘<w5t>7%>‘2b5n)

G.1 Alignment for i € S sure

This section analyzes the alignment growth for neurons i € S; . Specifically, we show that when
t < Tc, the alignment with the true feature IM; grows exponentially if ,, contains the true feature
M. In contrast, the alignment with the spurious feature M, exhibits negligible growth, even for
neurons ¢ € S, gure. Specially,

1. For the true feature M, based on the result in Eq (96) and the bias threshold in Eq (115), the
indicator functions are always activated. This ensures that the neuron can consistently increase its
alignment in the direction of the true feature M.

2. For the spurious feature M/, based on the result in Eq (96) and the bias threshold in Eq (115), the
indicator functions remain non-activated. This prevents the neuron from increasing its alignment in
the direction of the spurious feature M /.

The details of proof as follow:

Using Eq (95), we know
lwi™ |13

)
(121)

T: T T T: T T
! 13 = ™12 > [(w!™ M2+ [(w!™ M) 2 > ol [lw!™ )3 - of

%

Using Eq (35) and Eq (36), we have

b _ t
(M) — w® M) = @D (0O M) 4,8 - @l M) - (00 H)) + B

2 k2

(122)

Using Eq (40) and (a + b — ¢)"* ™™ > Q(d?), with high probability 1 — O(;) we have,

T 7 g™ 13
[(wf™ M) — (™ M) P > Q(F5—2) (123)
Therefore, with high probability 1 — O(ﬁ) we have
(T2) 2 _[,,(T) 2

|<wET2)7Mj>‘2 > sz ”2 5 ”wz HQ > |<’IUZ(T2),MJ‘/>‘2 (124)
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T2) T
We set bEO) = \/ W and using Eq (124), so similarly to the proof of Eq (86) we can
prove:

1. For i € S} qure and z,, contain the true feature M, with high probability 1 — O(i) the indicator

functions become consistently activated 0 < ¢ < T such that:

U

ol ) 129

2. For i € S} sure and x,, contain the corresponding spurious aligned feature IM ;-, with high probability
1— O(ﬁ) the indicator functions become consistently activated 0 < ¢ < Tz such that:

b a0, ) 200 =0 (126)

3. Fori ¢ Sjpo and M where j € [d1] \ [d], we have:

1‘ U)Et)va>‘2b5t) =0 (127)
For the residual loss in Eq (119) and Eq (120), we bound the difference if 1‘<w5,>7%>‘2b?) =1:
5 2 T T
sz;ng/p > (yp—V pr)azp M; - 1\<wi,wp)\2b§t)
= (H;z] 2 — i@i,ﬂjﬂw“MﬁHﬂipziﬂ “Lwiap) >0 (128)
i=1

@ C .
> Hjz; 2, — O(d7){vi, Hy) (wi, M) H,zg, 2

Yp Yp

In <>, we employ the approximation ypx;,'— M, ~ H; z%p zip , based on the observation that z%p 25; <

zgp zip when j # j'. In ©, we utilize Eq (38). There are at most O(d”“°) neurons capable of learning

M, which satisty the condition 1, ,)>p-
For i € S; sure and for x;, contain M ;, using Eq (128), Eq (119) and Eq (126) we have:

(VM) > (. My) 4o (o - (1 - DHGE [22, 5, |)

129)
CZ 1— 2 (
> (M) + S0 00 ),
Similar to Eq (35), we have
e\ [ @ M+ 0@ H,
<w§“,Mj>|2(1+nCZ (d at)) <<wz : J>;<U2 -H) (130)

Similarly, for ¢ € S;sure and x,, contain the corresponding spurious aligned feature M ;/, because
Pr[1|<w(t)’xp>’2b@) =0>1- O(%), we have

(D, M) < (M) + 0T ) (0l?, Hy) (131
and
t (TQ) M,’/ (T2) H"’
. M) < (14 0(55)) ((wz : J>;L<vz 3: %) (132)

AtTe =0 (CHOTg(d)), we have:

2\\ To
(Te) 14 pSelie)
> M. n
|<w(zTC)7 J>‘ > ( d 20 2 Q(d) (133)
[(w; 7, M| (1+0(5))
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Therefore, we summarize that when ¢ = T, the alignment with the true feature M; dominates,
satisfying:

(Tc) M.
w > Q(d), (134)
[(w; ™7, M)
highlighting the significant separation between the true feature M; and the spurious feature M/
for neurons 7 € S qure. A similar result holds for v;, where the alignment with the true feature H;

similarly dominates over the spurious feature H ..

G.2 Convergence

For i € S} sure, When x,,, ,, contains the true feature j, the indicator functions remain consistently
activated. Consequently, the loss function L becomes convex with respect to w; and v; independently.
We verify that the following inequality holds
t+1)  (t41 t
Les(w™™ o) < Lo (w0

'L ) ’L

<VLc,]( M o), (wl Y = LY - (t))> (135)

li
+ =

K3 Z ? Z

(w(t+1) w® D _ (t)) H

where I; = O(C.d*)(||lv |po2

l;-smooth for all i € S; sure When x,, y,, contains the true feature j. Let L = max;e., (I;) = O(1)

|xp||) ©(1). This means L¢;(w”,v{") is

z’z

I,

Letn = % to ensure a monotonic decrease, plug Eq (117) and Eq (118) into Eq (135), we have

ol 0 ) < Lo s0® ) - DIVEe, @ GOR. (36
By the property of smoothness, we have
2
1Zes (@, o3 = = (Lo, o) - Los(w],v)) . (137)
Take the telescope sum of from 0 to 7, we have
O o LPAg
ZLC:J w; ’ Ui )<Lcj(wz7vz)+ TC

& 138
S Los(wi o) +0(3) (138)

v 1
= ('-) —_
(=)
where Ag = Lo (w'”, 0\) = Le ;i (w?, v7). In &, we use Ter = O(d), and ||w” |2 = |[v{? |2 =

©(1). In Q, we use wi = of ;M;, V;* = aj ;H; and L j(wy,v}) = ©(3) if z,, contains the true
feature M ;.

Therefore, for all j € d and all (xp,y,) € Sk, when T = ©(d?), we can ensure
2 1
LC = E(mp Yp)ESH HV g W!Ep ypH2 < @(g) (139)

G.3 Summary

After T iterations, the parameters W and V are updated to W7¢ = Wand VIe =V, respectively,
using the dataset S;,. The generated caption is given by:

9y = VIa(Wz,), (140)
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where the expected loss satisfies:
.. 1
E [2 |9 — ypi} =Lc<®© (d) : (141)

1. For i € S sure, the alignment strength satisfies:

[T, M) = 0(1) ™| (142)
and

(T M) < O(= Hw (143)
where j' represents the corresponding spurious ahgnment feature.
2. For i ¢ S} poi, the alignment strength satisfies:

1 2

(™, M) < 05 ||l (144)

3. For Mj where j € [d;] \ [d], we have:
[ M) 2 < O(- Hw(TC) (145)
2

H Filtering

During filtering, we sample the synthetic image-text pair (z,, §,) in S,, and the corresponding
image-text pair (zp,y,) in S,,. The image encoder f and text encoder h trained on raw data are
employed to obtain the corresponding embeddings.

Z;p = f(xp), 2y, = h(Yp), Z; = h(yp) (146)
Then, we calculate the cosine similarity of < Zy s 2y,) and (z; , 2, ), and select the image-text pair
with higher cosine s1m11ar1ty denoted as (z, y) In this way, we replace the noisy pairs in S, with
synthetic pairs in S,,. The resulting dataset is denoted as S = S, U Sj,.

The decoder generates synthetic captions g, = vT J(pr). Using Eq (141), for each data pair
(xp, yp) which contain feature (M;, H;) in S), we have

1 ; ; 1 j 1
ey |Brea |5 [Bo2d, = H3sh, | 1l = 1] < By |5 10 = ol N, = 1] = Lo < 0))

(147)
Therefore, using ||H,||, = 1 and 2., = 2, in S}, we have
C . 1
Eo,jed 25,23, 14,1 = 1] = 1-6(2) (148)
Base on Assumption B.1 z% ~ Bernoulli ( ) we have
, : 1
Pr(z), = 1] |2,|=1) 2 1-6(3) (149)
Using Eq (134) and Eq (149), we have
-/ . ]_
i _
Pr(z), =111z, =1) < () (150)
Therefore, after replace all noisy text y,, in S,, by synthetic caption ¢, in S
1. for a positive pair (z,, ¥, ), we have
1 P 1 . .
E[4,4]=-0G). E[£4]=-6 (dz) LV # (1s1)
2. for negative pairs (z,, y4), where p # g, we have:
1 .
E [z;pzf/q} =0 (dQ) , V4,7 €ld]. (152)
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I ITCP on Synthetic (Recaptioned) Data

During ITCP on Raw Data, we use a noisy dataset S. Based on SubSection B.2, we have E [z; zi] and
E {z;zg,} both in © (). In this scenario, for i € S e, w'” is jointly influenced by M; and M;,
with both features contributing comparably to the updates. However, during ITCP on recaptioned data,
we sample image-text pairs from the dataset S. Using Eq. (151), we find that E {z%pz%p} =0 (d—lg)
In this case, for i € S; qure, wgt) is influenced solely by M, without interference from spurious
features, ensuring purified representations.

The only difference between ITCP on Raw Data and Data lies in the E [z%p zé;] ; all other training
processes remain largely the same. Therefore, we simplify our proof accordingly.

I.1 Phase I of ITCP on Synthetic Data

The Phase I of ITCP on Data is defined as the training iterations ¢t < 77, where 73 = © (%) is

the iteration when all ||w£T2) I3 = 2||w§0) ||3. Before T7, we set bgt) = 0. For every neuron i € [m],

the weights w;, v; will mostly ignore the noise features M+, H+ and learn to emphasize the features
M, H.

IfPr(|2) | =1 |z;;)| =1)<0.1,wehave E [z12/] > E [zizﬂ and (a+b+c)f = (a+b—c)t.
In this case, wEtH) is predominantly influenced by M ;, with minimal contributions from M. The
updates are thus primarily driven by the single feature IM ;, ensuring that spurious interactions from
M, are negligible.

d 2
a+b+c)t .
MM w2 :}j[( ) (<w§”7Mj>+<u(t>,Hj>)]

‘ 2 v
= (153)
SEEE IMMT W03 + [T )3
d 4 ’
1 € S sure:
2
Cz h ’LU(O),M‘ + ’U(O),H'
e = (140 %) << M)+ (07 Hy

.\ clogd MM w!”|3 + [HH 0”3
>\ 1+n— . -
d d 4
_cilogd MM Tw{™|3 + [HH o3 (154)
- d 2
T T 0 0
cilogd [w™ |3 + o™ 13 — wi™ 13 — [l 13
- d 2
T T
(1+co)logd [wi™ |3+ [[v™|3
- d 2

T T
lw{ ™2+ 0™ 2
2

Because = w2 + [v{”)Z and 1 > 2(1 + o)
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E
g

=

=
I

2
" (Wl M) + (0 Hy)
1+77? D)

IN

(1 e >2T1 cplogd MM w(” |2 + [HH o”|3

d d 4 (155)
_ calogd MM Tw™|3 + |HHo[")|3
d 2
T, T
< logdJlug™ 3 + Jlo;"™ 13
- d 2

T2 o)) 2
2

[ M) 2 < O ) 1=

1.2 PhaseIl:

The Phase II of ITCP on Synthetic Data is defined as the training iterations 77 < ¢ < T5, where
-1, =06 (%) is the iteration.

€ T
We set b = y/logd 1B g 4D (g O it an [, >
Q(d)||wET1)H2,. In this phase, the weights (w;,v;) will mostly ignore the features M;, H; if
i ¢ S; sure and the noise features M-+, H*, and learn to emphasize the features M;, H; if ¢ € Sj sure.

For i € S; sue, using Lemma C.4, the following holds with high probability 1 — e~*¥%1) when
T <t<Ty:
[«

2
2
’<w§”, >‘ <O | s <) (156)

Under the assumption that, with high probability, the indicator function satisfies the condition when
t= Tll

1|<w§t),1p>|2b§t> . 1‘<v§t),yp>|2b§t) =1, (157)

we can ensure that:

o C,
R e (159
The weight dynamics for |<w§t+1)7 M) | can be expressed as:
C. O M) + (0! H;
[ M) = (Hnd) (“‘“ : J>2+<“l A1) (159)
) NS (D) T
Given that (1 + n%) > (1 + g) and (w, 7M“>;<vi Hy) > bgt), it follows that:
[ M) > B (160)
Thus, with high probability, for ¢ < 75, we have:
R TR (i6n
so for 77 < t < Ty we have
t (T1) M. (T1) .
[ M) = <1+n%> <<w" : ]>2+<vl : J>> (162)
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For i ¢ S sure» the projection of weights onto a generic feature ¢ at iteration T} satisfies:

1
Pr <1|<w§t>,$p>|>b§t> . 1|<v§t>’yp>|2b§n = 1) <o (d) . (163)

‘We can ensure that:

1
[ZJZJ |<w(t) >|Zb§t> . 1|<v§t)’yp>|>b7(;t):| =0 (dQ> . (164)

The weight dynamics for |<w§t+1)7 M;;)| can now be expressed as:
®) M. ®) .
|<w§t+1 )\—(1—}—0(;72)) <<wl ) J>;'<Uz ) J>> (165)

Given that (1 + o0 ()) < (1+ %), and (M, >2+< M) b it follows that:

w{ My) | < b (166)

1If [(w!™ M;)| < ™), then [(w”, M;)| < b{" for t < Ty. Thus, with high probability, for
t <715, we have:

1 w(t) >‘>b(t) 1‘ 1)§t),yp>‘2b§t) =0. (167)

t T MY + (0™ H
[ M) < (140 () <<w2 : J>2 (o7 Hy) (168)
There exists T, = O (%) such that the following conditions hold:

T2
(1+n02) — 0(d), (169)

d
indicating that |(w; (¢+1) ,M,;)| for i € S; qure increase iteratively until:

w5 > Q(d)|w!™ | (170)
while, for i ¢ S j,sure> the updates diminish, such that:

(1+0((§2>>T2<1+0<(1i>, (171)

indicating negligible growth in |(w; (1) M;)|.

Thus we have

T T: T: T
™ M2 = ™3~ Y @™ M2 - Y (™, M2
Jjeld],i¢N: J€[d1]\[d] 172)
T: T 0
> [lw!™ )12 — (1 + o) Jw ™ [|3 — (1 + o(1))[Jw”|I3

> (1 - o(1))[[wi™ 2.

Finally, for i ¢ S; sure, We have:

™ M < 0oLy 0 (Lol < o (il (73
d vd )~ vd )’
and for noise components:
(T2)
w
[(wi™ M)l <O (H) : (174)
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We summarize the results when 77 < t < T5 as follows:

1. For i € S} sure, the alignment strength satisfies:

(T2) 12 (T2) 12
o™+ 171 s

without 5’ that represents the corresponding spurious alignment feature.

[(w!™) M) 2 > (1 - o(1))

2. For i ¢ Sj por, the alignment strength satisfies:

(T2 T2)
1
3. For Mj- where j € [dy] \ [d], we have:
(Tz T2)
1
J d1 2

Similar results also hold for v;.

1.3 Phase III Convergence of ITCP on Synthetic Data

Similarly to convergence Phase III in ITCP on Raw Data when 7> < t < T3, using Eq (27), Eq (30),
and Eq (31), the loss function L becomes convex with respect to w; and v; independently when
(xp,Yp) and (z,, Yy ) contain the true feature j.

We verify that the following inequality holds
Lifwy ™ o) < Ly,

t t t+1 t t+1 t
+<VLN O o), (wi™ —w, of )*U§U> (178)

z’z
lij

2
1l ) ) (”WW—WW

7 w; o, Yy

Let L = max;em(lij/(27)) = ©(1) and 7 = 1 to ensure a monotonic decrease, plug Eq (28) and
Eq (29) into Eq (178), we have

Li(w{™o) < L (o) = ZIVL (o). (179)
Under our data assumptions for Sy, and conclusion in Eq (96) , we define w} = o} My, vl =aof ;Hj.
Thus, L;(w}, v}) captures both the alignment with the true feature M, H and the spurious feature
M;., H;, representing the minimal loss achievable under the influence of both true and spurious
features in the optimization process. Using Eq (81), we know wETQ) = 0(d), so L;(w},v}) =
—0(d).

By the property of smoothness, we have

2 * *
IVL @, o) > £ (L u) = Liw;,v)) (180)
Take the telescope sum of from T2 to T3, we have
L?A
ZL )<Lj(wf,vf) +
%_Bfn T3 =15 (181)

¢
SLj( w; , z)+@()
U(Tl))—LJ(w v}) =0O(1). In $, weuse T, = O(d), and L = O(3) .

177

where Ay = L;(w; (1)

Generalized to every j € d, the same convergence holds for all i € S} gure When (p, Yp) and (zy, yn)
contain feature j, j’. For all (z,,y,) and (z,,yy) in S,,, the following inequality holds:

T3

ST L™ hT) < L(f*h%) + O(1). (182)

t=T5

1
Ty — Ty
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L4 Summary

ITCP trained on recaptioned data S proceeds according to Eq. (1). After T = ©(d*logd) SGD

iterations with batch size B = €(d) and learning rate = O(1), the returned weights (W, V)
achieve a contrastive loss that is asymptotically optimal:

L*

<o(1). (183)

Each neuron pair (i@;, ;) in (W, V), for i € [m], primarily encodes a single aligned feature indexed
by a set N; C [d], with | V;| = 1. Specifically, we have:

W; = Z a; ;M + Z Bi M, + Z Fi.Mj

JEN; JE[d\N; jeldi\[d]

V; = Z &iyjHj + Z Bi,jHj + Z ’%»J'Hj_’

JEN; jeld\N; J€ldi]\[d]

(184)

where &7 ; = O(||w;l|5 + [|74]|3), and the residual terms satisfy Bii/di; < O1)VA), % /ai; <
O(1/v/dy).

Moreover, for every feature index j € [d], there exists an 2(1) many of neurons ¢ € [m] such that
N; = {j}, indicating that each semantic concept is distinctly captured by dedicated neuron pairs.

J Downstream Task

We consider the same zero-shot classification task as in Section 3.4, where the image x and the
class-wise text prompts {yk}f:l are given. Each prompt y;, corresponds to one of K class labels,
and the goal is to classify z into the class with the best matching prompt.

Each text prompt ¥y, is generated as:

v =Hz, 16 2o =0(1), 2, [ = O(1). (185)

Each test image x is generated as:
r=M2z +&, [Z]o=061), [zlnx=06(), (186)
where M/ = MP;, and
max |(P1); — ;] < O(1/Vd). (187)
i,

If = belongs to class k, then:

[CANEM RE (CALER

o YK #R (188)

Using Eq. (96) and Eq. (144), let f(x) and h(y) represent the image encoder and text encoder of
ITCP on raw data, respectively. Given a data sample x containing M; and y containing H;, where
j' is the spurious feature corresponding to j, it holds with high probability that:

fl@)  hly) \ _
<f(w)||z’ ||h<y>|2> = o). (189)

This result implies that the image and text encoders of ITCP on raw data struggle to distinguish
between features j and j', leading to misclassification caused by spurious correlations.

However, using Eq. (175) and Eq. (176), let f(z) and §(ys) denote the image and text encoders of
ITCP on recaptioned data. Given x containing M ; and y containing spurious H ., it holds with high

probability 1 — © (é) that:
fl@) iy 1
<||f<z>|2’ |g<y>|2> <o(q) (190)




This result implies that the image and text encoders of ITCP on synthetic data are capable of effectively
distinguishing the true feature from the spurious feature.

Because K = O(1) and ||z, |0 = ©(1), we only have constant class classification and constant
features in images. Thus, we have:

1. For the image encoder f(x) and text encoder h(yy) of ITCP on raw data:

Pr (arg max( (), h(ys) = k) —1-e(), (191)

2. For the image encoder f () and text encoder §(y) of ITCP on synthetic data:

Pr (argmgx(f(a:),g(yk» = kw> =1-o0(1). (192)
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