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Abstract

Contrastive learning has served as a powerful framework in the early development
of vision—language models (VLMs), demonstrating remarkable effectiveness in
learning generalizable representations and establishing itself as the foundation for
many state-of-the-art systems. However, despite these advances, its theoretical
understanding remains limited, particularly under imbalanced data distributions
that are prevalent in real-world settings. Such imbalance can degrade represen-
tation quality and induce biased model behavior, yet a rigorous characterization
of these effects is still lacking. In this work, we develop a theoretical framework
to analyze the training dynamics of contrastive learning with Transformer-based
encoders under imbalanced data. Our results reveal that neuron weights evolve
differently across three stages of training, with distinct dynamics for majority
features, minority features, and the noise. We further show that minority features
diminish neurons’ representational capacity, increase the need for more complex
architectures, and impair the separation of ground-truth features from noise. These
findings offer new theoretical insights into how data imbalance shapes learning in
contrastive frameworks and serve as an early step towards principled modifications
for developing more robust and unbiased representations.

1 Introduction

Contrastive learning has emerged as a powerful paradigm in representation learning, effectively
leveraging unlabeled data without relying on human-annotated labels. Within this framework, samples
with similar semantic meaning are treated as positive pairs, while those with different semantics
are considered negative pairs. By pulling positive pairs closer together and pushing negative pairs
farther apart in the representation space, contrastive learning enables models to capture rich and
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discriminative features. Compared with supervised learning, the resulting representations are often
more robust and less sensitive to noise [25, 16,127, [10]. This approach has demonstrated remarkable
success across a wide range of applications and has been particularly influential in multi-modal
learning [[14,|11], driving major advances in the early development of vision-language models [19].

Despite its strengths, contrastive learning faces challenges when applied to real-world datasets with
class imbalance. In such scenarios, majority classes dominate the sample space, while minority
classes with limited samples are underrepresented in both positive and negative pair formation.
This imbalance can hinder the learning process, causing the model to under-capture discriminative
features associated with minority classes, ultimately degrading representation quality. Several studies
have attempted to address the challenge of contrastive learning under imbalanced data. One line of
research focuses on sample re-weighting strategies, which aim to balance the influence of minority
and majority class samples [2, (8,12} 22} 20]. Another line of work explores data resampling methods,
such as oversampling minority data or undersampling majority data, to achieve a more balanced
training distribution [3 7, [17,21]. However, both approaches rely heavily on accurate estimation of
re-weighting or re-sampling ratios, which is an aspect that is often difficult to characterize precisely
and typically depends on human intuition or heuristic methods.

Despite the progress made by these approaches, most efforts have been largely empirical, relying
on heuristic methods to alleviate the imbalance problem. While these techniques often provide
performance gains in practice, they do not explain why or how imbalance undermines the quality of
learned representations. Recent work has begun to develop theoretical understandings of contrastive
learning, primarily addressing questions such as its superiority over traditional generative approaches
like GANSs [9]], the necessity of data augmentation for effective representation learning [24], and
its ability to produce representations that reduce the sample complexity of downstream tasks [3].
Nonetheless, these studies have not considered the implications of imbalanced data distributions.

Most existing studies on contrastive learning focus on empirical performance, while its theoretical
foundations, especially for feature learning, remain less understood. In this work, we provide a
theoretical analysis of how neurons learn feature representations through contrastive training. We
study a simplified but representative setting: a Transformer-MLP framework with a single-head
attention mechanism followed by an MLP with bilateral ReLU activations. To make the analysis
clear, we use a structured data model where each input includes majority and minority features with
different frequencies. This setup highlights the key role of feature frequencies and helps us describe
their impact on training dynamics and how neurons learn features. In turn, the model allows us to
formalize how contrastive learning enhances majority features and drives neurons to learn purer
feature representations. Overall, our paper makes two main contributions:

First, we develop a theoretical framework to characterize the training dynamics of contrastive
learning under Transformer-based encoders with an imbalanced data distribution. Our results
show that neuron weights evolve differently when learning majority features, minority features, and
noise across the three stages of training.

Second, we quantitatively characterize how the presence of minority features influences neurons’
learning capacity and, consequently, representation learning. Our analysis shows that neurons
learn majority features more quickly, while minority features are acquired more slowly. Moreover, in
the presence of minority features, capturing effective representations requires a more complex neural
network, and the neurons’ ability to distinguish ground-truth features from noise becomes degraded.

2 Problem Formulation

Contrastive Learning Framework. Let X = [z(1) ... z(5)] € R4 <L be an input sequence with
L tokens. The goal of contrastive learning is to learn a mapping h(-) : R4*L — R™ that outputs a
meaningful embedding from the input sequence.

Let (X, X,,/) denote a positive pair (e.g., derived from the same objective or sharing semantic
meaning), and let 91 denote a set of corresponding negative samples (e.g., random samples). The
InfoNCE loss with temperature parameter 7 > 0 is defined as:

esimf(Xn,an/)/T
), )
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where the similarity function is given by sim (X, Xp/) := (f(X,), StopGrad(f(X,))). and
StopGrad(+) acts as the identity in forward pass while blocking gradients in backpropagation.

Then, the learning objective is to minimize an empirical risk with ¢5-regularizer over a batch of size
K, ie.,

K
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Laug(fi) = L) + S lwllie = 22 > €(F5 Xi, X, M) + S, @
k=1

where w is the neural network parameters.

Model Architecture: Transformer-MLP. We employ a simplified single-head self-attention
mechanism on top of an MLP layer. Each input sequence is passed through the attention layer, where
every token serves as a query. Then, it is followed by a bilateral ReLU (BReLU) activation in the
MLP layer, where BReLU,(s) = ReLU(s — b) — ReLU(—s — b). Specifically, the embedding
function f is expressed as .

f(Xn) = (hl(Xn)>7hm(Xn)> GRmv

L (3
with  hi(X,) =) BReLUb(t)((wgt),Attention(Wng'),WKXn,WVXn»).
Z ,,

In this early stage of our analysis, we fix attention layer weights to identity matrices and focus on the
MLP layer weights. Note that the analysis of this model still differs substantially from a standard
feedforward network because the preceding self-attention aggregates information across tokens.

3 Theoretical Analysis

3.1 Key Insights of the Findings

(K1). Training dynamics of contrastive learning based on the Transformer-MLP framework.
The theory shows that the learning process can be divided into three stages. In the first stage, neuron
weights in feature directions start to increase, while their components in non-feature directions stay
almost unchanged. In the second stage, the alignment with feature directions keeps growing, and
the learned features become purer, while non-feature directions remain suppressed. In the final
stage, each neuron aligns with a specific set of features V;, on which it already had some degree of
alignment at initialization.

(K2). Theoretical characterizations of how imbalanced data in affecting the neuron’s learning
ability. In the first stage of training, neurons start to increase along feature directions, and the speed
of this growth depends on the feature frequency ¢;. Features with larger ¢; grow faster, so neurons
align with them more quickly. Features with smaller ¢; grow more slowly, and neurons may need
more time to capture them. In the second stage, this difference becomes more visible, as neurons that
follow features with larger €; keep increasing their alignment, while features with smaller ¢; continue
to evolve at a slower pace.

(K3). The effect of the ratio ¢,,;,, /€;ax on the final learning state. In the final stage of training,
the feature frequency ratio €myin /€max controls how neurons distribute their weights across different
features. For minority features, €; = €yin, S0 the ratio directly determines the size of the coefficient
;. When the ratio €mpin /€max 1s small, each «;, ;j for minority features becomes very small. As a
result, the set \V; becomes larger, meaning that each neuron aligns with more features that had some
degree of initialization alignment. However, the contribution from each feature is weaker, so the
neuron ends up mixing many features together in a more mixed way. In contrast, when the ratio
€min/ €max 18 larger, the coefficients o; ; become stronger. In this case, the set N; becomes smaller,
and each neuron aligns with fewer features. This makes the final representation more concentrated,
and the features learned by each neuron are purer.

3.2 Formal Theoretical Results

Theorem [3.1|describes two main effects of gradient descent in the first stage of training: (i) In the
feature directions, the neuron weights increase rapidly as shown in (@), while in the non-feature
directions they are suppressed as shown in (5) during training. (ii) The growth of a neuron’s weight in



Table 1: Summary of main notations

n Learning rate A Regularization parameter

T Temperature coefficient K Batch size
wft) The Neuron ¢ after ¢ steps of GD M;  The feature vector of feature j

N Set of negative samples B The set of X,,» and negative samples
€min frequency of minority feature €max frequency of majority feature

€; Feature frequency for feature j N; Set of features for ordinary neuron ¢

M; Set of ordinary neurons for feature j Mz Set of lucky neurons for feature j

a feature direction M; depends on the frequency €; as shown in @). Larger ¢; leads to faster growth,
while smaller ¢; results in slower growth, making the feature harder to capture in the early stages of

training. In short, the feature frequency ¢; directly controls how much the inner product (wl@, M;)
increases under gradient descent.

(®)

Theorem 3.1 (Stage 1). During the first training stage, the update of neuron weights w,’ at time T}
can be bounded as follows.
(T)

(T) () [lw; " ll2
0™ M) = [, M) (1 + ,C.logd) - O ) )

™My = [ M) |1+ €, C-loga) — O
‘<w(T1) Ml>| < ‘<w(0) M >‘ +0 (” 1)2> (5)

oI e BT oty (a)

Theorem [3.2] describes the gradient descent dynamics in the second stage of training, focusing on
how neurons behave in different directions. (i) For neurons that belong to M?, their inner product
with the feature vector keeps increasing as shown in () (ii) In contrast, along the noise direction
(Mj-), the growth stays almost unchanged as shown in (7). In particular, the value of ¢; determines
how quickly neurons in the feature directions evolve during training.

(t)

Theorem 3.2 (Stage 2). During the second training stage, the update of neuron weights w; "~ at time
T5 can be bounded as follows. For each j € [d], if i € M, then:
(™ M;)| = Q1) ™| (©)
If along the orthogonal non-feature direction Mj-
(T2)
(T2) ML < (1) MJ_ O(” H ) 7
™ M) < ™ M)+ Ot ). ™

Theorem [3.3| describes the feature learning behavior of neurons in the final stage. Specifically, we
prove that: (i) Each neuron weight vector w; eventually aligns with a set of features ;. This set
corresponds to the features that already had some degree of alignment with w; at initialization. (ii)
The size of N; depends on the ratio €y /€max. A smaller ratio enlarges |V;|, leading neurons to
encode more mixed features, whereas a ratio closer to one yields smaller |J\/;\, SO neurons capture
purer features that benefit representation learning. (iii) For each feature IM ;, the number of neurons
that contain some degree of initialization component along M; admits an upper bound. Moreover,
2

there are at least Q(d“*) neurons with N; = {j}, where w; = C,,, — (;—d:) (1 4 vc¢o), indicating
imbalanced data leads to less number of neurons in learning the purified feature.

Theorem 3.3 (Stage 3: Neuron—Feature Alignment in Contrastive Learning). Ler m = d°»
be the number of neurons and T = polylog(d). Suppose we train the neural net ft via contrastive
learning, and consider iterations T' € [T3,Ty] with T5 = 1— and Ty = ——. Then the following
guarantees hold:

—ZLaugft<o Zcft<o @®)

te[T] te (T



Moreover, for each neuron i € [m] andt € [T, Ty, the weight will learn the following set of features:

w = Z a; ;M + Z o ;M + Z Bi M7, &)
JEN; JEN; Jj€ldi]\[d]

where ; j € [il —ELT},O/ < o(iL)HwEt)Hg, 18| < 0(\%71)”@0?)”2. Furthermore,

€max =2 €max 1,J = €max \/3
€min )2
the size of N; is bounded by |N;| = O <d1_( ) '(1_700)) Finally, for each dictionary atom M,
there are at least Q(d**) neurons i € [m] such that N; = {j}.

4 Numerical Experiments

Following our learning setup, we validate our theoretical insights on synthetic data with parameters
m = 30 and d = 9 (Details can be found in supplementary materials). In Figure [T} the x-axis
represents the feature index, and the y-axis represents the neuron index, where we only plot the first
13 neurons to save space. Each entry corresponds to the projection of a neuron’s weight onto the
direction of the associated feature; larger values indicate stronger alignment between the neuron and
that feature. The first five features (columns 1-5) are majority features, while the last four (columns
6-9) are minority features. As the figure illustrates, neurons exhibit significantly larger projections
onto majority features. Nearly every neuron is strongly associated with at least one majority feature.
At the same time, each majority feature is represented by at least one neuron, and in such cases, the
projection onto that feature is substantially larger than onto all others, meaning the feature dominates
the neuron’s representation. This demonstrates that majority features are easier to learn and tend to
be represented by multiple neurons, in contrast to the minority features.
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Figure 1: Squared cosine projection of the first 13 neurons (w;) on 9 dictionary atoms (M;). The first
five atoms are majority features, and the last four are minority features.

5 Conclusion

This work takes a step toward a principled understanding of how imbalanced data shapes the dynamics
of contrastive learning in Transformer-based encoders. Our analysis shows that imbalance harms
performance: minority features reduce neurons’ representational capacity, increase the demand for
more complex architectures, and hinder the separation of ground-truth features from noise. Looking
ahead, a promising direction is to investigate how these insights can inspire the design of more
principled methods or help explain the effectiveness of existing approaches in addressing imbalance
in contrastive learning.
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A Preliminaries

Data Model: Sparse Coding. For the necessity of theoretical proof, we adopt the sparse coding
model [15} 16} 4} 123} 16,18l 26, [13L 1] as a conceptual modeling of real-world data. Specifically, for
a paired data (X,,, X, ), the data structure is

Xo = M0+, Mo® 46D, ., MaD) + D]
(10)
X, [Mz(l, +§(,,Mz —|—£ Mz —|—€ ]

Here, each zr(f) € R represents the latent signal at the /-th token, { () denotes the additive noise, and

M = [My,...,My] € R4*4 s the dictionary matrlx For each index, 27(, )] = 0 indicates that the

corresponding feature is absent in the token, while z 7é 0 indicates that the feature is present.

For a positive pair, we assume they share the same group of features when countmg over all tokens

in the sample, whereas negative samples are independent. That is to say, Z =1 z ) and Z =17 (6)

(6) ©

share the same support in a positive pair, while z;,” and z,,” remain independent in a negative pair.

We first recall a useful concentration property. Whenever the Frobenius norm of the weight matrix
satisfies:

lw®)% = 3~ [lw” |3 < poly(d), (1)

i€[m]

the following estimate can be obtained by applying Bernstein concentration inequalities.
Fact A.1 (Approximation of empirical gradients by population gradients). Suppose that ||w®||%. <
poly(d). Then there exists some K = poly(d) such that, with high probability, the difference between
the empirical gradients and the population gradients is bounded for every iteration t:

t
w2

[ 0P3(5) ~ v 0bits|, < e

Vi € [m). (12)

To facilitate the calculation of the gradient of the loss function £(f;, X,,, B) with respect to the
weights {wgt)}ie[m} , we introduce the following notation. We denote by £, ,(X,,, B) the positive
logit, and by £ ,(X,,, B) the negative logits:

exp (Simft (X, X )/T)
5, < exb (Sitny, (X 2)/7)

exp (Simy, (Xn, Xn,s)/T)
5 enes (S (o))

The population gradients of L( f;) with respect to the weight wgt) at iteration ¢ is given by (note that

the similarity measure Simy, makes use of the StopGrad operation):

O (X, B) = (13)

0 (X, B) = (14)

L L

Vu L) =B | (e = DhilXn) 31 015,28+ D0 Lothilns) 3oL 015,28

r=1 X, sEN r=1
(15)



B Lemmas

Definition B.1 (Characterization of Neurons). We choose constants

2 2
= (Gmax> 21+ 7¢c), c2= <6mm> -2(1 = v¢co), eo € (0,0.001)

€min €max

We define the following sets of neurons, which will be useful for analyzing the stochastic gradient
descent trajectory in later sections:

For each j € [d], we define the set of ordinary neurons M; C [m] as

logd
M, = {z e [m]: (w'® M;)? > 2 Og MM w2 } Vj € [d] (16)
For each j € [d], we define the set of lucky neurons M* C [m] as:
J
c logd
X i€[m]: (wEO),MJ>2 > ||1\/ﬂ\/IT (O)HT )
M] = (0) o logd - (0) 9 vj € [d]
(w;”, M;)? < IMM |3, i e ld,j #j

a7
Lemma B.1. At initialization (t = 0), the following properties hold:
(a) With high probability, for every i € [m],

lwl1 € [o3ar (1-0( ), odar (1+0(

(b) With high probability, for every i € [m],

Zl))] (18)

IMM w2 [agd (1 - 6(%)) , o2d (1 + 6(%))} . (19)
(c) Let m = d°™ be the number of neurons and we note w, = (i“‘“) 14 v¢p), we =

2
Cn — (6“—“) (1 — 7). With probability at least 1 — o(d%),for each j € [d],

€max

|./\/l;\ > Q(d*r) =: By, |M;| < O(d*?) =: Es. (20)
(d) For each i € [m], define
Aii={j € ld]: [w® M) < %} € [d]. @
Then
A,] = o(ﬁog(d)) . (22)
(e) For any j' # j, we have
M N M| < O(logd), (23)

with probability at least 1 — o(1/d*).
(f) For each i € [m), there are at most O(1) indices j € [d| such that i € M, and at most
O(27 Vo8 dq) indices j € [d] such that

[(w(®, M;)| > (00 log"/* d). (24)
Lemma B.2 (Pre-activation size I) Let 2(7) = (Mér(f) + Eé")) ~D,,, w; € R, Define

Zg:)\J =t (Zj/¢j7j,e[d] M, /z , + f(T)) . Then the following results hold:

(a) Naive Chebyshev bound: For any \ > 0,

T 2 w; 2 O,
( )Fr~( )((<w“zg<)\ﬂ> %(w“M]>27(13) > All z”il\/l gd) < O(%) . (25)
SONC )



() _ ()
The same tail bound applies to (w;, z¥)> (w;, 2525), and (w;,

~(7”)>
n).
(b) High probability bound for sparse signal:
Pr<<wi,M5§{)>2 > [l - mas M 12, Tog” d) S e Mlog™d),
VIS
(¢) High probability bound for dense signal: Let Z = (wj, éf)). Then
PF(Z2 > Hwi||§d10g4 d) < e—Q(log2 d)

Lemma B.3 (Pre-activation size II). Suppose the following conditions hold:

<w§t), M;)? > Q((bgt))Q) for at most O(1) indices j € [d],

(£)\2
<w,(t) M;)? > Q<(b’)> for at most O(e*Q(Vlogd)d) indices j € [d],

v Viogd
(t)y2
W2 <« of 4bi7)
o ||2_0( el

Then, for any \ > 0.0001,
Pr(|<wz(t)7zg:)>| > )\bgf)) S, 679(10g1/4 d)’
and

i 2

Pr<’<w(t) Zg:)+z§<s)>‘ > )\b(t)> < efﬂ(logl/4 d).

(26)

27

(28)

(29)

(30)

&1V

(32)

Lemma B.4 (Pre-activation size IIl). Let i € [m]. Suppose there exists a set N; C [d] with

|N;| = O(1) such that

(b)?

7

polylog(d)

w2 < o<d(bz(‘t))2> .

(wi) M)? <O< ) Vi ¢ N,
and

polylog(d)
Then, for any X € [0.01,0.99],

e | 37 (9, M,)20) + 0, 80| 2 00 | g om0
JEN;

10

(33)

(34)

(35)



C Theorem 3.1

Lemma C.1 (Positive gradient, stage I). Let h; .(-) denote the i-th neuron at iteration t < T (so
that bgt) = 0). Then the following hold:

(a) For each j € [d],

1 . .
E[hi,t(Xn’) <vwihi,t(Xn)7 M]H = ﬁ<w£t), Mj> E[zn’,j’/zn,j] (36)
(b) For each j € [di1] \ [d],
E[hit(Xn) (Vi hit(X5), M5)] =0 (37)
Lemma C.2 (Logits near initialization). Let w; € R% for each i € [m]. Suppose
5 Jult [} <ot
i€[m]
Then, with high probability over the randomness of X,,, X, and 2, it holds that
2
(t)
, , ~ Zie[m] Wi |,
£ (X0 B) = gl |- [ 01X B) — iy | < O = (39)
Recall that Jlog d
T, — e 22%8% (40)
nloglogd

is defined as the iteration when
2

L > (L4 eminC: logd)? Hw( Vi € [m], 41)

o

and such a 7} is indeed of order © | —21°8d_)
nloglogd

(t)

The gradient descent update for the projection of w; ’ onto M can be written as

t
w2

poly(dy)

= (1 -\ (w”, M;) +nEx, x,, [(1 - Gy (X0, B)) - hit(Xor) <leh-(Xn), M;)]
]|z

poly(d)

(™ M) = (Wi, M) — (V. Obj(f), M)

7 7

=0 Y B[l (X0 B) hir(Xn) (Vu,h(X0), M)] £
Xn,s €N
(42)

For the positive term: we can use Lemma[C.I]and Lemma[C.2]to obtain that:

E[(1 €, (X0, B)) - hie(Xr) (Vi (X)), My)| = O M) ElZw 2] (43)

2 (w;
For the negative term: Here, the bound needs to be verified because Lemma@

E| Y ChialX)(Vu,h(X, ]“Z (€1 = 7) P ()T A(Xn), M)

Xen Xen
(@)

< ST [ = | a1 | (b0, M)

Xen
)12
3) ~ Zz m ”wi Il
SO( R CH L
Td

11
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Putting all the above calculations together, we have

loglog d
(i, M) = (1 e 7’Cdgg> (", M)

(t 45)
rd i li2 poly(dl)

Prior to the induction step, we establish, by a similar method, the stochastic gradient descent update
of w; along the dense feature direction Mj- Specifically, we obtain the following update equation:

(™ M) = (W MF) — n(V,,0bj(f), M)

= (1 — AW, MF) +9E[(L — €, ) hiy (2 ) (Vi hie (), M)

E[€ hit(wn,6) (Vo h(a;}), MF +”w it
wn%em 2D (zns)( (), M;)] poly (dy)
)2 t
(i lwi” 113 [w?|
— (1= MLy + M2iem 1™ N2 - () AW 2
( 77 )<wz ’ _7> O( Td ||wz ||2 O p01y(d1)
(46)

Proof of Theorem[3.1] For j € [d] and i € [m], at iteration T} the following bounds hold:

(a) Lower bound:

C. loglog d T lw'™
(T, MY > [(®, M,)] <177>\+ 7’“) 0(’7”“’> @

d dy
(b) Upper bound:
T1 )
(1) O) nC:loglogd | = nTiwi™ |l
™ M) < (0 M) (146D G2 ) o TN ) )
(c) Orthogonal component:
) Mt 0 ML iz
[(w{™ M) < [(w”, M)+ O(Tin) maxO( —;— (49)

O

The proof follows by iterating the gradient descent update for w; along the signal direction M; and
its orthogonal complement, while controlling the error terms at each step. By substituting 7} into the
recurrence, the bounds in[3.Tfollow directly.
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D Theorem 3.2

In this part, we analyze how each feature M; may be captured by certain subsets of neurons, a
process that is influenced by the stochastic nature of initialization.

Lemma D.1. For all iterations t € (11, T5], the neurons i € [m] satisfy the following properties:
(a) For j € [d], if i € M, then

’< M M,)| > /T +7eo b (50)
(b) For j € [d], if i ¢ M, then

’< O M) < /T yeob? (51)
and furthermore,

‘(@”,Mﬁ‘ < O(II@U\@IIz) (52)

(c) For each i € [m), there are at most O(27V'°¢4d) many j € [d] such that

(w”, M;)? > (;1(:?)2 (53)
(d) For each i € [m), and for all j € [dy] \ [d]
|, M| < 6(”“’;;“) (54)
;
(e) Forall i € [m),
w15 < dizgtf (55)

Definition D.1 (Notatlons) For simpler presentatlon we define the following notations: given
zx = $(M%, + €n) ~ Dy, 2y = +(Mz,/ + &nr) ~ D, we let (for each j € [d)):

o1 I o ) _
Z}g = Z Z Mj’z’mj' + 577, 5 Z)\/j = Z Z Mjlznl)j/ + gn’ (56)
J'#3 i'#
3'€ld] 3'€ld]
SV = w20V, SV = (20 57)
Si(,?s)\j — %<5§;N n Si(f;)\j) 7 51_(;@)\]‘ — %(Si(,?\j _ Sfft)\j) (58)
2(‘5;) _ 5(7”)‘
o) im0, a0 (0, 2 g 5
(2] ] ? ~(r) +2(3)
n,j n’,j

Whenever the neuron index ¢ € [m] is clear from the context, we drop the subscript ¢ and the time
index t for notational simplicity.

13



Lemma D.2 (Gradient for sparse features). Suppose[D.1|holds at iteration t > 0. For j € [d], we

denote events _
v= {8 =0 —alc:}

— o\~ ® _ S0
Az {2 0 i) (60)
4= {[8) +al)cs| = §(ale: o)},
Ay = {SZ\% > %(ag?C’g — bz(-t)>} ;
and quantities L1, Lo, L3, L4 as
E[SH1%(1a, + 1a)] E[SH1%(1a, + 1a,)]
L1 = ot (t)l o 2 L2 = PI‘(Al), L3 = ot (t)S o : s L4 = PI‘(Ag)
E[(w;™, £)?] E[{w; 7, €)?]
(61)

Then we have the following results:

(a) (all features) For alli € [m], lfozZ j = 0, we have (when 04( ) < 0 the opposite inequality holds)

(T) ~(r)
Zl\(w“z Y > g | = L Zz JZZ ,Jl\( 0 EXEE 1> p, 4 (w2 ZX‘Z*‘ZYH]

+ (a52+0(\/Eia“> ) [ZZ

s=1r=1

2“)+
O(L1 + L2)

71_7|

(62)

(b) (lucky features) If ') > b\"), we have
L 1
=) ® _ ® (s) N\ 5()
leHw“z(T) 2 g | S Z(O‘m’ — b ) [Z JZ ity <‘>,”§”>|>bi+|<w£”,zx”§zy>|]

+ (o)) <[ 5

s=1r=1

z +z,. r
Zn,i T Enl )| ~O(L3—|—L4)

(63)
IfozE? < fb(t) then the opposite inequality holds with (o (t) b(t)) replaced by (o (t) bgt))

Lemma D.3 (Gradient from dense signals). Let i € [m] and J € [d]. Suppose|D.]| -holds for the
current iteration t. Then

L
B (ha(Xor) 21100 oy (€75 M)
r=1

2
<O =2 ) Pr(hig(Xa) £0) (64
For dense features MJ-‘, J € [di] \ [d], we have a similar result:

(t)
l 21 © ) \>b“’<5(r M) || < (';" \F2> Pr(hiy(Xn) #0)  (65)

The second stage is defined as the iterations ¢ > T3 but t < 75, where

dlogd
Ty = ___ e
? © (gmaxn log log d) (66)

is defined as the iteration when one of the neuron ¢ € [m] satisfies

(T2)

Hw (67)

> de(T1

2

Now we separately discuss three cases:

14



56 420)
(a) When i € M%,if Z zn )J and Z z ) 5 # 0, say i Cér’s), we simply have

() N ()
[Z o Zz : 1 ’ 7“)“(;)>|zbi+|<w,;,z<"'>772g)+z$) |]
Z~( )jz <r>] < t) 2042

(") 4 ()
W, 22 S ey | w®, ) zX;zyH) (68)
s=1
€lLQC’zloglogd 1 1
- d polylog(d) /

For M; such that i € M;, at iteration ¢ + 1:

(0, M5) = (), M) — (70, OB, M) = T L

POI}’(dl)

(t)
— (D nllw; |2
= (w;”’,M;)(1 —n\) £
< 7 ]>( ) poly(dl)

L
(1— M Zl (ws, Zm |>b zg()7M >]
r=1

+nE

Zx’,
Xen =1

L
—nk [Z Cihia(X Z wi, 2y 2b § vM >]

(t)
(t) nllw;” |2
w MY (1 —nA) £ 212
(v ) ) poly(dy)

L

1 . .
+n7E [(1—e;,t)hi,t(xn/)21“%72“)”% ( AEERORY S >)]

) >b; nj
r=1

L
_77 E [Z Ks thzt Z]_sz,zx )|>b ( 7(:; <£(T) M., >)]
Xen —1

() . () (t)) nC loglogd 7

> M;) — O M)) b ) - (] — 1 - ———

= << wit, My) = sign( (w7, M) -b ( T d polylog(d)
(69)

Next we compare this growth to the growth of bias b§t+1). Since we raise our bias by

(t+1)
b = max {bit) (1+2). b ||w||2}

(70)
[
We have to prove
(t+1) M. (t+1)
G DMl Dl e o
[(w; ", M) [P
We argue as follows: from previous calculations we have
> M 3w M)
J'€ld], 5'#3 3’ €ldi]\[d]
om \?
< Z <w(t) Mj’>2 (1 + € (72)
- v dpolylog(d
jreld] 34 polylog(d)
Y M) + O e e (02
3’ €ldi]\[d]
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Therefore by adding (w{"""), M) to the LHS we have

2 (t+1)
(t+1))2 (t) 12 O(n) > [(w; 7, M) O(n) )

w, < w; 1+ €max + — w,’, M

el =1 2( d - polylog(d) |(w” M) d-polylog(d) i

which implies

Jw “*”n% - <1+€ o) >2+<|<w£t+”,Mj>| [ My
— max . (d) |<

t t
[T wi”, M) [T

Therefore,

(75)

as desired.

(b) When ¢ ¢ M, we can similarly obtain that

(1) L?C; loglogd !
Z JZ 1 S | G 0 W>|] = a

s=1 w;, polylog(d)

L2
=0 <€j d- polylog(d)>
(76)

And similarly we can compute the gradient descent dynamics as follows: For j € [d] such that

()
|<w£t), M;)| > w, we have (assume here <w§t), M;) > 0, the opposite is similar)

dy
<w(t+1) M,) = (w@ M) — 7{V., Obj(f), M;) + i 12 77||w(t)H2
i s Vg AR i poly(dl)
(t) O(n)
< (w! D(1— j———
< i) (1m0 )
N D el o AW T 7

dr I

(t)
" o) allw; Il
< (u! ,Mj><1+fdpolylogw)>+o< &

It is also worth noting that similar calculations also lead to a lower bound:

(®
!
R HIEE LR HICV 0<n" ;p ”2> 79

(c) Next we consider the learning dynamics for the dense features.
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We can use [D.3]to calculate its dynamics by

()
(t+1) ML ) MLV(1 — nA inHwi 2
(w! )= (. M1 - £ L

L
+ nE (1_€;,t)hi,t(Xn’)Zl\<w 20) [ >b; <Z§;)7MJL>‘|

r=1

L
(r) 1
1 X B 3 )
r=1

Xem
_ <w(t) MJ_>(1 )\)i nHw(t)HQ
I poly(dy)

L (79)
+nkE (1_€;,t)hi7t(Xn’)Zl‘<w ) >0 <§() ML>]
r=1

L
_nZEl”h” )2 i MH]
Xen r=1
o M1 1o el .
= (w; ", Mj)(1—nA) + N r(hie(Xn) # 0)

WV

In the proof above, we have depended on the crucial assumption that T, :=

min {t eN:3ie[m]st w2 > d||wET1)H§} is of order © (%). Now we

verify it as follows. If i € M for some j € [d] (which also means j" ¢ N for j' # j), we have

< (w® M¢>+O<nllw [ )>

(®) (Ty) nloglogd t=T
[{w; 7, M) = (w7, My)| {1+ Qf e —>——
(80)
dlogd
> 4 210gd||w§T1)H2 f0rsomet=0<og>
e;nloglogd

Thus for some t = O (%) we have |(w” M,)[2 > d||w!™||2, which proves that Ty <

e;nloglogd
dlogd
o (€max7] log log d) '

Conversely, we also have for all t < O (ﬁ%)
t t
> @ M)+ Y (! M)

3’ €ldl:g' #j 3’ €ldi)\[d]
t—T4
(Th) 12 0(77)
: 1 Gy —
o2 ( TG dpolylog(d)> * Ve ©

ofdflw{™3)

Except for the principal direction M (i.e., the alignment direction of neuron i ), the total growth of

Yk
. And also
2

t—T4
(1) < ™) M, Cenloglogd (/1
M| < (™ M) (146 SRR (L

C.nloglogd 1 =T
< logd (Tl) 1 i =N 1—
B O( AR polylog(d)

17
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dlog(n(\/ﬁ @))
emaxNC loglog d

wat)H% > d||wa1)||2, which proves that b = © (%)

Therefore we at least need

(1 — o(1)) iteration to let any neuron ¢ € [m] reach

Proof of Theorem[3.2] When all ||w§t) l2 < 2||w§T1)||2: The iteration complexity for a neuron

i € [m] to reach ||w£t)|\2 > 2||w§T1) ||2 is no smaller than

T}, = max{Q( %L ), T} (83)

For j € [di] \ [d] we have

(T/1) N pl\2 (T1) npl\2 77(Ti/,1 — 1) —Q(log'/* d) (t")
Z (w; an> < Z (w; 7Mj> +O0|——— e max |jw; |

jelnd jeldhd d PEln T
1 INT, (T1) 2
< (1 o) MM T
2
(84)
If i € M7, there exist ¢ < T5 such that ngt)Hg > 2||w£T2)H2, we have
(T/1) (T/1) (1) (T].1)
[(w; " M) > oy 3= > (M) = Y (wy Y M)
jeld], JEN; jeldi\[d] 5)
T T
> 2lwi™ 3 — (1+ o(1)) ™3
T
> (1 - o(1))]w{™|3

which proves the claim.

At this substage, we have: If i € M, then from similar calculations as above, we can prove by

induction that starting from ¢ = T} , it holds:

log log d
M 2 Jl® M) (140 1) )
(86)
log log d
> s (1+0(o M)
1o} 2
O S (< o) I
' €ld], 3 Jeld, i polylog(d)
2
T i dpolylog(d) (88)
jeld jeldhd) Povos
which implies
(1)
M) = (! M) L e
[Jw; [l (89)

t+1
> (1—o(1)) w!™*V s

Theorem [3.2] (@) is proved. As for Theorem [3.2]([7), we can revisit case (c) from the three situations
discussed earlier and then proceed by iteration. O
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E Theorem 3.3

At the final stage, we show that sparse activation of neurons naturally leads to convergence toward
sparse solutions, thereby guaranteeing sparse representations. For all t > T5:

Lemma E.1. For all iterations t, the neurons i € [m] satisfy the following properties:
(a) For j € [d), ifi € M, then

[l M| = Q1) [l (90)
(b) For i € [m], we have
w2 < 0@1) 1)
(c) For each j € [d),
=) . _ (t) 2 €5 N2 3
&.:§ww%>sm§?ﬂ%@ (92)

(d) Let j € [d] and i € M, then there exists C = ©(1) such that

M) > WM 3
[(wi”, My)| 2 € max |(w;’, My)] (93)
(e) Fori ¢ M, it holds
‘.
M| < 0 i) Il o)

(f) For any i € [m] and any j € [d1] \ [d], it holds

(M) < O(Zt=) Il 95)

(g) For all i € [m], the bias satisfies

b > R 1] -

Definition E.1 (Optimal Learner). We define a learner network that we deem as the “optimal” feature
map for this task. Let k > 0, we define 0* := {0} };c(,,) as follows:

Tk . (T2) o
or = WMj ~51gn(<wi 2 ,Mj>), ifi e M;,

0, ifi ¢ Ujeq M;

o7)

Furthermore, we define the optimal feature map f} as follows. For i € [m)], the i-th neuron of f ¢
given weight 0; € R% s

L
fr0,i(Xn) = Z [((917z§)> - bi)1<wl§t))z¥)>2b - (—<9i,2§§)> - bi)l%wi”,zg)kbi . (9%)

i

r=1
Finally, we write f; g as the concatenation

Foo() = (Froa()ooos from()) " (99)

Lemma E.2 (Optimality). Let {0} };c|m) and f1 ¢ be defined as in Deﬁnition When Lemma
define the pseudo loss function

L(froe, f1) :=E (100)

olFeor (Xu) Fu(X)) /7
OB S e @
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Then by choosing k = ©(Z25), and assuming

3w M) > Q<ﬁ> (101)

1eEM =2

we obtain the following loss guarantee:

Lfro f2) < O(rka) (102)
Proof of Theorem[3.3] We start with the proof of convergence Theorem [3.3] 8).
Denote w(*) = (wgt), Ll )) since our update is
t+1) _ 1
w = w® - v,0bj(f) + Doy (1) * (103)
we have
. 2 . 2
TwOb3(£0. ) ~7) = FITLOb(IE + bl = 07 = ) = 01+ gy
< 2 poly(d) + Sw® — 03 — SwD — 073 + L (104)
The proof of the above equation is as follows:
(@, y) = 5 (Il + llyll? = ll= — yII*) (105)
Letx = a — ¢, y = a — b, and substitute into the above equation.
(a—c,a=b) =5 (la—cl®+lla—bl* —[b—c]?) (106)
Here we substitute the following three quantities into the three point identity:
a=w® — b=0",  c=w =uw® —yV,0bj(f) + s (107)
Thus, the original equation is proved. As for the inequality,
IV Obj(f)l7 = > 1V, O () (108)

i=1
Each term is O(1), and since m = poly(d), the overall complexity is poly(d).

Now we will use the tools from online learning to obtain a loss guarantee: define a pseudo objective
for parameter 6

Oth( ) = ft@vft Z 10 ||2

i1€[m]
_E 1 el fr.o(Xn), fe(Xp)) /T 6, (109)
= —T log Zme% e(Fr.0(Xn), fe(2))/ Z H Hz

Which is a convex function over 6 since it is linear in 6 (for a fixed f;, we can consider L(f; g, f) to
be convex with respect to 6, because f; g(x) is linear, and softmax + log is a convex composition; the
regularization term is convex).

Moreover, we have
Obj, (w®) = Obj(f,), (110)

and -
V4,0bj, (w!”) = V,,,0bj(f,) (111)
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Thus we have
(V. Obj(f1), w® — %) = n(VeObj,(w"), w® — g%)

> Obi. (w® 1 ol fror (Xn),fe (X)) /7
> Obj(w') —E | —7log S T AT

~0(ka) - Z O0; 3)

> Obj(fi) = O (1554 ) (112)

i1€[m]

Y
7|

(1) is because the surrogate objective function 6\b/jt is a convex function with respect to 6, so
we can use a first-order convex lower bound: f(6) — f(0") < (Vf(6),0 — ¢'). (2) is because

* _ * _ T2 T2 AtkE3
et M3 = ey S MO IE = X et Sicas At = S pera Ay = 22

Now choosing k = ©(Z,) < 5 (so that Picim A||9f||§

), and by a telescoping summation,

logd
we have
T3+T 1 T3+T 1
= 2 (onitf)-0(ka)) S5 X n(TuObi(h), w® — )
t=T3 t=T3
O(||w"™ —6*|%)
< Tn
O™ + 16° 13 — 2 Tr((w™)T64))
Tn
O(llw™ % + 116*11%)
< T
O (mljw{™|3)
n
<o(%22) (113)
Since Ty > mZ4L0, this proves the claim.
For Theorem [3.3] (9), we have
w’ = 3 @ MM+ Y @ MM+ Y Wl MM
JENG, jE[d] J¢Ni, j€ld] J€ldi\[d]
) MLYM, G Jwi e ol | ppt
< Y @ Mym+ > O(emaxﬁ )M+ > o( dlEg>Mj
JENG, jE[d] J¢Ni, j€ld] jeldi\[d]
= Z OLL‘J‘MJ' + Z 0427ij + Z ,Biﬂ'Mj'
JENG, jE[d] JENi, j€ld] Jeldi\[d]

(114)

Under the condition of | M| # 0 (if | M| = 0, then it is not a target within A;, and thus it becomes
meaningless), and due to Lemma @ The proof is complete. For each feature M, there are
at most o(m/d) many i € |m] such that j € N;: It follows from the proof of Lemma that

P[i € M;] = iz, and at least 2(d**) many i € [m] such that N; = {j}: From Lemma we
recall that |/\/l*\ > Q(d“") If a neuron belongs to M, then it must not belong to M/

O
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