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Abstract- A remarkable improvement in remnant polarization 
(2Pr), from below 5 μC/cm2 to over 40 μC/cm2, has been achieved in 
an ultra-thin 3 nm (physical) ferroelectric (FE) HZO layer annealed at 
450 ℃, facilitated by increased oxygen vacancies (Vo/Vo²⁺) and high-
temperature electrical cycling (HTEC) at 85 ℃. Notably, this 
enhancement persists upon returning to room temperature (RT). 
Systematic characterization attributes the record-high 2Pr in the 3 nm 
HZO layer to a Vo/Vo²⁺-assisted phase transition from initially 
dominant tetragonal (t)-phase to FE orthorhombic (o)-phase. First-
principles calculations reveal that the increased Vo²⁺ during HTEC is 
crucial for driving the t-to-o phase transition, shifting the free energies 
of the t- and o-phases, and ultimately stabilizing the o-phase over the 
t-phase. Our work unlocks new opportunities for optimizing ultra-thin 
FE layers with a low thermal budget, laying the foundation for the 
next-generation of FE memory devices. 

Ⅰ Introduction 
The thickness down-scaling of HfO2-based FE films has sparked 

growing interest from both academia and industry [1-2], driven by the 
demand for high-density and ultra-low-power FeRAMs. However, as 
the film thickness decreases, the FE o-phase in polycrystalline films 
diminishes, while more stable t-phase dominates [3-5], leading to a 
significant degradation in FE performance [Fig. 1(a)]. To address this 
challenge, various approaches have been explored to transit the 
majority t-phase to the o-phase [5-8]. However, these phase-transition 
attempts still face several limitations, including (1) a high thermal 
budget (>500 ℃) [5][9], which restricts their compatibility with 
BEOL processes, and (2) only marginal improvements, especially for 
ultra-thin 3 nm HZO layers, where 2Pr remains below 10 C/cm2[5]. 

In this work, we propose and experimentally demonstrate an 
effective Vo²⁺-assisted t-to-o phase transition in an ultra-thin 3 nm 
HZO layer annealed at BEOL-compatible temp. of 450 ℃  First-
principles calculations are performed to unveil the mechanisms 
driving this transition. In ultra-thin HZO layers, the t-phase is initially 
more stable due to its lower free energy compared to the o-phase. 
However, as Vo²⁺ concentration increases beyond a critical threshold, 
the free energy difference between the t-phase and o-phase gradually 
diminishes, and eventually reverses, stabilizing o-phase over the t-
phase. Key achievements of this work are summarized in Fig. 1(b). 

Ⅱ Characterization and Analysis of Ferroelectricity  
A. Challenges of degraded ferroelectricity in ultra-thin HZO 

The thickness of our thin HZO films is precisely controlled via 
atomic-layer-deposition (ALD) at 300 ℃, with TEMAHf, TEMAZr 
and ozone as the precursors. The PV loops of 3/4/5 nm HZO 
capacitors annealed at 450°C are shown in Fig. 2(a), indicating a rapid 
decline in 2Pr as thinning HZO. Although a higher anneal temp. of 
550°C effectively enhances 2Pr [Fig. 2(b)], further improvements are 
still desired under lower thermal budgets for potential BEOL 
applications. However, the conventional wake-up cycling at RT 
achieves only limited enhancement in ferroelectricity for the HZO 
annealed at 450°C [Fig.2(c)], with the final 2Pr still constrained to 
around 6 C/cm2 [Fig.2(d)]. 
B. Discovery of remarkable ferroelectricity enhancement and 
increased Vo/Vo²⁺ under HTEC in 3 nm HZO layer 

To further enhance Pr in ultra-thin HZO annealed at 450°C, we 
employ HTEC, inspired by its wake-up effect previously observed in 
10 nm thick HZO layers [10]. The HTEC process and waveforms are 
illustrated in Fig. 3(a)-(b). 

GIXRD analysis in Fig. 3(c), along with the initial anti-FE (AFE) 
PV loop in Fig. 2(c), confirms the dominance of the t-phase in the 3 
nm HZO annealed at 450°C. Notably, the initial AFE-like PV and IV 
loops gradually transform into FE-like loops during HTEC, indicating 
a potential phase transition from t-phase to o-phase [Fig. 3(d)], which 
will be further confirmed later. As a result, the 2Pr is significantly 
enhanced from less than 5 C/cm2 to around 20 C/cm2, and this 
improvement persists even upon returning to RT [Fig. 4(a-c)]. 

Meanwhile, a significantly more pronounced increase in leakage 
current is observed compared to RT cycling [Fig.4 (d)], suggesting a 
promoted augmentation and redistribution of Vo/Vo2+ during the HT 
process [Fig. 4(e)]. This increased concentration is further confirmed 
by EELS spectra showing the O-K ionization edge of HZO before and 
after HTEC [Fig. 5(a)]. The increased ratio of peak B to peak A 
implies more Vo/Vo2+ generation [Fig. 5(b)] [11]. These results 
suggest a potential correlation between the enhanced ferroelectricity 

and the increased Vo/Vo2+ concentration. 

C. Further boosting 2Pr through enhanced Vo/Vo2+-assisted t-to-
o phase transition 

To further verify the role of Vo/Vo²⁺ in enhancing 2Pr, another 3 
nm HZO film with an initially higher Vo/Vo²⁺ concentration [Fig. 
5(c)], tuned during ALD deposition, was fabricated and characterized. 
The initial 2Pr [Fig. 5(d)] is increased, and an enhanced 2Pr after 
wake-up at RT is achieved [Fig. 5(e)], illustrating that higher Vo/Vo²⁺ 
concentrations promote o-phase formation. Moreover, 2Pr 
enhancement becomes more pronounced during HTEC, with all PV, 
IV, and CV loops in Fig 6(a) further corroborating the t-to-o phase 
transition. This enhancement remains stable upon returning to RT, as 
shown in Figs. 6(b-c). 

The dielectric constants (k) of the 3 nm FE layer during HTEC are 
extracted from CV [Fig 6(a)] and summarized in Fig. 7(a). The notable 
continuous decrease in k convincingly confirms that the enhancement 
in ferroelectricity of our 3 nm HZO can be primarily attributed to the 
t-to-o phase transition rather than to other potential competing factors, 
which exhibit different trends in k changes [12-13]. Furthermore, the 
HAADF imaging after HTEC directly visualizes the presence of o-
phase at the atomic level [Fig. 7(b-d)]. 

Driven by the enhanced Vo/Vo2+-assisted t-to-o phase transition, 
our 3 nm HZO annealed at 450 ℃ exhibits exceptional performance, 
achieving 2Pr exceeding 40 μC/cm2 at 1V and over 15 μC/cm2 at 0.6 
V [Fig. 8(a)] with good uniformity [Fig. 8(b)]. Robust retention and 
endurance characteristics are shown in Fig. 8 (c)-(e). 

Additionally, the improvement in the 3 nm HZO film annealed at 
550℃, with a larger portion of o/t-phases [Fig. 9(a)], is also 
investigated. The limited improvement in 2Pr after HTEC [Fig. 9(b)] 
and the slight reduction in k [Fig. 9(c)] suggest a restricted t-to-o phase 
transition. This anneal temp. dependent improvement [Fig. 9(d)] is 
attributed to the varying initial proportions of t-phase, which transition 
to the o-phase during HTEC [Fig. 9(e)].   

Ⅲ Unveiling the Critical Role of Vo/Vo²⁺ 
    Experimental results suggest that Vo/Vo²⁺ promote the t-to-o phase 
transition. To differentiate the effects of Vo and Vo²⁺, first-principles 
calculations were performed on HZO supercell with varying Vo or 
Vo²⁺ concentrations (Fig. 10). 
    Phase transitions are governed by the thermodynamic driving force, 
defined as the free-energy difference between the initial and final 
phases, and the kinetic activation energy. In ultra-thin HZO films, 
smaller grain sizes increase the t-to-o phase kinetic barrier and 
decrease the free-energy of t-phase, making the t-phase more stable 
than the o-phase [Fig.11(a)]. Calculation results in Fig.11(b) reveal 
that increased Vo²⁺ favors o-phase stability, whereas Vo has the 
opposite effect. This is consistent with the enhanced 2Pr observed 
during HTEC, which is more effective at generating Vo²⁺ [Fig.11(c)]. 
The agreement between experiment and simulation strongly supports 
Vo²⁺-assisted 2Pr enhancement in ultra-thin HZO film by stabilizing 
o-phase than t-phase and promoting the t-to-o phase transition. Based 
on these findings, a design guideline for optimizing FE properties in 
ultra-thin HZO film by Vo² engineering is proposed [Fig.11(d)]. 

Ⅳ. Conclusion 
At a low anneal temp. of 450°C, the t-phase initially exhibits greater 

stability than the o-phase in ultra-thin FE layers. However, the 
increase in Vo²⁺ concentration reverses this stability trend [Fig. 12(a)], 
offering a new pathway to significantly enhance 2Pr [Fig. 12(b)]. 
Through comprehensive characterization and simulations, we unveil 
and harness this phenomenon to achieve an effective t-to-o phase 
transition in BEOL-compatible ultra-thin 3 nm HZO layers, resulting 
in a remarkable 40 μC/cm² boost in 2Pr [Fig. 12(c)]. This work 
provides critical insights into unleashing the full potential of ultra-thin 
FE layers, driving advances in future high-performance, low-power 
applications. 
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Fig.1 (a) Our findings address the degraded FE properties and high anneal 
temp. challenges. (b) Highlights of this work, including benchmarking with 
physical 3 nm and sub-3 nm FE layers, and TEM image. 

Fig.2. PV loops of (a) various HZO thicknesses and (b) different anneal temp. 
of 3 nm HZO. Pr degrades with thinning HZO thickness and lower anneal 
temp. (c) Wake-up effect at RT in 3 nm HZO. (d) Limited increase after wake-
up at RT of 3 nm HZO annealed at 450 ℃. 

 

 
Fig.3. (a) HTEC process flow and (b) waveforms. (c) GIXRD of 3 nm HZO 
annealed at 450 ℃ with a peak near 30.8° indicative of t-phase. (d) Evolution 
of PV and IV loops during HTEC, transforming from AFE-like to FE-like 
loops, suggesting a potential t-to-o phase transition. 

 

 
Fig.4. PV loops of 3 nm HZO annealed at 450 ℃ after HTEC at varying 
applied voltages tested at (a) HT and (b) RT. (c) Enhanced ferroelectricity can 
be well retained even after returning to RT. (d) Increased leakage currents 
after HTEC, likely induced by (e) augmentation and redistribution of Vo2+ 
during HTEC. 

 
Fig. 5. (a) EELS spectra of the 3 nm HZO layer before and after HP cycling. 
(b) Doublet peaks (A and B) with normalized maximum intensity of peak B, 
indicating increased Vo/Vo2+ after HTEC. (c) XPS of HZO films with 
different initial Vo/Vo2+ levels. (d) Wake-up PV loops of 3 nm HZO with 
more Vo/Vo2+, realizing (e) enhanced 2Pr improvement. 

 
Fig. 6. (a) Evolution of PV, IV and CV loops during HTEC for 3 nm HZO with 
more Vo/Vo2+ annealed at 450 ℃, suggesting the potential t-to-o phase 
transition. (b) PV loops after HTEC, achieving 2Pr>40 μC/cm2 at 1 V, which 
are (c) well retained upon returning to RT. 
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Fig.7. (a) Continuous decrease in k during HT cycling confirms the t-to-o 
phase transition. (b) HAADF further visualizes the presence of o-phase, with 
good consistence between (c) FFT results and (b) Simulated ED. 

 
 
 
 
 
 
Fig. 8. Outstanding performance of 3 nm HZO layers after t-to-o phase 
transition: (a) low-voltage applicability, (b) good uniformity, (c) stable 
retention. (d) robust endurance>109 cycles with (e) consistent PV loops. 

 
Fig. 9. (a) GIXRD of 3 nm HZO annealed at 550 ℃, revealing a higher 
proportion of o/t phases. (b) The minimal 2Pr improvement after HTEC and 
(c) a slight decrease in k indicate a limited t-to-o phase transition. (d) Anneal 
temp.-dependent 2Pr improvements are attributed to (e) initially different 
proportion of formed t-phase which transitions to o-phase during HTEC. 

  

 
 

 
 
Fig.11. (a) The t-phase dominates in ultra-thin HZO films. (b) Calculation 
results reveal that increasing Vo2+ beyond a critical threshold stabilizes the o-
phase over the t-phase, consistent with the t-to-o phase transition observed in 
HTEC, (c) which significantly increases Vo²⁺ generation. (d) Guided by these 
results, the design target to favor the o-phase in ultra-thin HZO is proposed. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig.12 (a) Unveiled effects of increased Vo2+ on stabilizing the o-phase over 
the t-phase in the ultra-thin FE layer, facilitating t-to-o phase transition. 
Building on these findings, (b) new insights and strategies are developed to 
enhance 2Pr in ultra-thin FE layers at low anneal temp., resulting in a ~40 
μC/cm² boost in 2Pr for the 3 nm HZO layer. (c) A benchmark table compares 
reported efforts to utilize t-to-o phase transition, with our work effectively 
extending the feasibility to BEOL-compatible 3 nm HZO layer. 
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HTEC (85℃): 3 nm HZO (more Vo/ Vo2+) annealed at 550 ℃
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