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Abstract- A remarkable improvement in remnant polarization
(2Pr), from below 5 puC/cm? to over 40 pC/cm?, has been achieved in
an ultra-thin 3 nm (physical) ferroelectric (FE) HZO layer annealed at
450 °C, facilitated by increased oxygen vacancies (Vo/Vo?") and high-
temperature electrical cycling (HTEC) at 85 °C. Notably, this
enhancement persists upon returning to room temperature (RT).
Systematic characterization attributes the record-high 2Pr in the 3 nm
HZO layer to a Vo/Vo*"-assisted phase transition from initially
dominant tetragonal (t)-phase to FE orthorhombic (o)-phase. First-
principles calculations reveal that the increased Vo?* during HTEC is
crucial for driving the t-to-o phase transition, shifting the free energies
of the t- and o-phases, and ultimately stabilizing the o-phase over the
t-phase. Our work unlocks new opportunities for optimizing ultra-thin
FE layers with a low thermal budget, laying the foundation for the
next-generation of FE memory devices.

L. Introduction

The thickness down-scaling of HfO»-based FE films has sparked
growing interest from both academia and industry [1-2], driven by the
demand for high-density and ultra-low-power FeRAMs. However, as
the film thickness decreases, the FE o-phase in polycrystalline films
diminishes, while more stable t-phase dominates [3-5], leading to a
significant degradation in FE performance [Fig. 1(a)]. To address this
challenge, various approaches have been explored to transit the
majority t-phase to the o-phase [5-8]. However, these phase-transition
attempts still face several limitations, including (1) a high thermal
budget (>500 °C) [5][9], which restricts their compatibility with
BEOL processes, and (2) only marginal improvements, especially for
ultra-thin 3 nm HZO layers, where 2Pr remains below 10 uC/cm?[5].

In this work, we propose and experimentally demonstrate an
effective Vo*'-assisted t-to-o phase transition in an ultra-thin 3 nm
HZO layer annealed at BEOL-compatible temp. of 450 °C. First-
principles calculations are performed to unveil the mechanisms
driving this transition. In ultra-thin HZO layers, the t-phase is initially
more stable due to its lower free energy compared to the o-phase.
However, as Vo** concentration increases beyond a critical threshold,
the free energy difference between the t-phase and o-phase gradually
diminishes, and eventually reverses, stabilizing o-phase over the t-
phase. Key achievements of this work are summarized in Fig. 1(b).

II. Characterization and Analysis of Ferroelectricity
A. Challenges of degraded ferroelectricity in ultra-thin HZO

The thickness of our thin HZO films is precisely controlled via
atomic-layer-deposition (ALD) at 300 °C, with TEMAH{f, TEMAZr
and ozone as the precursors. The PV loops of 3/4/5 nm HZO
capacitors annealed at 450°C are shown in Fig. 2(a), indicating a rapid
decline in 2Pr as thinning HZO. Although a higher anneal temp. of
550°C effectively enhances 2Pr [Fig. 2(b)], further improvements are
still desired under lower thermal budgets for potential BEOL
applications. However, the conventional wake-up cycling at RT
achieves only limited enhancement in ferroelectricity for the HZO
annealed at 450°C [Fig.2(c)], with the final 2Pr still constrained to
around 6 pC/cm? [Fig.2(d)].

B. Discovery of remarkable ferroelectricity enhancement and
increased Vo/Vo?* under HTEC in 3 nm HZO layer

To further enhance Pr in ultra-thin HZO annealed at 450°C, we
employ HTEC, inspired by its wake-up effect previously observed in
10 nm thick HZO layers [10]. The HTEC process and waveforms are
illustrated in Fig. 3(a)-(b).

GIXRD analysis in Fig. 3(c), along with the initial anti-FE (AFE)
PV loop in Fig. 2(c), confirms the dominance of the t-phase in the 3
nm HZO annealed at 450°C. Notably, the initial AFE-like PV and IV
loops gradually transform into FE-like loops during HTEC, indicating
a potential phase transition from t-phase to o-phase [Fig. 3(d)], which
will be further confirmed later. As a result, the 2Pr is mgmﬁcantly
enhanced from less than 5 pC/em? to around 20 pC/ecm?, and this
improvement persists even upon returning to RT [Fig. 4(a—c)]

Meanwhile, a significantly more pronounced increase in leakage
current is observed compared to RT cycling [Fig.4 (d)], suggesting a
promoted augmentation and redistribution of Vo/Vo?" during the HT
process [Fig. 4(e)]. This increased concentration is further confirmed
by EELS spectra showing the O-K ionization edge of HZO before and
after HTEC [Fig. 5(a)]. The increased ratio of peak B to peak A
implies more Vo/Vo?" generation [Fig. 5(b)] [11]. These results
suggest a potential correlation between the enhanced ferroelectricity

and the increased Vo/Vo?" concentration.

C. Further boosting 2Pr through enhanced Vo/Vo**-assisted t-to-
o phase transition

To further verify the role of Vo/Vo?* in enhancing 2Pr, another 3
nm HZO film with an initially higher Vo/Vo** concentration [Fig.
5(c)], tuned during ALD deposition, was fabricated and characterized.
The initial 2Pr [Fig. 5(d)] is increased, and an enhanced 2Pr after
wake-up at RT is achieved [Fig. 5(¢)], illustrating that higher Vo/Vo?*
concentrations promote o-phase formation. Moreover, 2Pr
enhancement becomes more pronounced during HTEC, with all PV,
1V, and CV loops in Fig 6(a) further corroborating the t-to-o phase
transition. This enhancement remains stable upon returning to RT, as
shown in Figs. 6(b-c).

The dielectric constants (k) of the 3 nm FE layer during HTEC are
extracted from CV [Fig 6(a)] and summarized in Fig. 7(a). The notable
continuous decrease in k convincingly confirms that the enhancement
in ferroelectricity of our 3 nm HZO can be primarily attributed to the
t-to-o phase transition rather than to other potential competing factors,
which exhibit different trends in £ changes [12-13]. Furthermore, the
HAADF imaging after HTEC directly visualizes the presence of o-
phase at the atomic level [Fig. 7(b-d)].

Driven by the enhanced Vo/Vo?'-assisted t-to-o phase transition,
our 3 nm HZO annealed at 450 °C exhibits exceptional performance,
achieving 2Pr exceeding 40 pC/cm? at 1V and over 15 uC/cm? at 0.6
V [Fig. 8(a)] with good uniformity [Fig. 8(b)]. Robust retention and
endurance characteristics are shown in Fig. 8 (c)-(e).

Additionally, the improvement in the 3 nm HZO film annealed at
550°C, with a larger portion of o/t-phases [Fig. 9(a)], is also
investigated. The limited improvement in 2Pr after HTEC [Fig. 9(b)]
and the slight reduction in & [Fig. 9(c)] suggest a restricted t-to-o phase
transition. This anneal temp. dependent improvement [Fig. 9(d)] is
attributed to the varying initial proportions of t-phase, which transition
to the o-phase during HTEC [Fig. 9(e)].

III. Unveiling the Critical Role of Vo/Vo**

Experimental results suggest that Vo/Vo?" promote the t-to-o phase
transition. To differentiate the effects of Vo and Vo?*, first-principles
calculations were performed on HZO supercell with varying Vo or
Vo?* concentrations (Fig. 10).

Phase transitions are governed by the thermodynamic driving force,
defined as the free-energy difference between the initial and final
phases, and the kinetic activation energy. In ultra-thin HZO films,
smaller grain sizes increase the t-to-o phase kinetic barrier and
decrease the free-energy of t-phase, making the t-phase more stable
than the o-phase [Fig.11(a)]. Calculation results in Fig.11(b) reveal
that increased Vo' favors o-phase stability, whereas Vo has the
opposite effect. This is consistent with the enhanced 2Pr observed
during HTEC, which is more effective at generating Vo?' [Fig.11(c)].
The agreement between experiment and simulation strongly supports
Vo**-assisted 2Pr enhancement in ultra-thin HZO film by stabilizing
o-phase than t-phase and promoting the t-to-o phase transition. Based
on these findings, a design guideline for optimizing FE properties in
ultra-thin HZO film by Vo? engineering is proposed [Fig.11(d)].

IV. Conclusion

At a low anneal temp. 0f 450°C, the t-phase initially exhibits greater
stability than the o-phase in ultra-thin FE layers. However, the
increase in Vo?* concentration reverses this stability trend [Fig. 12(a)],
offering a new pathway to significantly enhance 2Pr [Fig. 12(b)].
Through comprehensive characterization and simulations, we unveil
and harness this phenomenon to achieve an effective t-to-o phase
transition in BEOL-compatible ultra-thin 3 nm HZO layers, resulting
in a remarkable 40 pC/cm? boost in 2Pr [Fig. 12(c)]. This work
provides critical insights into unleashing the full potential of ultra-thin
FE layers, driving advances in future high-performance, low-power
applications.
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Fig.1 (a) Our findings address the degraded FE properties and high anneal
temp. challenges. (b) Highlights of this work, including benchmarking with
physical 3 nm and sub-3 nm FE layers, and TEM image.
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Fig.2. PV loops of (a) various HZO thicknesses and (b) different anneal temp.
of 3 nm HZO. Pr degrades with thinning HZO thickness and lower anneal
temp. (c) Wake-up effect at RT in 3 nm HZO. (d) Limited increase after wake-
up at RT of 3 nm HZO annealed at 450 °C.

Fig.3. (a) HTEC process flow and (b) waveforms. (¢) GIXRD of 3 nm HZO
annealed at 450 °C with a peak near 30.8° indicative of t-phase. (d) Evolution
of PV and IV loops during HTEC, transforming from AFE-like to FE-like
loops, suggesting a potential t-to-o phase transition.
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Fig. 5. (a) EELS spectra of the 3 nm HZO layer before and after HP cycling.
(b) Doublet peaks (A and B) with normalized maximum intensity of peak B,
indicating increased Vo/Vo?" after HTEC. (c) XPS of HZO films with
different initial Vo/Vo>" levels. (d) Wake-up PV loops of 3 nm HZO with
more VO/V02+, realizing (e) enhanced 2Pr improvement.
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Fig. 6. (a) Evolution of PV, IV and CV loops during HTEC for 3 nm HZO with
more Vo/Vo®" annealed at 450 °C, suggesting the potential t-to-o phase
transition. (b) PV loops after HTEC, achieving 2Pr>40 pC/cm? at 1 V, which

are (c) well retained upon returning to RT.
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transition: (a) low-voltage applicability, (b) good uniformity, (c) stable
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Fig.11. (a) The t-phase dominates in ultra-thin HZO films. (b) Calculation
results reveal that increasing Vo®* beyond a critical threshold stabilizes the o-
phase over the t-phase, consistent with the t-to-o phase transition observed in
HTEC, (c) which significantly increases Vo** generation. (d) Guided by these

results, the design target to favor the o-phase in ultra-thin HZO is proposed.

Building on these findings, (b) new insights and strategies are developed to
enhance 2Pr in ultra-thin FE layers at low anneal temp., resulting in a ~40
uC/ecm? boost in 2Pr for the 3 nm HZO layer. (c) A benchmark table compares
reported efforts to utilize t-to-o phase transition, with our work effectively
extending the feasibility to BEOL-compatible 3 nm HZO layer.
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