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Abstract— In this work, we introduce and experimentally |. INTRODUCTION
demonstrate a 3-D stacked ferroelectric NOR (FeNOR)
memory, featuring a back-end-of-line (BEOL) zinc oxide OMPUTING-IN-MEMORY (CIM) has attracted

(Zn0O) channel, and a metal-ferroelectric—-metal-insulator5
semiconductor (MFMIS) unit cell. The main contributions
of this work are as follows: 1) enhanced memory window
(MW) and high on/orF ratio: The MFMIS architecture in 3-D
FeNOR enables a tunable and large MW (~4 V), as well
as an on/ofr ratio (lon/lpts) of six orders of magnitude;
2) low operation voltage and high endurance: The inte-
gration of ferroelectric materials allows for low operation
voltages (~4 V) and excellent endurance (107 cycles);
3) efficient neural network implementation: Leveraging the
3-D FeNOR structure, we further develop VGG-16 and
ResNet-50 convolutional neural networks that achieve high
prediction accuracy, decent area efficiency, and low power
consumption. The emergence of 3-D FeNOR technology
positions ferroelectric devices as a highly promising
candidate for computing-in-memory (CIM) applications.

Index Terms—3-D structure, computing-in-memory
(CIM), ferroelectric field-effect transistors (FeFETs),
HfxZri_xOo (HZO), metal-ferroelectric-metal-insulator5
semiconductor (MFMIS), oxide semiconductor.
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considerable attention for its capability to support data-
and computation-intensive workloads in artificial intelligence
applications [1], [2], [3], [4], [5], [6], offering a promising
solution to overcome the computing power bottleneck. Over
the last decade, such CIM architectures have been constructed
by various non-volatile memory technologies, including flash
memory, resistive random access memory (RRAM), phase
change memory (PCM), ferroelectric field-effect transistors
(FeFETs), and so on. Among these, hafnium oxide (HfO,)
based FeFET stand out as a highly promising candidate, owing
to several crucial advantages, such as low operation voltage,
good endurance, fast operation speed, and compatibility
with complementary metal-oxide—semiconductor (CMOS)
technology [7], [8], [9], [10]. Fig. 1(a) and (b) compares
FeFET with conventional NOR Flash memory, highlighting the
device-level competitive advantages. Moreover, FeFET can
be implemented in the 3-D architecture, offering substantial
data storage capacity and enabling highly parallel computing
capabilities. Leveraging on this compatibility, recently, 3-D
ferroelectric NAND (FeNAND) array structures utilizing
poly-Si or advanced oxide semiconductor channels have
been demonstrated [11], [12]. These works show excellent
performance and high-density integration, underscoring the
potential of 3-D integrated ferroelectric memories in enabling
CIM technologies.

However, despite considerable progress in 3-D ferroelectric
memory, two fundamental challenges still persist, hindering
its further advancements. The first challenge is the limited
memory window (MW) in 3-D FeFET, resulting from weak
ferroelectric switching. In prior 2-D FeFET studies, this
problem could be solved by employing a metal-ferroelectric-
metal-insulator-semiconductor (MFMIS) structure [13], [14],
[15]. However, the complex 2-D MFMIS unit cell structure
is not applicable in conventional 3-D memory designs. This
necessitates the development of novel MFMIS unit cell
structure in 3-D ferroelectric NOR (FeNOR) design to fully
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Fig. 1. (a) and (b) 3-D FeNOR offers lower power consumption, better
reliability, and faster programming speed than 3-D NOR Flash. (c) and
(d) Schematic illustartion of the NAND and NOR array. In comparison
to NAND arrays, NOR arrays enable stronger parallel computing
capabilities.

unlock FeFET’s potential. The second challenge is the lack
of exploration into 3-D FeNOR architectures, although the
development of the 3-D FeNOR is necessary and significant to
CIM advancement. Compared to 3-D FeNAND, 3-D FeNOR
is better suited for CIM applications due to its capability for
parallel computing, which is enabled by utilizing multiple
source lines as multiple outputs, as shown in Fig. 1(c) and (d)
[16], [17]. Therefore, advancing 3-D FeNOR technology is
a crucial step to boost FeFET’s competitiveness as a leading
non-volatile memory for CIM applications.

To address these challenges, in this work, we propose
a 3-D MFMIS structure for MW enhancement in 3-D
FeNOR. Furthermore, building on this design, we further
experimentally demonstrated the 3-D FeNOR and evaluate
its feasibility for CIM applications. During the experiment
process, the highlights are: 1) the key layers, including
the channel, dielectric, and other critical components, are
deposited using atomic layer deposition (ALD), ensuring
precise thickness control and exceptional uniformity and 2) all
processes are conducted at temperatures <450 °C, ensuring
back-end-of-line (BEOL) compatibility. The experimental
results of our fabricated 3-D FeNOR showcase the fast and
energy-efficient program operation, a large MW, outstanding
ON/OFF ratio, and good endurance.

Initial results of this work are previously reported in [18],
and in this version, we provide a more detailed and
comprehensive analysis: we assess the 3-D FeNOR-based
CIM systems through an in-depth analysis of key metrics,
including noise-related accuracy, area efficiency, and power
consumption. In summary, this work paves the way for the
development of 3-D FeFET memory architectures capable of
meeting the demands of next-generation high performance
CIM applications.

II. DEVICE STRUCTURE AND FABRICATION
A. FeNOR With 3-D MFMIS Structure

The schematic of the 3-D FeNOR array in this work is
illustrated in Fig. 2(a). In this plot, each unit cell is connected

to both the source line and bitline, enabling random access
capability of the memory array. A detailed view of the
unit cell in this NOR-type array is provided in Fig. 2(b),
in which the 3-D side-fin MFMIS configuration is clearly
illustrated. Moreover, the corresponding physical model of the
3-D FeNOR array incorporating the 3-D MFMIS structure
is provided in Fig. 3(a). As depicted, the bitline and source
line are oriented vertically, while the word line is planar.
A more detailed description of this model can be found in [19].
Additionally, the X-Z view of 3-D FeNOR is presented in
Fig. 3(b). Fig. 3(c) shows the planar view of 3-D FeNOR
along the X- and Y-axis, clearly illustrating the channel length
definition. Here, it should be pointed out our as-grown ZnO
channel exhibits a positive V. Fig. 4(a) displays the Ip—Vg
curve of the planar ZnO FeFET, indicating this positive Vi,.
The small MW here is attributed to the weak-erase issue. This
issue is effectively addressed in our 3-D FeNOR by leveraging
the 3-D MFMIS structure. In addition, the intrinsic positive Vi
of ZnO channel is also reflected in the following Ip—Vs loop
of the 3-D FeNOR, where the amplitude of the positive Vy, is
significantly higher than that of the negative Vi, which will be
discussed in detail later. Fig. 4(b) illustrates the schematic of
the FeENOR unit cell, where the channel is non-conductive in
regions without gate control. This non-conductivity ensures
electrical isolation between individual cells within the 3-D
FeNOR array, effectively eliminating leakage and interference.
Prior to the subsequent discussion, it is necessary to elucidate
the mechanism of MW boosting within the MFMIS structure.
In this MEMIS structure [see Fig. 2(b)], the area of the gate-
controlled ferroelectric layer (denoted as Apg) over the area of
the floating-gate-controlled channel layer (denoted as Anos) 1S
defined as the area ratio (Arg/Amos). This area ratio can solve
the longstanding weak-erase issue by adjusting the distribution
of the applied gate voltage across the ferroelectric layer [20].
More specifically, a smaller area ratio—indicating a relatively
reduced ferroelectric capacitance area—results in a larger
fraction of the applied voltage being distributed across the
ferroelectric layer. This increased voltage drop enhances the
electric field within the ferroelectric layer, thereby promoting
more effective ferroelectric switching. Consequently, this
improved switching behavior leads to an expansion of the MW
in FeFET devices. This is why a decent MW is obtained in
this work.
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Fig. 3. (a) Schematic of the 3-D FeNOR array featuring vertical source
and drain electrodes, along with planar gate electrodes. (b) X—Z view of
the 3-D FeNOR array. (c) X-Y view of 3-D FeNOR.
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Fig. 4. (a) Ib—Vg curve of the planar ZnO FeFET, demonstrating a

positive V4. (b) Schematic of the FeNOR unit cell, where the positive
Vi effectively suppresses leakage paths between adjacent cells.

B. Device Fabrication

Fig. 5(a) illustrates the key process steps for fabricating
the 3-D FeNOR with the 3-D MFMIS unit cell. Fig. 5(b)—(g)
shows the fabrication schematic for better understanding. The
process in this work begins with the deposition of a 200 nm
silicon dioxide (SiO;) layer on the Si substrate, using plasma-
enhanced chemical vapor deposition (PECVD). After this, a
100 nm-thick tungsten (W) layer is deposited by sputtering,
followed by a 50 nm-thick SiO, layer via PECVD. This
process is repeated for three cycles to construct the superlattice
structure. Next, the gates and channel regions are dry-etched
to expose them. Afterward, the sample is immersed in the
tungsten etchant to form the side-fin structure. Subsequently,
a 7 nm HZO layer is deposited using ALD with a 1:1 cycle
ratio of Hf to Zr at 280 °C, followed by the deposition of a
7 nm TiN layer at 350 °C. After this, a post-metal annealing
(PMA) process is carried out at the 450 °C to crystallize the
HZO layer. Next, dry etching is performed to etch the side-
wall TiN, forming three separate cells. Subsequently, a 10 nm
HfO, layer and a 15 nm ZnO channel layer are deposited by
ALD without breaking the vacuum. Following this, 100 nm
Ti is deposited and lifted off to form the source/drain metal.

Side wall TiN etching

10 nm HfO, (ALD 250 °C)
15 nm ZnO (ALD 150 °C)

. Source/Drain formation
Anneal (300 °C, 3 mins, FG)

. Tungsten and SiO, deposition

a
b. Gates and holes patterning
¢. 7nm HZO (ALD 280 °C)
d. 7 nm TiN (ALD 450 °C)

(a) RTP annealing (500 °C, 60 s, N,)

sa oo

(i, ————

Fig. 5. (a) Key process steps. (b)—(g) Shcemattic illustartion of
fabricating the 3-D FeNOR featuring a 3-D MFMIS structure and oxide
semiconductor channel with the detailed fabrication process flow. There
are several key process: 1) HZO, TiN, HfO,, and ZnO are grown with
good conformality using ALD; 2) the holes of side-fin are formed with
wet etching; and 3) the TiN layer is etched using dry etching. (h)—(j) SEM
images after critical steps, showing a more direct and visual perspective
of the fabrication processes.

Here, the sputtered thick source and drain layer are crucial
for forming continuous 3-D contact with the channel layer.
The channel length is defined as 1 um. Finally, the ZnO
channel is activated in the forming gas ambient at 300 °C
for 3 min. During the abovementioned fabrication process, the
maximum processing temperature is 450 °C, ensuring BEOL
compatibility.

Moreover, to provide a direct and visual perspective, the
scanning electron microscope (SEM) images of key fabrication
steps are provided and shown in Fig. 5(h)—(j), including:
1) the stacked layers of SiO, and W; 2) the side-fin
structure after vertical dry etching and lateral wet etching;
and 3) the fabricated FeNOR array featuring the MFMIS
structure. Furthermore, the zoomed-in view transmission
electron microscope (TEM) images of the channel region in
3-D FeNOR are depicted in Fig. 6(a) and (b), confirming
the thickness of each layer. From this, the area ratio can be
determined: the hole has a width of 200 nm and a height
of 100 nm, therefore the area ratio can be calculated as 1:5.
Moreover, the energy dispersive X-ray spectroscopy (EDX)
mapping of main elements (W, Zn, Hf, Zr, Si, Ti, and N)
is illustrated in Fig. 6(c)—(i), clearly showing the uniform
element distribution and MFMIS structure.

Ill. CHARACTERIZATIONS OF PROPOSED 3-D FENOR
A. FeNOR Characterization

The transfer characteristics (Ip—Vg) of the fabricated
3-D FeNOR under varying gate voltages are presented in

Authorized licensed use limited to: UNIVERSITY NOTRE DAME. Downloaded on February 02,2026 at 03:01:46 UTC from IEEE Xplore. Restrictions apply.



2322

IEEE TRANSACTIONS ON ELECTRON DEVICES, VOL. 72, NO. 5, MAY 2025

50 nm

Fig. 6. (a) and (b) Zoomed-in view TEM image of the unit cell in the
3-D FeNOR array. (c)—(i) Corresponding EDX mapping, highlighting the
distribution of the main elements and clearly showcasing the 3-D side-
fin MFMIS structure.
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Fig. 7. Ib—Vg loops of the 3-D FeNOR unit cell by applying various
Vg, showcasing over 108 ON/OFF ratio and MW (~4 V). (b) MW
initially shows a significant increase as Vg increases, before eventually
reaching a saturation point.

Fig. 7(a). Here, the Vp is fixed at 0.1 V. As depicted, the
counterclockwise hysteresis induced by ferroelectric switching
is obtained [21], [22]. In addition, it is observed that the MW
expands with an increase in the maximum applied gate voltage.
A more detailed explanation of this relationship is provided in
Fig. 7(b). As plotted, initially, the MW grows as the voltage
increases due to the enhanced ferroelectric switching at higher
gate voltages. However, as the voltage continues to rise, the
MW gradually saturates. Here, it is important to point out
that this large MW is also influenced by the charge injection
effect [23], [24], [25], particularly at high gate voltages when
Vi exceeds 4.5 V. In contrast, in the low Vg region, where the
charge injection effect is weak, the Vj;, changing is primarily
attributed to ferroelectric switching. Finally, at a gate voltage
of 6 V, the MW reaches 4 V, with an ON/OFF current ratio
exceeding 10°.

This large MW enables us to optimize memory performance
based on specific application requirements. For instance,
in online training tasks, energy efficiency is a significant
criterion due to frequent data search and programming
operations. In such scenarios, a narrow MW with low-
power operation could enhance energy efficiency. Conversely,
in high-precision CIM computing applications, such as solving
partial differential equations, the primary concern is ensuring
multi-state reliability. In this case, a wider MW can improve
sensing margins across multiple states. In this study, we focus
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Fig. 8. (a) Under pulse amplitude of 5 V, the FeNOR demonstrates

an good endurance. (b) Retention test of the 3-D FeNOR at room
temperature indicates the non-volatile memory characteristics.
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more on neural network training process. Therefore, an MW
of ~2.5 V is selected and further analyzed in the following
discussion.

The reliability characteristics of 3-D FeNOR are investi-
gated. First, endurance test is conducted at room temperature.
During the endurance test, repeated pulses are applied to
induce electrical stress, followed by the measurement of a
single Ip—Vg loop for 3-D FeNOR. In this measurement
process, the maximum gate voltage amplitude applied is 4.5 V,
corresponding to a MW of 2.5 V. The results are shown
in Fig. 8(a). Here, the 3-D FeNOR initially exhibits a MW
of 2.5 V, and after 107 cycles, the MW remains stable.
In further endurance testing, hard breakdown occurs before
any evidence of ferroelectric fatigue. This demonstrates 3-D
FeNOR’s excellent endurance and stability across electric
field cycles. Besides, the retention characteristics are also
evaluated at room temperature, and the result is depicted in
Fig. 8(b). As shown, after applying a program pulse (6 V,
1 ps) and an erase pulse (—6 V, 1 us), the ON/OFF ratio
remains above 10* even after 10° s, confirming robust non-
volatile memory characteristics. In addition, it is worth noting
that the reliability of the ZnO channel deteriorates at higher
temperatures. However, forming gas annealing can be utilized
to enhance its reliability. Further details on this can be found in
our previous works [26]. Moreover, the long-term potentiation
(LTP) and long-term depression (LTD) characteristics under
non-identical pulse measurements are evaluated to assess the
3-D FeNOR’s potential for CIM applications. The results are
shown in Fig. 9. As illustrated, the conductance exhibits good
linearity: with a fixed pulsewidth of 500 ns, increasing the
LTP pulses from 4 to 6 V leads to a consistent increase in the
conductance of the 3-D FeNOR, while decreasing the LTD
pulses from —4 to —6 V leads to a consistent decrease in con-
ductance. This good linearity in pulse-conductance response
indicates 3-D FeNOR’s capability for multi-bit storage,
supporting its potential application in neural network system
training [27], [28].

B. Array Level Characterization and Benchmarking

In addition to the single cell characteristic, the array
level operation for 3-D FeNOR is also investigated. Fig. 10
illustrates the schematic and logic table for the array-level
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Fig. 11. Array-level logic operations of the 3-D FENOR measured with
varying storage values, showing the proportional relationship between
Isum and ON-state cells. This notable linearity demonstrates the 3-D
FeNOR’s capability for array-level CIM applications.

operation involving two 3-D FeNOR cells. In this context,
“00” represents both cells are off, “O1” indicates one cell is
on while the other is off, and “11” signifies both cells are
on. The results are shown in Fig. 11. Here, it is observed
that the summed current (Is,y) increases linearly with the
number of programmed ON-state cells, confirming the effective
functionality of the NOR type array. This decent array-level
linearity lays a solid foundation for large-scale CIM systems
at the array level.

Finally, Fig. 12 presents a comparison of the main metrics
between 3-D FeNOR, 3-D FeNAND, and 3-D NOR Flash [5],
[11], [12], [17], [18], [23], [29], [30], [42]. As illustrated,

—A— 3D NOR Flash
—-3D FeNAND MW -0-3D FeNOR

A\
N
& %
& ®,
*
N %,
[~
4]
&
Q4
4, N
0, .
2. 7
'90 ‘0
C )

On/off Ratio

Fig. 12. Comparison of key metrics among 3-D FeNAND, 3-D FeNOR,
and 3-D NOR Flash. The 3-D FeNOR exhibits good endurance, a decent
MW, and low operating voltage, making it a strong candidate for CIM
architectures.

the 3-D FeNOR exhibits several notable advantages over
traditional 3-D NOR Flash, including faster programming
speed, lower programming voltage, and enhanced endurance.
These benefits are primarily due to the inherent advantages
of ferroelectric switching. Additionally, when compared to the
3-D FeNAND structure, the 3-D FeENOR demonstrates a higher
throughput. The reason for this higher throughput is discussed
previously. In summary, these superior characteristics make
the 3-D FeNOR a promising candidate for future CIM
technologies.

IV. CIM SIMULATIONS AND ANALYSIS

We employ large-scale convolutional neural networks
(VGG-16 and ResNet-50) to evaluate the performance
of the 3-D FeNOR-based neural network system [31].
To efficiently manage the computational complexity of
these networks, we adopt a large-scale matrix expansion
approach, scaling the memory array size up to 4096 x 4096.
This strategy significantly reduces dependence on analog-
to-digital converters (ADCs) and other peripheral circuits,
thereby improving both throughput and energy efficiency [32].
Furthermore, the CIFAR-10 dataset is utilized to assess the
stability of convolutional neural networks integrated with the
3-D FeNOR architecture, demonstrating its potential for robust
Al acceleration [33].

For neural network deployment, we conducted simula-
tions based on device performance derived from realistic
testing. Specifically, we extracted the non-linearity, and
conductance fluctuation characteristics from real devices.
Additionally, to simulate a realistic CIM circuit environment,
we incorporated various circuit-level noise factors, including
device-to-device variations, long-term retention degradation,
and RC delay. These noise components were generated
following the Monte Carlo principle to ensure statistical
reliability.
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Fig. 13.  (a) Fluctuations for different conductance levels extracted
and averaged from ten devices. The state with lower current shows
larger fluctuation. (b) Relationship between prediction accuracy and
weight variation in the VGG-16 and ResNet-50, implemented using our
proposed 3-D FeNOR architecture.

Prior to training, the relationship between weight magnitude
and weight variation (conductance change) in 3-D FeNOR is
first investigated, where the conductance ranges from 0 to 7 us.
All eight states are involved in the training process. In this
case, the weight variation is measured following target weight
programming. The corresponding results are presented in
Fig. 13(a). Here, it can be observed that the Ip variation
decreases as the memory weight magnitude increases. This
could be attributed to the fact that a larger memory
weight corresponds to stronger ferroelectric switching, which,
in turn, enhances the weight’s stability. Subsequently, this
relationship between weight magnitude and weight variation
is incorporated into the simulations, and the corresponding
simulation results are displayed in Fig. 13(b). As depicted,
high prediction accuracy (~90%) under near-ideal conditions
has been achieved. Additionally, it is observed that recognition
accuracy remains stable despite fluctuations in memory
weight: even with a maximum weight variation of 10%,
accuracy exceeds 85%. This robustness meets the requirements
for neural network training, highlighting the feasibility of the
FeNOR-based neural network.

Furthermore, the total area of a conventional CIM circuit,
including the 2-D memory array and associated peripheral
circuitry, has been evaluated. For the circuit level evaluation
in this work, we utilize the NeuroSim platform [34]. The
results are presented in Fig. 14(a), indicating that when the
memory size is scaled up to 4096 x 4096, the memory
array occupies an impressive 77.39% of the total chip area.
More seriously, this proportion increases as the memory
size scales up. Such plight highlights a significant challenge
faced by large-scale array-based CIM scheme: the memory
array becomes the dominant factor determining the total area
in 2-D array-based large-scale CIM chips. This large CIM
array significantly increases the overall CIM macro area,
raising two major concerns. First, the expanded memory array
may limit the area scaling in system-level monolithic 3-D-
integrated circuits, where the CIM macro and other functional
layers are stacked in a layer-by-layer configuration. The
second concern is that signal delay and degradation could
become more pronounced in large-scale memory arrays due
to higher wire resistance and increased parasitic capacitance.

Chip Area Breakdown
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Fig. 14. (a) Area breakdown in a 2-D CIM circuit with an array size of

4096 x 4096, highlighting that the memory array occupies the majority
of the area. (b) By utilizing a 3-D structure, the memory array area is
reduced by 73.5%. (c) In comparison to a NOR Flash-based CIM circuit,
the 3-D FENOR achieves a 90% improvement in energy efficiency.

Nevertheless, this challenge can be effectively addressed
through the adoption of our proposed 3-D FeNOR architecture.
However, it is worth to point that the transition to 3-D
CIM circuit introduces increased metal routing complexity,
necessitating further optimization in data flow and peripheral
circuit design.

To clearly illustrate the performance enhancement, the
systematic evaluation has been conducted. The area evaluation
result is presented in Fig. 14(b). As illustrated, in comparison
to the conventional 2-D architecture, the 3-D FeNOR-
based CIM design offers a substantial improvement in
area efficiency, achieving a notable 73.5% reduction in the
memory array footprint. In addition, Fig. 14(c) presents a
comparison of the energy consumption of the memory arrays
between the conventional NOR Flash and the proposed 3-D
FeNOR architecture. As depicted, in macro level, the 3-D
FeNOR achieves an excellent 90% improvement in energy
consumption. This improvement can be attributed to two key
factors. First, the proposed 3-D FeNOR operates at a lower
programming voltage and requires a shorter programming time
than conventional NOR Flash memory. Second, the operating
voltage of the proposed 3-D FeNOR is 0.1 V, which is
significantly lower than the typical drain voltage (~1 V) used
in NOR Flash CIM applications [35], [36]. Moreover, the
benchmark of this work with other CIM schemes is presented
in Table I. Leveraging the 3-D structure and the low operation
voltage, 30.12 TOPS/W has been achieved in this work. Our
proposed 3-D FeNOR demonstrates competitive performance
relative to other reported works [37], [38], [39], [40], [41],
[42], [43], [44].

Finally, it is worth noting that in future 3-D memory
architecture-based CIM applications, the transition from
conventional 2-D data flow to a fully integrated 3-D data
flow in practical neural network deployments presents both
opportunities and challenges. To enhance the efficiency of
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TABLE |
BENCHMARK WITH OTHER WORKS
Memor 3D | Onoff Energy
1? "e y Device | Ratio | Bit/Cell | Efficiency
My (TOPS/W)
37] Yes 10 3 §
RRAM
[38] No - 4 76.25
[39] Yes 10° 3 B
[40] PCM No } 4 20
[41] No 10° 2 8.08
[42] Fe-NAND Yes 10° 7 R
[43] Yes 107 2 §
(a4) | NORFlash No 10° 3 37.9
This Fe-NOR Yes 10° 3 30.12
work

3-D data flow, several optimization strategies could be
implemented: 1) by employing a hierarchical data mapping
strategy [39], computation can be efficiently distributed across
3-D memory arrays, significantly reducing memory access
latency. Additionally, optimized routing techniques, such as
vertical interconnects and through-silicon vias (TSVs), can
be leveraged to minimize communication overhead between
different layers, thereby improving overall system performance
and 2) to fully release the computing potential of 3-D
memory-based computing architectures, a more precise and
well-organized sub-data division approach is required. For
instance, advanced image segmentation strategies can facilitate
higher levels of parallelism in data processing, ensuring
efficient computation across multiple layers in the 3-D
memory stack.

V. CONCLUSION

In this study, we introduced and experimentally demon-
strated a 3-D BEOL-compatible MFMIS structure FeNOR-
type memories featuring a ZnO channel, aimed at high-density
neural network applications. The 3-D FeNOR proposed
in this work achieves outstanding electrical performance,
including a large MW of over 4 V, good ON/OFF ratio
(10%), and high endurance of 107 cycles. In addition, a high
recognition accuracy of ~90% is achieved in VGG-16 and
ResNet-50 model. Our work advances NOR-type memory
technologies, showcasing significant potential for compute-in-
memory applications.
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