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Abstract 
Explanations have increasingly been incorporated into intelligent 
systems to o!er insights into the underlying AI models. In this pa-
per, we investigate the impact of AI-generated visual explanations 
on users’ decision-making processes during an image matching 
task. Our work examines how these explanations a!ect correctness, 
timing, and con"dence and explores the role of AI literacy in user 
behavior. We conducted a mixed-methods user study with 54 par-
ticipants who were tasked to identify hotels from images using a 
specialized intelligent system. Participants were randomly assigned 
to use the system with or without visual explanation capabilities. 
Results showed that visual explanations did not a!ect the accuracy 
of the decision or the con"dence of the user in image matching 
tasks. Participants with high-AI literacy outperformed those with 
lower literacy, but engaged less with explanations. Distinct match-
ing strategies emerged between high-AI and low-AI participants, 
with high-AI participants systematically examining high-ranked 
images and using the explanation for veri"cation purposes, while 
low-AI participants followed more exhaustive approaches. 

CCS Concepts 
• Human-centered computing → User studies; Empirical 
studies in HCI; Empirical studies in visualization; • Computing 
methodologies → Matching. 
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1 Introduction 
Investigative image analysis involves decision-making work#ows 
that increasingly rely on the use of intelligent systems. For appli-
cations such as geolocation or scene matching in image forensics 
and journalism, it is often necessary to examine or compare subtle 
details between multiple images [28, 50, 51]. Despite the growing 
availability of AI-powered tools, many users remain cautious due 
to the black-box nature of these applications [57]. To address these 
concerns, researchers in the "eld of explainable AI (XAI) have devel-
oped various explanation methods that reveal the inner workings of 
deep neural networks. By helping users understand the reasoning 
behind the results returned by the model, these methods aim to 
increase trust in these systems, promote transparency, and allow 
users to identify potential biases or errors in the model reasoning. 

XAI methods are generally categorized into interpretable-by-
design models [9, 12, 13, 20, 38], which o!er built-in transparency 
but may be limited in complexity, and post hoc explanations [25, 
46, 48] that seek to clarify the predictions of black box models. Post 
hoc explanations, particularly visual ones, have gained attention 
for their e!ectiveness in tasks involving visual data. Unlike textual 
explanations [34, 42], which provide narrative descriptions of model 
reasoning, visual explanations o!er a direct and interpretable link 
between input and output. 

Figure 1 outlines the decision-making process for an image 
matching task using an intelligent system with XAI features. Visual 
post hoc explanations have been extensively evaluated for algorith-
mic understanding, particularly in tasks such as image classi"ca-
tion [18, 31, 47]. However, less work has been done to evaluate their 
impact on user decision-making processes when using intelligent 
systems. To evaluate the e!ectiveness of AI-generated visual expla-
nations for decision-making, we conducted a mixed-methods user 
study with 54 participants. Participants were randomly assigned 
to use a system with or without visual explanation capabilities. 
Through both quantitative and qualitative evaluations, we aimed 
to address the following research questions: 

RQ1 How do AI-generated visual explanations impact user decision-
making in image matching? 

RQ2 How does AI literacy a!ect how users engage with visual 
explanations in image matching? 

Our "ndings revealed that visual explanations had no impact 
on task performance or user con"dence. Users with higher AI lit-
eracy (high-AI) performed better on the task, but relied on the 
explanations less often than users with lower AI literacy (low-AI). 
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Figure 1: Human-AI work!ow for modern image matching tasks with interactive intelligent systems. The user can examine 
the output with or without visual explanations. Previous work on evaluating visual explanations typically focused on (A) 
understanding the AI model. This paper evaluates how visual explanations impact (B) user decision-making. 

Moreover, high-AI users with access to the explainability feature 
reported signi!cantly lower con!dence in their performance than 
those without. High-AI participants adopted systematic strategies, 
prioritizing high-ranked images and using explanations for veri!-
cation. In contrast, low-AI participants employed more exhaustive 
strategies, frequently exploring lower-ranked images and relying 
more heavily on explanations. These results align with previous 
!ndings on the limited utility of visual explanations for algorithm 
understanding, while further expanding the scope to encompass 
their impact on user decision-making. 

2 Related Work 
Humans often rely on mental shortcuts or heuristics when inter-
acting with intelligent systems [10]. To help users make informed 
decisions, the design of these systems frequently incorporates ele-
ments that enhance understanding and interpretation. For example, 
visualization components such as word clouds, bar charts, and Venn 
diagrams have been integrated into recommendation systems [54] 
and article search assistants [53]. In the domain of clinical decision 
support, text-based systems that explain diagnosis recommenda-
tions by highlighting contributing input factors, such as symptoms 
or laboratory results, have been shown to increase user trust and 
reliance [11, 40]. Similarly, for visual analysis tasks, techniques 
such as image augmentation [61] or image segmentation [59] have 
been used to facilitate the user decision-making process. 

While these techniques aim to facilitate user decision-making, 
much of the research on human-AI interaction in visual analysis 
tasks has primarily focused on how explanations a"ect the user’s 
understanding of the AI model itself. However, as AI systems be-
come increasingly integrated into decision-making work#ows, it is 
equally important to understand how these explanations impact the 
user’s decision-making process. In this section, we review related 
methods for evaluating visual explanations and explore the role of 
AI literacy in the adoption of explainable AI (XAI). 

2.1 Using Visual Explanations to Improve 
Model Interpretability 

The proliferation of visual explanation methods was followed by 
e"orts that aimed to evaluate their e$cacy. Early work in this 
area focused on quantitative measures, such as faithfulness and 
completeness, which provide information on the alignment be-
tween the model and its explanation [26, 27, 41, 43, 52]. However, 

these methods do not capture how interpretable or helpful these 
explanations are from a user’s perspective [21]. Human-centered 
evaluations, often conducted through psychophysical user studies, 
assess how well participants understand the model, which is often 
quanti!ed through metrics such as accuracy, decision speed, and 
con!dence [7]. In an image classi!cation task, AlQaraawi [2] found 
that while LRP-generated saliency maps helped users accurately 
identify key features, they were less e"ective in predicting outcomes 
for new images. Similarly, Kim [31] demonstrated that explanations, 
such as GradCAM and BagNet, increased user con!dence, but did 
not consistently help users distinguish between correct and incor-
rect model predictions. Nguyen [39] examined attribution maps in 
both generic and !ne-grained image classi!cation tasks, showing 
that the explanations not only failed to improve user performance, 
but worsened it for more complex, !ne-grained tasks. For an image-
based age prediction task, Chu [17] found that explanations did 
not have a signi!cant e"ect on user accuracy or trust in model 
predictions, while Shen [47] found that saliency maps signi!cantly 
reduced user prediction accuracy by 10%, suggesting that visual 
explanations may introduce confusion in evaluating predictions. 
Our work draws inspiration from these studies, but distinguishes 
itself by evaluating the impact of explanations on decision-making 
for a real-world task. 

2.2 E"ects of AI Literacy on Model 
Interpretability 

Research on explainable AI (XAI) explanations has increasingly rec-
ognized the critical role that AI literacy plays in how explanations 
are interpreted [36]. Users bring varying mental models, cognitive 
abilities, and domain expertise, all of which in#uence how they 
understand AI explanations [5, 24, 32]. For image classi!cation 
tasks, studies showed mixed results regarding the e"ectiveness of 
attention maps for users with varying levels of expertise. For exam-
ple, Zimmermann [63] found that standard activation maps did not 
signi!cantly improve the mental models of novice users for con-
volutional neural network (CNN) processes compared to simpler 
alternatives. However, Shitole [48] demonstrated that carefully de-
signed attention maps signi!cantly improved causal understanding 
of the model for an occluded image classi!cation task compared 
to standard attention map baselines. Ehsan [23] found that users 
with a high level of AI literacy preferred more technical and de-
tailed explanations of the behavior of AI agents, while users with 
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Figure 2: Tra!ckCam Interface. The user submits (1) an in-
put image and the system uses a trained neural network to 
return (2) the most similar images from a large database. The 
pairwise visual similarity map between the retrieved image 
and input can be displayed by toggling the (3) visualization 
button on each retrieved image. 

a low level of AI literacy preferred simpler and clearer narratives. 
A similar phenomenon is seen in how experienced users better 
calibrate their trust in AI compared to novice users [60]. In recom-
mendation systems, Kühl [33] demonstrated that AI literacy not 
only shapes preferences for explanations, but also a!ects the user’s 
willingness to comply with system recommendations; experienced 
users developed stronger mental models and required detailed ex-
planations to trust and follow the recommendations. While prior 
work has explored how AI literacy a!ects users’ understanding 
of AI models, our work shifts the focus to its potential impact on 
users’ decision-making processes. 

3 Methods 
We conducted a mixed-methods user study with 54 participants, 
aimed at evaluating the impact of visual explanations on users’ 
decision-making when interacting with an intelligent system for an 
image matching task. This section details the experimental platform, 
task design, the participant recruitment process and measures used 
for the evaluation. 

3.1 Experimental Platform 
Tra"ckCam [51] is a specialized reverse image search engine de-
signed to help combat human tra"cking by helping analysts iden-
tify hotel rooms from images, such as online advertisements. Fig-
ure 2 shows the Tra"ckCam interface. A user submits an input 
image, and the system uses a trained neural network to return the 
output images from a large database ranked by computed similarity. 
The system implements in#nite scroll, where additional images 
automatically and continuously load as users scroll down the page. 
Like many retrieval systems, the top results may not always be the 
best matches. This issue is exacerbated in hotel room recognition, 
as visually similar images may not be from the same hotel, and 
visually dissimilar images may be a match, as shown in Figure 3. So, 
the user is left to complete the hotel identi#cation task by carefully 
examining the results. 

  
    

(a) Visually similar, but non-matching 

   
 

   
 

(b) Visually dissimilar, but matching 

Figure 3: Challenges with hotel recognition from images. (a) 
Images representing di"erent hotels that are visually similar. 
Close inspection of the objects (e.g., lamp, headboard) shows 
clear di"erences. (b) Images from the same hotel that are vi-
sually dissimilar, however, the objects (e.g., lamp, headboard, 
desk chair) within the scene match. 

For the study, we modi#ed the application to conditionally enable 
access to a visual explanation algorithm that produces a heatmap de-
signed to highlight the regions of a pair of images that contributed 
the most to the pairwise similarity [6]. Users with the feature en-
abled could toggle a button on the retrieved images to be presented 
with the visual explanation of the selected image compared to the 
input. Figure 4 shows two examples of these visual explanations 
with pairs of images. In Figure 4a the heatmap highlights the visual 
similarity of the image regions that contain the headboard and 
lamps. Moreover, additional examination indicates that the artwork 
in both images is similar. Although the AI system did not rely on 
the similarity of the artwork to match the images, this evidence in 
the non-matched region could further con#rm the match for the 
user. In Figure 4b the heatmap highlights the bed scarves as the 
regions of the image that contributed the most to the similarity 
score. However, on closer inspection, the striped patterns on the 
bed scarves are di!erent. In addition, outside the highlighted re-
gion, the shape and style of the lamps also di!er. Based on these 
discrepancies, users might choose to ignore the super#cial visual 
similarity identi#ed by the AI system and conclude that the pair of 
images do not match. 

3.2 Study Design 
We followed a factorial study design, with a between-subjects factor, 
where participants were randomly assigned to either the Baseline 
condition, where they used the Tra"ckCam system without the ex-
planation feature, or the Explanation-Enabled condition, where the 
system included the explanation feature as an option. Participants 
completed the same four tasks, classi#ed into easy and hard levels 
of di"culty, serving as a repeated within-subjects factor. 
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(a) Same hotel 

(b) Di!erent hotel 

Figure 4: Pairwise visual similarity. For each pair of images, 
the heatmap highlights the regions that contributed the most 
to pairwise similarity (red = high, blue = low). 

Participants were eligible for the study if they were 18 years 
of age or older and !uent in English. Prior to starting, they were 
informed of the task details, estimated duration, compensation, and 
right to withdraw at any time. The participants interacted with 
the web-based application using a keyboard and mouse. They were 
initially presented with a page that described the purpose of the 
experiment and the Tra"ckCam application before completing a 
pre-study survey, which included demographics (i.e., age, gender 
identity, academic background, and education level) and a question 
to assess AI literacy. The pre-survey also included the General 
Attitudes toward Arti#cial Intelligence Scale (GAAIS) [45], which 
measured their attitudes toward AI and a Subjective Technical 
Competence Scale (STC) [4], which assessed their self-reported 
technical pro#ciency and comfort with using technology. 

Figure 5: The two easy (top) and two hard (bottom) input im-
ages used in the experiment. The level of di"culty was based 
on a combination of the level of di"culty in reporting a 
correct match for the AI system and human users in a pilot 
study. 

After completing the pre-study survey, participants engaged in a 
training session that mirrored the main task of determining the ho-
tel from which the input image was captured. For a provided input 
image, the participants reviewed the results returned by the system, 
similar to Figure 2. Depending on the condition, they could also 
view pairwise visualization heatmaps to assist in their assessment. 
To indicate a potential match, users toggled a selection icon next 
to the chosen image. Once participants completed their selections, 
they were shown the images they identi#ed as matches, along with 
the corresponding hotel names. At this point, they had the option 
to reorder the hotel list to re!ect their con#dence in identifying the 
correct match to the input image. 

The main experiment involved four tasks, each corresponding 
to the input images shown in Figure 5. A set of candidate images 
were selected on the basis of the level of di"culty in reporting a 
correct match for the AI system. We determined the rank and total 
number of correct matches in the returned results. The task was 
considered easier when the output included more correct matches 
ranked higher due to their greater similarity to the input image. 
In contrast, harder tasks had fewer and/or lower ranked correct 
matches, based on similarity scores computed by the AI model. 
Those images were then used in pilot studies to collect feedback 
from human participants. Tasks were perceived as easy when there 
was high intraclass similarity, that is, correctly matched images 
shared distinctive features with the input image, and hard when 
incorrect images closely resembled the input. Together, the AI and 
human criteria informed the #nal selection of two easy and two 
hard images for the experiment. 

The tasks were presented to the participants in randomized order, 
and there was no time limit to complete each task. After submitting 
a hotel prediction for each task, participants rated their con#dence 
on a scale from 1 (not con#dent) to 5 (very con#dent) before moving 
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on to the next task. Once the image matching portion was com-
pleted, participants completed a post-study survey that included 
four open-response questions about their strategies, challenges, and 
experiences. An additional question focused on their understanding 
of how the system generated the image results which was used to 
assess their mental models of the system. After completion of the 
experiment, the participants were compensated with a $5 co!ee 
shop gift card. 

3.3 Participants 
To determine the appropriate sample size, we conducted a priori 
power analysis to detect a medium e!ect size (Cohen’s d = 0.5) at a 
signi"cance level of 0.05 with 85% power. This analysis indicated 
that 50 participants would be su#cient to detect meaningful dif-
ferences between the experimental conditions, which is consistent 
with other studies of this type [14]. We recruited 54 participants 
from a college campus. The study, approved by the Institutional 
Review Board, was conducted over three weeks by two members 
of the research team. The mean age of the participants was 26 (SD 
= 6.28). The participants came from diverse academic backgrounds, 
including computer science, physics, chemistry, marketing, neuro-
science, and engineering. The sample re$ects a random selection 
process; no demographic criteria were applied and no explicit e!ort 
was made to balance any demographic attribute in the sample. 

Of the 54 participants, we excluded a total of 9 participants from 
the analysis. Two participants, one from each condition, did not 
submit results for the majority of tasks. Seven participants from 
the Explanation-Enabled condition did not use the explanation 
feature at all, and were excluded based on the per-protocol analysis. 
Consequently, our analysis includes data from 26 participants in the 
Baseline condition and 19 in the Explanation-Enabled condition. 

To ensure there was no sampling bias, we analyzed the GAAIS 
and STC responses from the pre-survey and found no signi"cant 
di!erences in the participants’ scores across the experimental con-
ditions for either attitudes toward AI or self-reported technical 
pro"ciency, which suggests no sampling bias for these traits. 

3.4 Mixed-Methods Analysis 
We employed a mixed-methods approach that combines an analysis 
of quantitative measures from the experiment with rich qualitative 
insights collected through surveys. To investigate RQ1, we analyzed 
the e!ects of condition (Baseline and Explanation-Enabled) across 
the three dependent variables of task completion time, performance, 
and participant’s con"dence. For RQ2, we strati"ed participants 
into two groups: low-AI and high-AI to understand whether AI 
literacy had an e!ect on these same dependent variables. We also 
investigated participants’ interaction patterns to understand their 
strategies and experiences. 

3.4.1 Identifying Low and High AI Participants. To understand the 
AI literacy of participants in this study, we strati"ed our participants 
into two groups: high-AI and low-AI based on their responses to 
the open-ended pre-survey question. Previous studies have catego-
rized AI expertise through self-reported measures, such as general 
AI knowledge [32] or professional background [23]; however, the 
reliability of self-reported data can vary. Given the more focused 
nature of our task, we instead asked participants to explain how 

they believe reverse image search functions by posing the question: 
“In a few sentences, describe how you think reverse image search 
works.” 

Two members of the research team independently categorized 
the responses based on their perception of whether the response 
indicated the participant was highly knowledgeable or not knowl-
edgeable about reverse image search. The inter-rater reliability, as 
measured using Maxwell’s RE coe#cient [37] was 0.843, indicating 
a high level of agreement between the evaluators. Subsequently, the 
evaluators met to resolve the discrepancies through a consensus 
discussion. 

3.4.2 Dependent Variables. We assessed three key dependent vari-
ables. Performance, measured by the mean reciprocal rank (MRR) [19] 
of the correct hotel among the ranked list submitted by the partici-
pant. That is, the reciprocal rank is maximized (1.0) when the correct 
match is ranked "rst and minimized (0.0) when the correct match 
is not included in the participant-provided list. Task completion 
time calculated as the duration taken by participants to complete 
each task, starting when the task was presented and ending when 
the ranked list was submitted. Con!dence ratings were collected 
after each task, where participants rated their con"dence in their 
selections on a scale from 1 (not con"dent) to 5 (very con"dent). 

3.4.3 !antitative Analysis. To evaluate RQ1, we used a linear 
mixed-e!ects model to account for the between-subjects categor-
ical independent variable Condition (Baseline and Explanation-
Enabled), and the repeated measure, Task Di#culty, allowing us to 
model the "xed e!ect of the experimental condition while account-
ing for random e!ects due to individual di!erences. To evaluate 
RQ2, we used the non-parametric Mann-Whitney U test to exam-
ine the impact of our categorical independent variables Condition 
(Baseline and Explanation-Enabled) and AI Literacy (high-AI and 
low-AI) on our continuous dependent variables (e.g., MRR and 
timing). 

To identify strategies participants employed during the image 
matching task, we encoded the sequence of logged actions for each 
user and performed an analysis using the Levenshtein distance, 
which measures the minimum number of operations required to 
transform one sequence into another. The operations considered 
were insertions and deletions, each assigned a cost of 1, and sub-
stitutions, which were assigned a cost of 2. The total edit distance 
for each sequence pair was calculated as the sum of these costs, 
providing a straightforward measure of the dissimilarity between 
sequences of potentially di!erent lengths. We applied t-SNE [56] 
to the pairwise dissimilarity matrix to embed the sequences into a 
two-dimensional space, followed by !-means clustering to identify 
groupings within the data. 

3.4.4 !alitative Analysis. In the post-survey, we collected open 
responses from the participants to questions about their task strate-
gies, the challenges they faced, and their general experience during 
the tasks. These responses were analyzed using re$exive thematic 
analysis [8]. First, two members of the research team independently 
open coded the responses. Next, the two researchers met to discuss 
their codes and resolve any discrepancies. The coding process was 
iterative and involved multiple rounds of review and re"nement. 
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Figure 6: The plots show the (left) correctness, (middle) timing, and (right) con!dence between the Explanation-Enabled and 
Baseline conditions in easy and hard tasks. 

4 Results 
We present our !ndings, organized to address the two research 
questions, evaluating the impact of (RQ1) visual explanations on 
decision-making and (RQ2) AI literacy on engaging with visual 
explanations in image matching. 

4.1 RQ1: Impact of Visual Explanations on 
Decision-Making in Image Matching 

We evaluated correctness, decision time, and user con!dence for 
the four tasks, which were aggregated by the two di"culty levels. 
Figure 6 shows the (left) correctness, measured by MRR, (middle) 
timing, and (right) con!dence. In the following, we describe each 
result in detail. 

4.1.1 Visual Explanations and Performance . Performance was mea-
sured using MRR, which accounts for the rank, if present, of the 
correct hotel in the list submitted by the participant. For Easy tasks, 
participants in the Baseline condition (! = 0.98, 𝑀# = 0.10) per-
formed similar to participants in the Explanation-Enabled condition 
(! = 1.00, 𝑀# = 0.00). For Hard tasks, performance was worse for 
both groups. Participants in the Explanation-Enabled condition 
(! = 0.69, 𝑀# = 0.35) slightly outperformed those in the Baseline 
condition (! = 0.63, 𝑀# = 0.39). Figure 6 (left) shows the distri-
bution of performance scores for both easy and hard tasks. The 
Easy tasks were quite manageable for all participants, as all but 
one predicted the correct hotel as their !rst choice. For Hard tasks, 
there was a wider range of performance, but still similar whether 
explanations were available or not. Table 1 shows the results of the 
linear mixed-e#ects model analysis on the correctness metric. There 
was a signi!cant di#erence in performance for the users in both 
conditions for the Hard tasks ($ < 0.001). There was no signi!cant 
e#ect for the Explanation-Enabled condition on performance. 

4.1.2 Visual Explanations and Timing. We analyzed the average 
time participants spent on the task computed from the time the 
output images are displayed to when the participant submitted their 
decision. For Easy tasks, participants took an average of ! = 98.00, 

Table 1: Analysis of correctness, as measured by mean recip-
rocal rank. 

Estimate Std. Error z-value p-value 

Intercept 0.981 0.048 20.24 <0.001 
Condition (Explanation-Enabled) 0.019 0.076 0.254 0.800 
Di"culty (Hard) -0.351 0.060 -5.88 <0.001 
Condition*Di"culty 0.041 0.093 0.437 0.662 

𝑀# = 75.30 seconds in the Baseline condition and ! = 118.68, 
𝑀# = 67.23 seconds in the Explanation-Enabled condition. For 
Hard tasks, in the Baseline condition, participants spent an average 
of ! = 161.72, 𝑀# = 132.72 seconds, while, in the Explanation-
Enabled condition, an average of ! = 180.03, 𝑀# = 105.83 seconds. 
Figure 6 (middle) shows the distribution of time spent on the tasks. 
Analysis indicated a signi!cant di#erence in the time spent between 
easy and hard tasks (% = 61.35, $ = 0.001). There was no signi!cant 
di#erence between the experimental conditions (% = −20.69, $ = 
0.421) nor a signi!cant interaction e#ect between condition and 
task di"culty (% = 4.38, $ = 0.85). 

4.1.3 Visual Explanations and Confidence. After each image match-
ing task, participants rated their con!dence in their selections on a 
scale from 1 (not con!dent) to 5 (very con!dent). For Easy tasks, 
con!dence ratings were generally high in both conditions, with 
participants in the Baseline condition reporting a mean con!dence 
of ! = 4.29, 𝑀# = 0.70 and those in the Explanation-Enabled 
condition reporting ! = 4.36, 𝑀# = 0.68. For Hard tasks, par-
ticipants in the Baseline condition reported a mean con!dence 
of ! = 3.28, 𝑀# = 1.01, while those in the Explanation-Enabled 
condition reported (! = 3.03, 𝑀# = 0.94). Figure 6 (right) shows 
the distribution of con!dence ratings. Analysis showed a signi!-
cantly di#erent mean con!dence rating for Hard tasks (% = −1.015, 
$ < 0.001). There was no signi!cant di#erence between experimen-
tal conditions (% = 0.073, $ = 0.72) nor a signi!cant interaction 
e#ect between condition and task di"culty (% = −0.318, $ = 0.18). 
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Figure 7: Comparison of participants’ understanding of re-
verse image search between the Explanation-Enabled (blue) 
and Baseline (orange) conditions. The !gure illustrates dif-
ferences across !ve codes. 

4.1.4 Visual Explanations and Users’ Mental Models. To evaluate 
whether the availability of visual explanations in!uenced partici-
pants’ mental models and understanding of reverse image search, 
we examined their responses to a post-study survey question re-
garding their understanding of image matching. The re!exive the-
matic analysis identi"ed "ve topics that encapsulate the range of 
participants’ conceptual understanding: 

• Pixel Analysis: Describing the process of analyzing pixel 
values and their relationships to surrounding pixels for image 
matching. 

• ML Techniques: Referring to various arti"cial intelligence 
methods used in reverse image search, including machine 
learning algorithms, contrastive learning, and neural net-
works. 

• Feature Matching: Identifying and comparing distinct fea-
tures within images (e.g., shapes, patterns, or objects) to 
detect similarities. 

• Similarity Computation: Describing the process of calcu-
lating similarity scores or percentages between images to 
determine matches. 

• Uncertainty: Expressing confusion or providing vague or 
incomplete descriptions about how reverse image search 
systems work. 

Two researchers coded the responses, and disagreements were 
mediated through discussion until consensus was reached. Figure 7 
illustrates the distribution of each code for both conditions. In the 
Explanation-Enabled condition, fewer participants expressed un-
certainty about the image matching process than in the Baseline 
condition, suggesting that they were able to form clearer mental 
models after interacting with the system, which may have helped 
bridge gaps in their initial understanding. For many of the themes, 
the relative change between conditions was similar. Mentions of 
matching features or objects were high for both conditions, sug-
gesting task-driven learning gains irrespective of the availability of 
explanations. 

One di#erence pattern between conditions was references to 
computing similarity. Participants in the Explanation-Enabled con-
dition made such references at a much higher rate. For example, 
participants provided responses such as: “It estimates the similarity 
based on features and expresses it as a percentage” and “the system 
returns images in descending order of priority based on the similar-
ity score.” However, for the Baseline condition, fewer participants 
mentioned the similarity computation. These results suggest that 
the visual explanations helped participants internalize the compu-
tational process underlying the image matching algorithm. 

4.2 RQ2: Impact of AI Literacy on Interpreting 
and Engaging with Visual Explanations in 
Image Matching 

To assess how AI literacy a#ects users’ interpretation and engage-
ment with visual explanations, we categorized participants into 
two groups: high-AI and low-AI based on their responses to the 
open-ended pre-survey question. Following this categorization, 
21 participants were rated as having high-AI literacy (11 in the 
Baseline and 10 in the Explanation-Enabled condition) and 24 par-
ticipants were rated as low-AI literacy (15 in the Baseline and 9 
in the Explanation-Enabled condition). Given the universally high 
performance, the Easy tasks were excluded from the analysis in 
this section. 

4.2.1 AI Literacy and Decision-Making in Image Matching. We com-
pared the performance of the high-AI and low-AI groups on cor-
rectness, timing, and con"dence for the Hard tasks. 

Figure 8 (left) shows the distribution of performance scores for 
high-AI and low-AI participants. High-AI participants performed 
similarly in both conditions, with a median MRR of 1.0 in both the 
Explanation-Enabled and Baseline conditions. Analysis using the 
Mann-Whitney U test showed no signi"cant di#erences between 
conditions (! = 230.50, 𝑀 = 0.74). Low-AI participants performed 
better in the Explanation-Enabled condition (#$% = 0.75) than 
those in the Baseline condition (#$% = 0.37), though the di#erence 
was not statistically signi"cant (! = 231.50, 𝑀 = 0.84). Overall, high-
AI participants signi"cantly outperformed low-AI participants for 
both conditions (! = 645.0, 𝑀 = 0.002), suggesting that AI literacy 
played a key role in task performance. 

Figure 8 (middle) shows the distribution of time spent by the 
high-AI and low-AI participants. Participants in the high-AI group 
averaged #$% = 122.76 seconds in the Explanation-Enabled con-
dition and #$% = 118.79 seconds in the Baseline condition. Par-
ticipants in the low-AI group spent #$% = 211.51 seconds in the 
Explanation-Enabled condition compared to #$% = 119.05 sec-
onds in the Baseline condition. Neither di#erence was signi"cant, 
! = 208.0, 𝑀 = 0.97 and ! = 169.0, 𝑀 = 0.14, respectively. Overall, 
there was no signi"cant di#erence in the time spent between the 
two AI literacy groups (! = 1032.0, 𝑀 = 0.35). 

Figure 8 (right) shows the distribution of con"dence ratings for 
high-AI and low-AI participants. In line with their better overall 
performance, high-AI participants expressed higher con"dence on 
average than low-AI participants, with a di#erence that approached 
signi"cance (! = 717.5, 𝑀 = 0.06). Within the high-AI group, 
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Figure 8: The plots show the (left) correctness, (middle) timing, and (right) con!dence between Explanation-Enabled and 
Baseline conditions between users with high-AI, and low-AI literacy. 

the con!dence reported was lower for those in the Explanation-
Enabled condition (!𝑀# = 3.0) compared to the Baseline condition 
(!𝑀# = 4); the analysis indicated that this di"erence was statisti-
cally signi!cant ($ = 288.5, % = 0.03), suggesting that access to the 
explanation feature decreased user con!dence even though there 
was no corresponding decrease in performance. Within the low-AI 
group, the con!dence ratings were similar in both conditions, with 
a median con!dence of !𝑀# = 3.00 in both conditions, suggesting 
that visual explanations had little or no impact on the con!dence 
of participants with lower AI literacy. 

4.2.2 AI Literacy and Interaction Pa!erns in Image Matching. Ta-
ble 2 describes the actions logged during the experiment and in-
cludes the average frequency of each action for each task aggregated 
by condition and the participant’s AI literacy. We observed some 
di"erences. High-AI participants inspected approximately 44.97% 
more images per session than low-AI participants. High-AI partic-
ipants used the pairwise visualization feature an average of 4.20 
times per session, while the average for low-AI participants was 
nearly double at 7.87. 

Participants had the option to select (and deselect) matches from 
the (primary) output returned by the system or the additional (sec-
ondary) images from the same hotel that were displayed upon 
inspection of a primary image. In general, users selected similar 
numbers of images. On average, users in all conditions performed 
9.48 total primary and secondary selections. While high-AI users 
performed a similar number of primary selections in each condi-
tion, low-AI users averaged 4.6 primary selections in the Baseline 
condition and nearly double (! = 8.12) in the Explanation-Enabled 
condition. For secondary selections, all subgroups averaged around 
4, with the exception of high-AI users in the Explanation-Enabled 
condition, who averaged 2.7. For the participants in the Explanation-
Enabled condition, high-AI participants were more decisive in their 
selections; they made fewer selections and deselections than their 
low-AI counterparts. 

In addition to the actions of the participants, we examined the 
ranks of images inspected throughout the tasks. High-AI partici-
pants inspected higher-ranked images, with a median rank of Mdn 

(IQR) = 5 (2,8). While low-AI participants, inspected a wider range 
of images, with a median rank of Mdn (IQR) = 8 (2,21). The results 
of Mann-Whitney U test showed a signi!cant di"erence between 
the two groups (% = 0.002). This behavior suggests that the high-AI 
and low-AI participants employed di"erent exploration strategies. 

4.2.3 AI Literacy and Image Matching Strategies. To further ana-
lyze the matching strategies employed, we encoded participants’ 
sequences of actions, then analyzed them using the Levenshtein 
distance. We applied t-SNE for dimensionality reduction, followed 
by &-means clustering to identify groupings. We determined the 
optimal number of clusters to be & = 7 using the elbow method. The 
resultant embedding and clustering of the interaction sequences 
are shown in Figure 9a. 

Examining the resultant clusters revealed di"erent patterns of in-
teraction. Figure 9b shows a representative sequence of each cluster. 
For cluster 1, the sequences contained repeated instances of INS-
SL1 or INS-VIS-SL1, suggesting that the users systematically used 
the features of the application to examine images before moving on 
to the next image. The sequences in cluster 2 consisted mostly of 
selection actions SL1 with some use of visual explanations (VIS), in-
dicating that users selected primary output images as matches with 
minimal inspection. Cluster 3 contained sequences with multiple 
instances of INS-VIS, but unlike cluster 1, they were not immedi-
ately followed by a selection. Cluster 4 sequences included mainly 
selection (SL1), suggesting quick decision-making with minimal 
interactions. Sequences in cluster 5 tended to start with multiple 
INS actions and include both SL1 and SL2 actions. These sequences 
demonstrated an exhaustive search strategy in which participants 
inspected multiple primary and secondary images. For Cluster 6, 
the sequences included many SL2 actions without many SL1 ac-
tions, indicating that users often selected matching images from 
those not initially returned by the AI system. There was no read-
ily discernible pattern to the sequences in Cluster 7. The cluster 
includes a variety of sequences, including long ones with repeated 
actions on the same image. 

Figure 10 shows the distribution of each sequence pattern grouped 
by the participant’s level of AI literacy. The analysis is based on 41 
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Action Description Mean Usage 
AI Lit. Baseline Explanation 

Inspect (INS) Examined enlarged image and browsed additional 
images from the same hotel 

High 17.09 17.60 
Low 11.33 13.12 

Visualize (VIS) Examined pairwise visual explanation heatmaps for 
an output image and the input image. 

High N/A 4.20 
Low N/A 7.87 

Select Primary (SL1) Selected an image returned by the system as a match. High 5.80 6.50 
Low 4.60 8.12 

Select Secondary (SL2) Selected one of the additional images as a match. High 3.90 2.70 
Low 4.40 4.12 

Deselect (DSL) Deselected a previously selected image. High 0.45 0.10 
Low 0.26 0.87 

Table 2: Summary of logged actions, indicating the average usage by participants throughout the experiment. N/A values 
indicate the absence of the Visualize action in the Baseline condition. 

(a) 2D t-SNE embedding 

(b) Representative sequences (examples) from each cluster 

Figure 9: Sequence analysis. (a) 2D t-SNE embedding of the 
participant sequence data with points colored based on !-
means clustering (! = 7). (b) Representative sequences (ex-
amples) from each cluster. Each row shows the sequence of 
actions, indicated by color. 

interaction sequences from high-AI participants and 44 interaction 
sequences from low-AI participants. We noted some di!erences in 
the interaction patterns between these groups. 

Cluster 1 sequences demonstrated a depth-"rst strategy in which 
the user thoroughly evaluated an output image and decided on 
whether to select it before proceeding to the next; this strategy was 
primarily employed by high-AI participants. The distribution of 
sequences in cluster 2 was nearly balanced between high-AI and 
low-AI participants; these users, at times, inspected or examined 
the visualizations, but mainly focused on selecting matches. Cluster 
3 sequences suggested a breadth-"rst search approach in which the 

Figure 10: Distribution of high-AI and low-AI Literacy par-
ticipants across the seven clusters. 

images were thoroughly examined, but, unlike cluster 1, selection 
occurred only after several images had been examined. Clusters 4, 
5, and 6 sequences were dominated by low-AI participants. Cluster 
4 sequences suggested quick decision-making; these participants 
adopted an economic search approach without using the features of 
the system for further inspection. Clusters 5 and 6 sequences were 
nearly twice as common among low-AI participants. In Cluster 5, 
participants examined and selected images from both primary and 
secondary results, while in Cluster 6, they reviewed both but mainly 
chose from the secondary results. These participants followed an 
exhaustive search approach, exploring not only the main system 
output but also secondary alternatives. For Cluster 7, the sequence 
pattern was not discernable; there was a near-even split between 
high-AI participants and low-AI participants. 

The self-described strategies of high-AI participants during the 
post-study survey further contextualized these "ndings. Among 
the 10 high-AI participants in the Explanation-Enabled condition, 
"ve mentioned using the visual explanation as a key step of their 
process. For three of these participants, the heatmaps served as 
a veri"cation tool, helping them con"rm their initial assessments 
before making "nal decisions. For example, P52 described a two-
step process, “I would examine the image by looking "rst at things 
like the headboard or lamps if they are unique then use the heatmap 
to con"rm my thoughts.” Similarly, P10 explained, “I was mostly 
checking whether the beds and walls looked alike. If I was skeptical, 
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the heatmap would help me.” Another participant (P12) further 
elaborated: 

“I would !rst review the initial image used for com-
parison and then compare it to the top row of results, 
which had the highest con!dence level. If there were 
clear similarities between the images (e.g., pillows, 
bed frame, lamps, rugs, curtains, etc.) I would make 
sure they were actually similar. In the case that noth-
ing stood out as the same, I would just select the clos-
est possible image. To con!rm things were actually 
the same, I would then use the heatmap visualization 
to con!rm my thoughts.” 

P8’s approach di"ered slightly from the others, as they used the 
heatmap more selectively, turning to it only when something did 
not seem right: “I look for distinct features, like the view through 
the windows, the carpet, and the color of the walls. Then I would use 
the heatmap when I couldn’t !gure out why an image was ranked 
high.” P50 relied on the heatmap from the very beginning, stating, “I 
initially followed the given heatmap and similarity, and then started 
noticing the details in the image.” Despite their heavy reliance on 
the heatmap throughout the task, none of the low-AI participants 
mentioned it to describe their approach. Instead, these participants 
described comparing objects, colors, and patterns. For instance, 
P28 said, “I focused on similarities in terms of room orientation, 
the carpet pattern/color, the designs of bed lamps, and a few more 
things.” 

5 Discussion 
The results suggest two key !ndings: 1) visual explanations have 
little or no impact on decision-making for this image matching 
task, and 2) AI literacy plays an important role, with high-AI users 
performing better and applying di"erent strategies than those with 
lower AI literacy. In this section, we discuss these results and their 
broader implications. 

5.1 Utility of Visual Explanations 
In response to RQ1, in general, visual explanations did not seem to 
improve user decision-making for this image matching task. When 
the tasks were harder and cognitively demanding, the performance 
was signi!cantly lower compared to easy tasks. The heatmaps, in-
tended to provide clarity by highlighting regions of similarity, may 
have been too coarse, as users in previous studies have noted [32], 
which may have led to increased cognitive burden. Using the dual-
process theory [15] as a lens, we interpret the observed behavior as 
users potentially shifting from quick, instinctive System 1 thinking 
to slower, more deliberate System 2 thinking, as they tried to rec-
oncile their own interpretations and decisions with the heatmap’s 
highlighted areas. Instead of facilitating faster, more con!dent deci-
sions, the explanations required users to engage in critical thinking, 
as they needed to interpret the heatmap while simultaneously ana-
lyzing image details, which may have increased the e"ort required 
to complete the task. This aligns with prior research, which suggests 
that explanations may not always improve decision outcomes [62], 
particularly when users must exert more cognitive e"ort to recon-
cile the explanations with their own domain knowledge. 

Although the visual explanations did not lead to more accu-
rate decisions, participants in the Explanation-Enabled condition 
demonstrated a better conceptual understanding of reverse image 
search. Multiple participants included more detailed descriptions 
for AI-guided image matching, including descriptions of how simi-
larity is computed. This suggests that while the heatmaps may not 
have improved immediate task performance, they did foster an un-
derstanding of the underlying AI processes, aligning with !ndings 
from prior research [2, 48]. However, this better conceptual under-
standing was not enough to overcome the intrinsic complexity of 
the task, which still required careful analysis. 

5.2 Role of AI Literacy 
Our !ndings regarding RQ2 revealed that AI literacy played an im-
portant role in this image matching task, in#uencing participants’ 
performance and decision-making strategies. High-AI participants 
consistently outperformed their low-AI counterparts. However, 
among high-AI participants, those with access to explanations re-
ported lower con!dence. This paradox may be explained by the 
expertise reversal e"ect [30], where experienced users, having devel-
oped their own decision-making strategies, found the explanations 
to introduce cognitive interference, causing them to second-guess 
their judgments. Despite this reduced con!dence, their ability to 
navigate the task e"ectively stemmed from their established men-
tal models, allowing them to engage with the visual explanations 
e$ciently without relying on them heavily. This is consistent with 
prior research, which suggests that familiarity with AI systems 
improves the user’s ability to use them e"ectively [23, 29, 32]. 

Low-AI participants struggled to achieve similar levels of per-
formance and con!dence, which was re#ected in their interaction 
patterns. Low-AI participants heavily relied on the explanations 
much more than high-AI participants. Due to their lack of foun-
dational knowledge, they likely found it di$cult to grasp the new 
information conveyed, requiring more cognitive resources to pro-
cess this unfamiliar content [44]. 

The di"erences in interaction patterns and strategies between 
high-AI and low-AI participants underscore these broader !ndings. 
High-AI participants tended to inspect more higher-ranked images 
and use the visual explanation feature for veri!cation purposes, 
demonstrating that visual explanations can help users calibrate 
trust in AI by con!rming their own assessments [62]. These partic-
ipants employed systematic strategies, such as depth-!rst search, 
suggesting that they had well-developed mental models of the sys-
tem’s functionality and felt con!dent using its features to re!ne 
their decisions. In addition, they employed strategies that involved 
o%oading parts of the task by using the system’s features, such as 
the heatmap, to examine multiple images and focus their mental 
resources on key decision points later in the task [58]. This strategic 
use of the system re#ects their ability to balance exploration with 
e$cient decision-making. 

Low-AI participants showed di"erent patterns of behavior. They 
tended to use the explanation more frequently and inspect fewer 
images per session. Rather than using the explanations to support 
their decisions, they may have relied on the heatmaps as a crutch for 
decision-making. This behavior aligns with the theory of satis!cing, 
where users opt for an adequate solution rather than the optimal one 
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when faced with high cognitive demands [49]. Additionally, these 
participants engaged in exhaustive search strategies [3], exploring 
low-ranked images and various system features before reaching a 
decision. Their exhaustive approach appeared to compensate for a 
lack of con!dence in the system’s outputs and uncertainty about 
how to best navigate the task. 

These !ndings highlight a key issue with current explanation 
designs: they are often designed with the intent and understanding 
of the expert designers, rather than the needs of novice users [22]. 
This one-size-!ts-all approach can make it di"cult for less familiar 
users to e#ectively leverage explanations in decision-making tasks. 
Future e#orts should focus on designing explanations that prioritize 
the user’s perspective, particularly novice users, ensuring that they 
receive just enough information without feeling overwhelmed [1]. 

5.3 Limitations 
Several limitations were identi!ed in the experimental design and 
implementation. These limitations may have in$uenced the out-
comes and should be considered when interpreting the results. 

5.3.1 Participant Sample. The application used in the experiment 
was designed for a specialized image matching task and provided a 
convenient, real-world platform to evaluate decision-making with 
visual explanations. Although some of the users, recruited from a 
university setting, may have been familiar with the Tra"ckCam 
project or the researchers on the team, none had previously used any 
version of the application nor were expert image analysts. The fact 
that all participants performed universally well on the easier tasks 
suggests that this type of analysis may be approachable for the lay 
user. We followed the human-grounded evaluation framework [21], 
where lay participants serve as proxies to observe general behav-
ioral patterns. The limited experience with the system may not fully 
capture the learning gains accumulated over time. Explanations 
that initially seemed unhelpful or confusing might become more 
e#ective as users grow more familiar with the interface and task. 
Future studies could explore longitudinal evaluations of non-expert 
users or they could involve expert users directly. 

5.3.2 Visual Explanation Method. This study employed a CAM-
based method to highlight paired image similarity in a Transformer-
based feature-encoding setting. This approach was selected for its 
ability to provide detailed insights into paired image embeddings, 
making it particularly suited to the hotel-matching task. However, 
alternative methods may emphasize di#erent aspects of model be-
havior. Techniques like BagNet [9], RISE [41], and prototype-based 
approaches such as ProtoPNet [16] focus on aspects such as se-
mantic regions and conceptual prototypes. Future research could 
explore these alternatives to assess their impact on user decision-
making and evaluate their e#ectiveness in real-world scenarios. 

5.3.3 Task Di!iculty. Tra"ckCam indexes a vast database of mil-
lions of images, sourced from travel websites and user-uploaded 
photos, so the outputs returned by the system may include blurry, 
low-quality, or otherwise nonstandard images of hotel rooms. Sev-
eral participants reported di"culties analyzing images due to poor 
quality, mentioning issues like lens glare or inadequate lighting 
that obscured key details. They also struggled with images taken 

from di#erent angles, which made it harder to visualize accurate 
matches. 

Many participants found the high visual similarity between hotel 
room images challenging. In some cases, images appeared almost 
identical, di#ering only in minor details such as carpets or wall 
patterns. Conversely, some participants noted that visually dissim-
ilar images contained similar objects, leading to confusion when 
trying to determine the correct match. Others found it di"cult to 
distinguish between images dominated by generic objects, such as 
TV stands, white bed comforters, or neutral desks. These objects 
o#ered few clues for identifying the correct match, as they are 
commonly found in many hotel rooms. These types of comments 
came from participants in both conditions and irrespective of AI 
literacy. These challenges are inherent in this real-world matching 
task. 

Some comments were speci!c to the interface as participants 
suggested new features for the application, most related to the 
limited functionality with the secondary images. Some noted the 
inability to enlarge secondary images while others wanted to apply 
the visual explanations to secondary images. These comments were 
not speci!c to a particular group as these issues had the potential 
to a#ect all participants equally. 

6 Conclusion and Future Work 
Much of the existing work in explainable AI (XAI) focuses on how 
explanations enhance algorithmic understanding. Our study shifted 
focus to evaluate their impact on decision-making in a real-world 
investigative image matching task. We found that the visual ex-
planations had no impact on decision accuracy or user con!dence. 
AI literacy was a key factor in this task, with participants who 
had higher levels of AI literacy consistently outperforming those 
with lower literacy. High-AI participants used e"cient strategies, 
such as focusing on high-ranked images and using explanations 
to verify their judgments. In contrast, low-AI participants adopted 
less e"cient and exhaustive search strategies. 

Our !ndings highlight the complexity of integrating visual expla-
nations into decision-making work$ows, particularly in cognitively 
demanding tasks. While explanations can improve users’ under-
standing of AI systems, their utility in guiding decisions remains 
limited. These insights are important for decision-making, par-
ticularly in high stakes scenarios such as medical diagnosis and 
!nancial analysis where much of the decision-making still relies 
on human judgment. 

Users with higher AI literacy demonstrated a more strategic 
use of visual explanations. With that in mind, future work should 
focus on techniques that adjust the depth of information presented 
based on users’ AI literacy, such as adaptive [55] and selective ex-
planation techniques [35], integrating them into decision-making 
work$ows. By progressively introducing details as needed, cogni-
tive load can be minimized for less experienced users, ultimately 
enhancing decision-making for a broader range of users. 
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