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Abstract 1 Introduction
Explanations have increasingly been incorporated into intelligent Investigative image analysis involves decision-making workflows
systems to offer insights into the underlying AI models. In this pa- that increasingly rely on the use of intelligent systems. For appli-
per, we investigate the impact of Al-generated visual explanations cations such as geolocation or scene matching in image forensics
on users’ decision-making processes during an image matching and journalism, it is often necessary to examine or compare subtle
task. Our work examines how these explanations affect correctness, details between multiple images [28, 50, 51]. Despite the growing
timing, and confidence and explores the role of Al literacy in user availability of Al-powered tools, many users remain cautious due
behavior. We conducted a mixed-methods user study with 54 par- to the black-box nature of these applications [57]. To address these
ticipants who were tasked to identify hotels from images using a concerns, researchers in the field of explainable AI (XAI) have devel-
specialized intelligent system. Participants were randomly assigned oped various explanation methods that reveal the inner workings of
to use the system with or without visual explanation capabilities. deep neural networks. By helping users understand the reasoning
Results showed that visual explanations did not affect the accuracy behind the results returned by the model, these methods aim to
of the decision or the confidence of the user in image matching increase trust in these systems, promote transparency, and allow
tasks. Participants with high-Al literacy outperformed those with users to identify potential biases or errors in the model reasoning.
lower literacy, but engaged less with explanations. Distinct match- XAI methods are generally categorized into interpretable-by-
ing strategies emerged between high-Al and low-Al participants, design models [9, 12, 13, 20, 38], which offer built-in transparency
with high-Al participants systematically examining high-ranked but may be limited in complexity, and post hoc explanations [25,
images and using the explanation for verification purposes, while 46, 48] that seek to clarify the predictions of black box models. Post
low-Al participants followed more exhaustive approaches. hoc explanations, particularly visual ones, have gained attention
for their effectiveness in tasks involving visual data. Unlike textual
CCS Concepts explanations [34, 42], which provide narrative descriptions of model

reasoning, visual explanations offer a direct and interpretable link
between input and output.

Figure 1 outlines the decision-making process for an image
matching task using an intelligent system with XAI features. Visual
post hoc explanations have been extensively evaluated for algorith-
mic understanding, particularly in tasks such as image classifica-
tion [18, 31, 47]. However, less work has been done to evaluate their
impact on user decision-making processes when using intelligent
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Figure 1: Human-AI workflow for modern image matching tasks with interactive intelligent systems. The user can examine
the output with or without visual explanations. Previous work on evaluating visual explanations typically focused on (A)
understanding the AI model. This paper evaluates how visual explanations impact (B) user decision-making.

Moreover, high-AI users with access to the explainability feature
reported significantly lower confidence in their performance than
those without. High-Al participants adopted systematic strategies,
prioritizing high-ranked images and using explanations for verifi-
cation. In contrast, low-Al participants employed more exhaustive
strategies, frequently exploring lower-ranked images and relying
more heavily on explanations. These results align with previous
findings on the limited utility of visual explanations for algorithm
understanding, while further expanding the scope to encompass
their impact on user decision-making.

2 Related Work

Humans often rely on mental shortcuts or heuristics when inter-
acting with intelligent systems [10]. To help users make informed
decisions, the design of these systems frequently incorporates ele-
ments that enhance understanding and interpretation. For example,
visualization components such as word clouds, bar charts, and Venn
diagrams have been integrated into recommendation systems [54]
and article search assistants [53]. In the domain of clinical decision
support, text-based systems that explain diagnosis recommenda-
tions by highlighting contributing input factors, such as symptoms
or laboratory results, have been shown to increase user trust and
reliance [11, 40]. Similarly, for visual analysis tasks, techniques
such as image augmentation [61] or image segmentation [59] have
been used to facilitate the user decision-making process.

While these techniques aim to facilitate user decision-making,
much of the research on human-Al interaction in visual analysis
tasks has primarily focused on how explanations affect the user’s
understanding of the Al model itself. However, as Al systems be-
come increasingly integrated into decision-making workflows, it is
equally important to understand how these explanations impact the
user’s decision-making process. In this section, we review related
methods for evaluating visual explanations and explore the role of
Al literacy in the adoption of explainable AT (XAI).

2.1 Using Visual Explanations to Improve
Model Interpretability

The proliferation of visual explanation methods was followed by
efforts that aimed to evaluate their efficacy. Early work in this
area focused on quantitative measures, such as faithfulness and
completeness, which provide information on the alignment be-
tween the model and its explanation [26, 27, 41, 43, 52]. However,
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these methods do not capture how interpretable or helpful these
explanations are from a user’s perspective [21]. Human-centered
evaluations, often conducted through psychophysical user studies,
assess how well participants understand the model, which is often
quantified through metrics such as accuracy, decision speed, and
confidence [7]. In an image classification task, AlQaraawi [2] found
that while LRP-generated saliency maps helped users accurately
identify key features, they were less effective in predicting outcomes
for new images. Similarly, Kim [31] demonstrated that explanations,
such as GradCAM and BagNet, increased user confidence, but did
not consistently help users distinguish between correct and incor-
rect model predictions. Nguyen [39] examined attribution maps in
both generic and fine-grained image classification tasks, showing
that the explanations not only failed to improve user performance,
but worsened it for more complex, fine-grained tasks. For an image-
based age prediction task, Chu [17] found that explanations did
not have a significant effect on user accuracy or trust in model
predictions, while Shen [47] found that saliency maps significantly
reduced user prediction accuracy by 10%, suggesting that visual
explanations may introduce confusion in evaluating predictions.
Our work draws inspiration from these studies, but distinguishes
itself by evaluating the impact of explanations on decision-making
for a real-world task.

2.2 Effects of Al Literacy on Model
Interpretability

Research on explainable AI (XAI) explanations has increasingly rec-
ognized the critical role that Al literacy plays in how explanations
are interpreted [36]. Users bring varying mental models, cognitive
abilities, and domain expertise, all of which influence how they
understand Al explanations [5, 24, 32]. For image classification
tasks, studies showed mixed results regarding the effectiveness of
attention maps for users with varying levels of expertise. For exam-
ple, Zimmermann [63] found that standard activation maps did not
significantly improve the mental models of novice users for con-
volutional neural network (CNN) processes compared to simpler
alternatives. However, Shitole [48] demonstrated that carefully de-
signed attention maps significantly improved causal understanding
of the model for an occluded image classification task compared
to standard attention map baselines. Ehsan [23] found that users
with a high level of Al literacy preferred more technical and de-
tailed explanations of the behavior of Al agents, while users with
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Figure 2: TraffickCam Interface. The user submits (1) an in-
put image and the system uses a trained neural network to
return (2) the most similar images from a large database. The
pairwise visual similarity map between the retrieved image
and input can be displayed by toggling the (3) visualization
button on each retrieved image.

a low level of Al literacy preferred simpler and clearer narratives.
A similar phenomenon is seen in how experienced users better
calibrate their trust in Al compared to novice users [60]. In recom-
mendation systems, Kiihl [33] demonstrated that AT literacy not
only shapes preferences for explanations, but also affects the user’s
willingness to comply with system recommendations; experienced
users developed stronger mental models and required detailed ex-
planations to trust and follow the recommendations. While prior
work has explored how Al literacy affects users’ understanding
of Al models, our work shifts the focus to its potential impact on
users’ decision-making processes.

3 Methods

We conducted a mixed-methods user study with 54 participants,
aimed at evaluating the impact of visual explanations on users’
decision-making when interacting with an intelligent system for an
image matching task. This section details the experimental platform,
task design, the participant recruitment process and measures used
for the evaluation.

3.1 Experimental Platform

TraffickCam [51] is a specialized reverse image search engine de-
signed to help combat human trafficking by helping analysts iden-
tify hotel rooms from images, such as online advertisements. Fig-
ure 2 shows the TraffickCam interface. A user submits an input
image, and the system uses a trained neural network to return the
output images from a large database ranked by computed similarity.
The system implements infinite scroll, where additional images
automatically and continuously load as users scroll down the page.
Like many retrieval systems, the top results may not always be the
best matches. This issue is exacerbated in hotel room recognition,
as visually similar images may not be from the same hotel, and
visually dissimilar images may be a match, as shown in Figure 3. So,
the user is left to complete the hotel identification task by carefully
examining the results.
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Figure 3: Challenges with hotel recognition from images. (a)
Images representing different hotels that are visually similar.
Close inspection of the objects (e.g., lamp, headboard) shows
clear differences. (b) Images from the same hotel that are vi-
sually dissimilar, however, the objects (e.g., lamp, headboard,
desk chair) within the scene match.

For the study, we modified the application to conditionally enable
access to a visual explanation algorithm that produces a heatmap de-
signed to highlight the regions of a pair of images that contributed
the most to the pairwise similarity [6]. Users with the feature en-
abled could toggle a button on the retrieved images to be presented
with the visual explanation of the selected image compared to the
input. Figure 4 shows two examples of these visual explanations
with pairs of images. In Figure 4a the heatmap highlights the visual
similarity of the image regions that contain the headboard and
lamps. Moreover, additional examination indicates that the artwork
in both images is similar. Although the Al system did not rely on
the similarity of the artwork to match the images, this evidence in
the non-matched region could further confirm the match for the
user. In Figure 4b the heatmap highlights the bed scarves as the
regions of the image that contributed the most to the similarity
score. However, on closer inspection, the striped patterns on the
bed scarves are different. In addition, outside the highlighted re-
gion, the shape and style of the lamps also differ. Based on these
discrepancies, users might choose to ignore the superficial visual
similarity identified by the Al system and conclude that the pair of
images do not match.

3.2 Study Design

We followed a factorial study design, with a between-subjects factor,
where participants were randomly assigned to either the Baseline
condition, where they used the TraffickCam system without the ex-
planation feature, or the Explanation-Enabled condition, where the
system included the explanation feature as an option. Participants
completed the same four tasks, classified into easy and hard levels
of difficulty, serving as a repeated within-subjects factor.
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(b) Different hotel

Figure 4: Pairwise visual similarity. For each pair of images,
the heatmap highlights the regions that contributed the most
to pairwise similarity (red = high, blue = low).

Participants were eligible for the study if they were 18 years
of age or older and fluent in English. Prior to starting, they were
informed of the task details, estimated duration, compensation, and
right to withdraw at any time. The participants interacted with
the web-based application using a keyboard and mouse. They were
initially presented with a page that described the purpose of the
experiment and the TraffickCam application before completing a
pre-study survey, which included demographics (i.e., age, gender
identity, academic background, and education level) and a question
to assess Al literacy. The pre-survey also included the General
Attitudes toward Artificial Intelligence Scale (GAAIS) [45], which
measured their attitudes toward Al and a Subjective Technical
Competence Scale (STC) [4], which assessed their self-reported
technical proficiency and comfort with using technology.
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Figure 5: The two easy (top) and two hard (bottom) input im-
ages used in the experiment. The level of difficulty was based
on a combination of the level of difficulty in reporting a
correct match for the Al system and human users in a pilot
study.

After completing the pre-study survey, participants engaged in a
training session that mirrored the main task of determining the ho-
tel from which the input image was captured. For a provided input
image, the participants reviewed the results returned by the system,
similar to Figure 2. Depending on the condition, they could also
view pairwise visualization heatmaps to assist in their assessment.
To indicate a potential match, users toggled a selection icon next
to the chosen image. Once participants completed their selections,
they were shown the images they identified as matches, along with
the corresponding hotel names. At this point, they had the option
to reorder the hotel list to reflect their confidence in identifying the
correct match to the input image.

The main experiment involved four tasks, each corresponding
to the input images shown in Figure 5. A set of candidate images
were selected on the basis of the level of difficulty in reporting a
correct match for the Al system. We determined the rank and total
number of correct matches in the returned results. The task was
considered easier when the output included more correct matches
ranked higher due to their greater similarity to the input image.
In contrast, harder tasks had fewer and/or lower ranked correct
matches, based on similarity scores computed by the AI model.
Those images were then used in pilot studies to collect feedback
from human participants. Tasks were perceived as easy when there
was high intraclass similarity, that is, correctly matched images
shared distinctive features with the input image, and hard when
incorrect images closely resembled the input. Together, the Al and
human criteria informed the final selection of two easy and two
hard images for the experiment.

The tasks were presented to the participants in randomized order,
and there was no time limit to complete each task. After submitting
a hotel prediction for each task, participants rated their confidence
on a scale from 1 (not confident) to 5 (very confident) before moving
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on to the next task. Once the image matching portion was com-
pleted, participants completed a post-study survey that included
four open-response questions about their strategies, challenges, and
experiences. An additional question focused on their understanding
of how the system generated the image results which was used to
assess their mental models of the system. After completion of the
experiment, the participants were compensated with a $5 coffee
shop gift card.

3.3 Participants

To determine the appropriate sample size, we conducted a priori
power analysis to detect a medium effect size (Cohen’s d = 0.5) ata
significance level of 0.05 with 85% power. This analysis indicated
that 50 participants would be sufficient to detect meaningful dif-
ferences between the experimental conditions, which is consistent
with other studies of this type [14]. We recruited 54 participants
from a college campus. The study, approved by the Institutional
Review Board, was conducted over three weeks by two members
of the research team. The mean age of the participants was 26 (SD
= 6.28). The participants came from diverse academic backgrounds,
including computer science, physics, chemistry, marketing, neuro-
science, and engineering. The sample reflects a random selection
process; no demographic criteria were applied and no explicit effort
was made to balance any demographic attribute in the sample.

Of the 54 participants, we excluded a total of 9 participants from
the analysis. Two participants, one from each condition, did not
submit results for the majority of tasks. Seven participants from
the Explanation-Enabled condition did not use the explanation
feature at all, and were excluded based on the per-protocol analysis.
Consequently, our analysis includes data from 26 participants in the
Baseline condition and 19 in the Explanation-Enabled condition.

To ensure there was no sampling bias, we analyzed the GAAIS
and STC responses from the pre-survey and found no significant
differences in the participants’ scores across the experimental con-
ditions for either attitudes toward Al or self-reported technical
proficiency, which suggests no sampling bias for these traits.

3.4 Mixed-Methods Analysis

We employed a mixed-methods approach that combines an analysis
of quantitative measures from the experiment with rich qualitative
insights collected through surveys. To investigate RQ1, we analyzed
the effects of condition (Baseline and Explanation-Enabled) across
the three dependent variables of task completion time, performance,
and participant’s confidence. For RQ2, we stratified participants
into two groups: low-Al and high-Al to understand whether Al
literacy had an effect on these same dependent variables. We also
investigated participants’ interaction patterns to understand their
strategies and experiences.

3.4.1 lIdentifying Low and High Al Participants. To understand the
Al literacy of participants in this study, we stratified our participants
into two groups: high-AI and low-AI based on their responses to
the open-ended pre-survey question. Previous studies have catego-
rized Al expertise through self-reported measures, such as general
Al knowledge [32] or professional background [23]; however, the
reliability of self-reported data can vary. Given the more focused
nature of our task, we instead asked participants to explain how
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they believe reverse image search functions by posing the question:
“In a few sentences, describe how you think reverse image search
works.”

Two members of the research team independently categorized
the responses based on their perception of whether the response
indicated the participant was highly knowledgeable or not knowl-
edgeable about reverse image search. The inter-rater reliability, as
measured using Maxwell’s RE coefficient [37] was 0.843, indicating
a high level of agreement between the evaluators. Subsequently, the
evaluators met to resolve the discrepancies through a consensus
discussion.

3.4.2 Dependent Variables. We assessed three key dependent vari-
ables. Performance, measured by the mean reciprocal rank (MRR) [19]
of the correct hotel among the ranked list submitted by the partici-
pant. That is, the reciprocal rank is maximized (1.0) when the correct
match is ranked first and minimized (0.0) when the correct match
is not included in the participant-provided list. Task completion
time calculated as the duration taken by participants to complete
each task, starting when the task was presented and ending when
the ranked list was submitted. Confidence ratings were collected
after each task, where participants rated their confidence in their
selections on a scale from 1 (not confident) to 5 (very confident).

3.4.3 Quantitative Analysis. To evaluate RQ1, we used a linear
mixed-effects model to account for the between-subjects categor-
ical independent variable Condition (Baseline and Explanation-
Enabled), and the repeated measure, Task Difficulty, allowing us to
model the fixed effect of the experimental condition while account-
ing for random effects due to individual differences. To evaluate
RQ2, we used the non-parametric Mann-Whitney U test to exam-
ine the impact of our categorical independent variables Condition
(Baseline and Explanation-Enabled) and AI Literacy (high-Al and
low-Al) on our continuous dependent variables (e.g., MRR and
timing).

To identify strategies participants employed during the image
matching task, we encoded the sequence of logged actions for each
user and performed an analysis using the Levenshtein distance,
which measures the minimum number of operations required to
transform one sequence into another. The operations considered
were insertions and deletions, each assigned a cost of 1, and sub-
stitutions, which were assigned a cost of 2. The total edit distance
for each sequence pair was calculated as the sum of these costs,
providing a straightforward measure of the dissimilarity between
sequences of potentially different lengths. We applied t-SNE [56]
to the pairwise dissimilarity matrix to embed the sequences into a
two-dimensional space, followed by k-means clustering to identify
groupings within the data.

3.44 Qualitative Analysis. In the post-survey, we collected open
responses from the participants to questions about their task strate-
gies, the challenges they faced, and their general experience during
the tasks. These responses were analyzed using reflexive thematic
analysis [8]. First, two members of the research team independently
open coded the responses. Next, the two researchers met to discuss
their codes and resolve any discrepancies. The coding process was
iterative and involved multiple rounds of review and refinement.
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Figure 6: The plots show the (left) correctness, (middle) timing, and (right) confidence between the Explanation-Enabled and

Baseline conditions in easy and hard tasks.

4 Results

We present our findings, organized to address the two research
questions, evaluating the impact of (RQ1) visual explanations on
decision-making and (RQ2) Al literacy on engaging with visual
explanations in image matching.

4.1 RQ1: Impact of Visual Explanations on
Decision-Making in Image Matching

We evaluated correctness, decision time, and user confidence for
the four tasks, which were aggregated by the two difficulty levels.
Figure 6 shows the (left) correctness, measured by MRR, (middle)
timing, and (right) confidence. In the following, we describe each
result in detail.

4.1.1  Visual Explanations and Performance . Performance was mea-
sured using MRR, which accounts for the rank, if present, of the
correct hotel in the list submitted by the participant. For Easy tasks,
participants in the Baseline condition (M = 0.98, SD = 0.10) per-
formed similar to participants in the Explanation-Enabled condition
(M = 1.00, SD = 0.00). For Hard tasks, performance was worse for
both groups. Participants in the Explanation-Enabled condition
(M =0.69, SD = 0.35) slightly outperformed those in the Baseline
condition (M = 0.63, SD = 0.39). Figure 6 (left) shows the distri-
bution of performance scores for both easy and hard tasks. The
Easy tasks were quite manageable for all participants, as all but
one predicted the correct hotel as their first choice. For Hard tasks,
there was a wider range of performance, but still similar whether
explanations were available or not. Table 1 shows the results of the
linear mixed-effects model analysis on the correctness metric. There
was a significant difference in performance for the users in both
conditions for the Hard tasks (p < 0.001). There was no significant
effect for the Explanation-Enabled condition on performance.

4.1.2  Visual Explanations and Timing. We analyzed the average
time participants spent on the task computed from the time the
output images are displayed to when the participant submitted their
decision. For Easy tasks, participants took an average of M = 98.00,

677

Table 1: Analysis of correctness, as measured by mean recip-
rocal rank.

Estimate Std. Error z-value p-value

Intercept 0.981 0.048 20.24 <0.001
Condition (Explanation-Enabled) 0.019 0.076 0.254 0.800
Difficulty (Hard) -0.351 0.060 -5.88 <0.001
Condition*Difficulty 0.041 0.093 0.437 0.662

SD = 75.30 seconds in the Baseline condition and M = 118.68,
SD = 67.23 seconds in the Explanation-Enabled condition. For
Hard tasks, in the Baseline condition, participants spent an average
of M = 161.72, SD = 132.72 seconds, while, in the Explanation-
Enabled condition, an average of M = 180.03, SD = 105.83 seconds.
Figure 6 (middle) shows the distribution of time spent on the tasks.
Analysis indicated a significant difference in the time spent between
easy and hard tasks (f = 61.35, p = 0.001). There was no significant
difference between the experimental conditions (f = —20.69, p =
0.421) nor a significant interaction effect between condition and
task difficulty (8 = 4.38, p = 0.85).

4.1.3  Visual Explanations and Confidence. After each image match-
ing task, participants rated their confidence in their selections on a
scale from 1 (not confident) to 5 (very confident). For Easy tasks,
confidence ratings were generally high in both conditions, with
participants in the Baseline condition reporting a mean confidence
of M = 4.29, SD = 0.70 and those in the Explanation-Enabled
condition reporting M = 4.36, SD = 0.68. For Hard tasks, par-
ticipants in the Baseline condition reported a mean confidence
of M = 3.28, SD = 1.01, while those in the Explanation-Enabled
condition reported (M = 3.03, SD = 0.94). Figure 6 (right) shows
the distribution of confidence ratings. Analysis showed a signifi-
cantly different mean confidence rating for Hard tasks (f = —1.015,
p < 0.001). There was no significant difference between experimen-
tal conditions (f = 0.073, p = 0.72) nor a significant interaction
effect between condition and task difficulty (f = —0.318, p = 0.18).
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Figure 7: Comparison of participants’ understanding of re-
verse image search between the Explanation-Enabled (blue)
and Baseline (orange) conditions. The figure illustrates dif-
ferences across five codes.

4.1.4  Visual Explanations and Users’ Mental Models. To evaluate
whether the availability of visual explanations influenced partici-
pants’ mental models and understanding of reverse image search,
we examined their responses to a post-study survey question re-
garding their understanding of image matching. The reflexive the-
matic analysis identified five topics that encapsulate the range of
participants’ conceptual understanding:

e Pixel Analysis: Describing the process of analyzing pixel
values and their relationships to surrounding pixels for image
matching.

e ML Techniques: Referring to various artificial intelligence
methods used in reverse image search, including machine
learning algorithms, contrastive learning, and neural net-
works.

o Feature Matching: Identifying and comparing distinct fea-
tures within images (e.g., shapes, patterns, or objects) to
detect similarities.

o Similarity Computation: Describing the process of calcu-
lating similarity scores or percentages between images to
determine matches.

o Uncertainty: Expressing confusion or providing vague or
incomplete descriptions about how reverse image search
systems work.

Two researchers coded the responses, and disagreements were
mediated through discussion until consensus was reached. Figure 7
illustrates the distribution of each code for both conditions. In the
Explanation-Enabled condition, fewer participants expressed un-
certainty about the image matching process than in the Baseline
condition, suggesting that they were able to form clearer mental
models after interacting with the system, which may have helped
bridge gaps in their initial understanding. For many of the themes,
the relative change between conditions was similar. Mentions of
matching features or objects were high for both conditions, sug-
gesting task-driven learning gains irrespective of the availability of
explanations.
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One difference pattern between conditions was references to
computing similarity. Participants in the Explanation-Enabled con-
dition made such references at a much higher rate. For example,
participants provided responses such as: “It estimates the similarity
based on features and expresses it as a percentage” and “the system
returns images in descending order of priority based on the similar-
ity score” However, for the Baseline condition, fewer participants
mentioned the similarity computation. These results suggest that
the visual explanations helped participants internalize the compu-
tational process underlying the image matching algorithm.

4.2 RQ2:Impact of Al Literacy on Interpreting
and Engaging with Visual Explanations in
Image Matching

To assess how Al literacy affects users’ interpretation and engage-
ment with visual explanations, we categorized participants into
two groups: high-AI and low-AI based on their responses to the
open-ended pre-survey question. Following this categorization,
21 participants were rated as having high-AlI literacy (11 in the
Baseline and 10 in the Explanation-Enabled condition) and 24 par-
ticipants were rated as low-AlI literacy (15 in the Baseline and 9
in the Explanation-Enabled condition). Given the universally high
performance, the Easy tasks were excluded from the analysis in
this section.

4.2.1 Al Literacy and Decision-Making in Image Matching. We com-
pared the performance of the high-Al and low-AI groups on cor-
rectness, timing, and confidence for the Hard tasks.

Figure 8 (left) shows the distribution of performance scores for
high-AI and low-AlI participants. High-Al participants performed
similarly in both conditions, with a median MRR of 1.0 in both the
Explanation-Enabled and Baseline conditions. Analysis using the
Mann-Whitney U test showed no significant differences between
conditions (U = 230.50, p = 0.74). Low-AlI participants performed
better in the Explanation-Enabled condition (Mdn = 0.75) than
those in the Baseline condition (Mdn = 0.37), though the difference
was not statistically significant (U = 231.50, p = 0.84). Overall, high-
Al participants significantly outperformed low-Al participants for
both conditions (U = 645.0, p = 0.002), suggesting that Al literacy
played a key role in task performance.

Figure 8 (middle) shows the distribution of time spent by the
high-AI and low-Al participants. Participants in the high-Al group
averaged Mdn = 122.76 seconds in the Explanation-Enabled con-
dition and Mdn = 118.79 seconds in the Baseline condition. Par-
ticipants in the low-AI group spent Mdn = 211.51 seconds in the
Explanation-Enabled condition compared to Mdn = 119.05 sec-
onds in the Baseline condition. Neither difference was significant,
U =208.0,p =0.97 and U = 169.0, p = 0.14, respectively. Overall,
there was no significant difference in the time spent between the
two Al literacy groups (U = 1032.0, p = 0.35).

Figure 8 (right) shows the distribution of confidence ratings for
high-ATI and low-Al participants. In line with their better overall
performance, high-Al participants expressed higher confidence on
average than low-Al participants, with a difference that approached
significance (U = 717.5, p = 0.06). Within the high-Al group,
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Figure 8: The plots show the (left) correctness, (middle) timing, and (right) confidence between Explanation-Enabled and
Baseline conditions between users with high-Al, and low-Al literacy.

the confidence reported was lower for those in the Explanation-
Enabled condition (Mdn = 3.0) compared to the Baseline condition
(Mdn = 4); the analysis indicated that this difference was statisti-
cally significant (U = 288.5, p = 0.03), suggesting that access to the
explanation feature decreased user confidence even though there
was no corresponding decrease in performance. Within the low-Al
group, the confidence ratings were similar in both conditions, with
a median confidence of Mdn = 3.00 in both conditions, suggesting
that visual explanations had little or no impact on the confidence
of participants with lower Al literacy.

4.2.2 Al Literacy and Interaction Patterns in Image Matching. Ta-
ble 2 describes the actions logged during the experiment and in-
cludes the average frequency of each action for each task aggregated
by condition and the participant’s Al literacy. We observed some
differences. High-Al participants inspected approximately 44.97%
more images per session than low-AlI participants. High-AlI partic-
ipants used the pairwise visualization feature an average of 4.20
times per session, while the average for low-Al participants was
nearly double at 7.87.

Participants had the option to select (and deselect) matches from
the (primary) output returned by the system or the additional (sec-
ondary) images from the same hotel that were displayed upon
inspection of a primary image. In general, users selected similar
numbers of images. On average, users in all conditions performed
9.438 total primary and secondary selections. While high-ATI users
performed a similar number of primary selections in each condi-
tion, low-Al users averaged 4.6 primary selections in the Baseline
condition and nearly double (M = 8.12) in the Explanation-Enabled
condition. For secondary selections, all subgroups averaged around
4, with the exception of high-AlI users in the Explanation-Enabled
condition, who averaged 2.7. For the participants in the Explanation-
Enabled condition, high-AlI participants were more decisive in their
selections; they made fewer selections and deselections than their
low-Al counterparts.

In addition to the actions of the participants, we examined the
ranks of images inspected throughout the tasks. High-Al partici-
pants inspected higher-ranked images, with a median rank of Mdn
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(IQR) = 5 (2,8). While low-AlI participants, inspected a wider range
of images, with a median rank of Mdn (IQR) = 8 (2,21). The results
of Mann-Whitney U test showed a significant difference between
the two groups (p = 0.002). This behavior suggests that the high-Al
and low-AlI participants employed different exploration strategies.

4.2.3 Al Literacy and Image Matching Strategies. To further ana-
lyze the matching strategies employed, we encoded participants’
sequences of actions, then analyzed them using the Levenshtein
distance. We applied t-SNE for dimensionality reduction, followed
by k-means clustering to identify groupings. We determined the
optimal number of clusters to be k = 7 using the elbow method. The
resultant embedding and clustering of the interaction sequences
are shown in Figure 9a.

Examining the resultant clusters revealed different patterns of in-
teraction. Figure 9b shows a representative sequence of each cluster.
For cluster 1, the sequences contained repeated instances of INS-
SL1 or INS-VIS-SL1, suggesting that the users systematically used
the features of the application to examine images before moving on
to the next image. The sequences in cluster 2 consisted mostly of
selection actions SL1 with some use of visual explanations (VIS), in-
dicating that users selected primary output images as matches with
minimal inspection. Cluster 3 contained sequences with multiple
instances of INS-VIS, but unlike cluster 1, they were not immedi-
ately followed by a selection. Cluster 4 sequences included mainly
selection (SL1), suggesting quick decision-making with minimal
interactions. Sequences in cluster 5 tended to start with multiple
INS actions and include both SL1 and SL2 actions. These sequences
demonstrated an exhaustive search strategy in which participants
inspected multiple primary and secondary images. For Cluster 6,
the sequences included many SL2 actions without many SL1 ac-
tions, indicating that users often selected matching images from
those not initially returned by the AI system. There was no read-
ily discernible pattern to the sequences in Cluster 7. The cluster
includes a variety of sequences, including long ones with repeated
actions on the same image.

Figure 10 shows the distribution of each sequence pattern grouped
by the participant’s level of Al literacy. The analysis is based on 41
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Action Description Mean Usage
AILit. Baseline Explanation
Examined enlarged image and browsed additional High 17.09 I 17.60 N
Inspect (INS) .
images from the same hotel Low 11.33 IR 13.12 N
Visualize (VIS) Examined PalrWlse v1sual. expl@atlon heatmaps for | High N/A 420
an output image and the input image. Low N/A 7.87 IR
. ) High 5.80 W 6.50 W
Select Primary (SL1) Selected an image returned by the system as a match. Low 460 m 812
o High 300 270 B
Select Secondary (SL2) | Selected one of the additional images as a match. Low 4.40 412 mm
. . High 0.45 o101
Deselect (DSL) Deselected a previously selected image. Low 0.26 B 0.87

Table 2: Summary of logged actions, indicating the average usage by participants throughout the experiment. N/A values
indicate the absence of the Visualize action in the Baseline condition.
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(b) Representative sequences (examples) from each cluster

Figure 9: Sequence analysis. (a) 2D t-SNE embedding of the
participant sequence data with points colored based on k-
means clustering (k = 7). (b) Representative sequences (ex-
amples) from each cluster. Each row shows the sequence of
actions, indicated by color.

interaction sequences from high-Al participants and 44 interaction
sequences from low-Al participants. We noted some differences in
the interaction patterns between these groups.

Cluster 1 sequences demonstrated a depth-first strategy in which
the user thoroughly evaluated an output image and decided on
whether to select it before proceeding to the next; this strategy was
primarily employed by high-AI participants. The distribution of
sequences in cluster 2 was nearly balanced between high-AI and
low-AlI participants; these users, at times, inspected or examined
the visualizations, but mainly focused on selecting matches. Cluster
3 sequences suggested a breadth-first search approach in which the

680

Al Literacy
- igh Al
- Low Al

Percentage (%)

4
Cluster

Figure 10: Distribution of high-AI and low-AlI Literacy par-
ticipants across the seven clusters.

images were thoroughly examined, but, unlike cluster 1, selection
occurred only after several images had been examined. Clusters 4,
5, and 6 sequences were dominated by low-AI participants. Cluster
4 sequences suggested quick decision-making; these participants
adopted an economic search approach without using the features of
the system for further inspection. Clusters 5 and 6 sequences were
nearly twice as common among low-Al participants. In Cluster 5,
participants examined and selected images from both primary and
secondary results, while in Cluster 6, they reviewed both but mainly
chose from the secondary results. These participants followed an
exhaustive search approach, exploring not only the main system
output but also secondary alternatives. For Cluster 7, the sequence
pattern was not discernable; there was a near-even split between
high-AlI participants and low-Al participants.

The self-described strategies of high-Al participants during the
post-study survey further contextualized these findings. Among
the 10 high-Al participants in the Explanation-Enabled condition,
five mentioned using the visual explanation as a key step of their
process. For three of these participants, the heatmaps served as
a verification tool, helping them confirm their initial assessments
before making final decisions. For example, P52 described a two-
step process, “I would examine the image by looking first at things
like the headboard or lamps if they are unique then use the heatmap
to confirm my thoughts.” Similarly, P10 explained, “I was mostly
checking whether the beds and walls looked alike. If T was skeptical,
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the heatmap would help me” Another participant (P12) further
elaborated:

“I would first review the initial image used for com-
parison and then compare it to the top row of results,
which had the highest confidence level. If there were
clear similarities between the images (e.g., pillows,
bed frame, lamps, rugs, curtains, etc.) I would make
sure they were actually similar. In the case that noth-
ing stood out as the same, I would just select the clos-
est possible image. To confirm things were actually
the same, I would then use the heatmap visualization
to confirm my thoughts”

P8’s approach differed slightly from the others, as they used the
heatmap more selectively, turning to it only when something did
not seem right: “I look for distinct features, like the view through
the windows, the carpet, and the color of the walls. Then I would use
the heatmap when I couldn’t figure out why an image was ranked
high?” P50 relied on the heatmap from the very beginning, stating, “I
initially followed the given heatmap and similarity, and then started
noticing the details in the image.” Despite their heavy reliance on
the heatmap throughout the task, none of the low-AlI participants
mentioned it to describe their approach. Instead, these participants
described comparing objects, colors, and patterns. For instance,
P28 said, “I focused on similarities in terms of room orientation,
the carpet pattern/color, the designs of bed lamps, and a few more
things.”

5 Discussion

The results suggest two key findings: 1) visual explanations have
little or no impact on decision-making for this image matching
task, and 2) Al literacy plays an important role, with high-ATI users
performing better and applying different strategies than those with
lower Al literacy. In this section, we discuss these results and their
broader implications.

5.1 Utility of Visual Explanations

In response to RQ1, in general, visual explanations did not seem to
improve user decision-making for this image matching task. When
the tasks were harder and cognitively demanding, the performance
was significantly lower compared to easy tasks. The heatmaps, in-
tended to provide clarity by highlighting regions of similarity, may
have been too coarse, as users in previous studies have noted [32],
which may have led to increased cognitive burden. Using the dual-
process theory [15] as a lens, we interpret the observed behavior as
users potentially shifting from quick, instinctive System 1 thinking
to slower, more deliberate System 2 thinking, as they tried to rec-
oncile their own interpretations and decisions with the heatmap’s
highlighted areas. Instead of facilitating faster, more confident deci-
sions, the explanations required users to engage in critical thinking,
as they needed to interpret the heatmap while simultaneously ana-
lyzing image details, which may have increased the effort required
to complete the task. This aligns with prior research, which suggests
that explanations may not always improve decision outcomes [62],
particularly when users must exert more cognitive effort to recon-
cile the explanations with their own domain knowledge.
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Although the visual explanations did not lead to more accu-
rate decisions, participants in the Explanation-Enabled condition
demonstrated a better conceptual understanding of reverse image
search. Multiple participants included more detailed descriptions
for Al-guided image matching, including descriptions of how simi-
larity is computed. This suggests that while the heatmaps may not
have improved immediate task performance, they did foster an un-
derstanding of the underlying AI processes, aligning with findings
from prior research [2, 48]. However, this better conceptual under-
standing was not enough to overcome the intrinsic complexity of
the task, which still required careful analysis.

5.2 Role of Al Literacy

Our findings regarding RQ2 revealed that Al literacy played an im-
portant role in this image matching task, influencing participants’
performance and decision-making strategies. High-Al participants
consistently outperformed their low-Al counterparts. However,
among high-Al participants, those with access to explanations re-
ported lower confidence. This paradox may be explained by the
expertise reversal effect [30], where experienced users, having devel-
oped their own decision-making strategies, found the explanations
to introduce cognitive interference, causing them to second-guess
their judgments. Despite this reduced confidence, their ability to
navigate the task effectively stemmed from their established men-
tal models, allowing them to engage with the visual explanations
efficiently without relying on them heavily. This is consistent with
prior research, which suggests that familiarity with AI systems
improves the user’s ability to use them effectively [23, 29, 32].

Low-AlI participants struggled to achieve similar levels of per-
formance and confidence, which was reflected in their interaction
patterns. Low-Al participants heavily relied on the explanations
much more than high-AI participants. Due to their lack of foun-
dational knowledge, they likely found it difficult to grasp the new
information conveyed, requiring more cognitive resources to pro-
cess this unfamiliar content [44].

The differences in interaction patterns and strategies between
high-ATI and low-AlI participants underscore these broader findings.
High-AlI participants tended to inspect more higher-ranked images
and use the visual explanation feature for verification purposes,
demonstrating that visual explanations can help users calibrate
trust in Al by confirming their own assessments [62]. These partic-
ipants employed systematic strategies, such as depth-first search,
suggesting that they had well-developed mental models of the sys-
tem’s functionality and felt confident using its features to refine
their decisions. In addition, they employed strategies that involved
offloading parts of the task by using the system’s features, such as
the heatmap, to examine multiple images and focus their mental
resources on key decision points later in the task [58]. This strategic
use of the system reflects their ability to balance exploration with
efficient decision-making.

Low-AlI participants showed different patterns of behavior. They
tended to use the explanation more frequently and inspect fewer
images per session. Rather than using the explanations to support
their decisions, they may have relied on the heatmaps as a crutch for
decision-making. This behavior aligns with the theory of satisficing,
where users opt for an adequate solution rather than the optimal one
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when faced with high cognitive demands [49]. Additionally, these
participants engaged in exhaustive search strategies [3], exploring
low-ranked images and various system features before reaching a
decision. Their exhaustive approach appeared to compensate for a
lack of confidence in the system’s outputs and uncertainty about
how to best navigate the task.

These findings highlight a key issue with current explanation
designs: they are often designed with the intent and understanding
of the expert designers, rather than the needs of novice users [22].
This one-size-fits-all approach can make it difficult for less familiar
users to effectively leverage explanations in decision-making tasks.
Future efforts should focus on designing explanations that prioritize
the user’s perspective, particularly novice users, ensuring that they
receive just enough information without feeling overwhelmed [1].

5.3 Limitations

Several limitations were identified in the experimental design and
implementation. These limitations may have influenced the out-
comes and should be considered when interpreting the results.

5.3.1 Participant Sample. The application used in the experiment
was designed for a specialized image matching task and provided a
convenient, real-world platform to evaluate decision-making with
visual explanations. Although some of the users, recruited from a
university setting, may have been familiar with the TraffickCam
project or the researchers on the team, none had previously used any
version of the application nor were expert image analysts. The fact
that all participants performed universally well on the easier tasks
suggests that this type of analysis may be approachable for the lay
user. We followed the human-grounded evaluation framework [21],
where lay participants serve as proxies to observe general behav-
ioral patterns. The limited experience with the system may not fully
capture the learning gains accumulated over time. Explanations
that initially seemed unhelpful or confusing might become more
effective as users grow more familiar with the interface and task.
Future studies could explore longitudinal evaluations of non-expert
users or they could involve expert users directly.

5.3.2  Visual Explanation Method. This study employed a CAM-
based method to highlight paired image similarity in a Transformer-
based feature-encoding setting. This approach was selected for its
ability to provide detailed insights into paired image embeddings,
making it particularly suited to the hotel-matching task. However,
alternative methods may emphasize different aspects of model be-
havior. Techniques like BagNet [9], RISE [41], and prototype-based
approaches such as ProtoPNet [16] focus on aspects such as se-
mantic regions and conceptual prototypes. Future research could
explore these alternatives to assess their impact on user decision-
making and evaluate their effectiveness in real-world scenarios.

5.3.3  Task Difficulty. TraffickCam indexes a vast database of mil-
lions of images, sourced from travel websites and user-uploaded
photos, so the outputs returned by the system may include blurry,
low-quality, or otherwise nonstandard images of hotel rooms. Sev-
eral participants reported difficulties analyzing images due to poor
quality, mentioning issues like lens glare or inadequate lighting
that obscured key details. They also struggled with images taken
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from different angles, which made it harder to visualize accurate
matches.

Many participants found the high visual similarity between hotel
room images challenging. In some cases, images appeared almost
identical, differing only in minor details such as carpets or wall
patterns. Conversely, some participants noted that visually dissim-
ilar images contained similar objects, leading to confusion when
trying to determine the correct match. Others found it difficult to
distinguish between images dominated by generic objects, such as
TV stands, white bed comforters, or neutral desks. These objects
offered few clues for identifying the correct match, as they are
commonly found in many hotel rooms. These types of comments
came from participants in both conditions and irrespective of Al
literacy. These challenges are inherent in this real-world matching
task.

Some comments were specific to the interface as participants
suggested new features for the application, most related to the
limited functionality with the secondary images. Some noted the
inability to enlarge secondary images while others wanted to apply
the visual explanations to secondary images. These comments were
not specific to a particular group as these issues had the potential
to affect all participants equally.

6 Conclusion and Future Work

Much of the existing work in explainable AI (XAI) focuses on how
explanations enhance algorithmic understanding. Our study shifted
focus to evaluate their impact on decision-making in a real-world
investigative image matching task. We found that the visual ex-
planations had no impact on decision accuracy or user confidence.
Al literacy was a key factor in this task, with participants who
had higher levels of Al literacy consistently outperforming those
with lower literacy. High-Al participants used efficient strategies,
such as focusing on high-ranked images and using explanations
to verify their judgments. In contrast, low-Al participants adopted
less efficient and exhaustive search strategies.

Our findings highlight the complexity of integrating visual expla-
nations into decision-making workflows, particularly in cognitively
demanding tasks. While explanations can improve users’ under-
standing of Al systems, their utility in guiding decisions remains
limited. These insights are important for decision-making, par-
ticularly in high stakes scenarios such as medical diagnosis and
financial analysis where much of the decision-making still relies
on human judgment.

Users with higher Al literacy demonstrated a more strategic
use of visual explanations. With that in mind, future work should
focus on techniques that adjust the depth of information presented
based on users’ Al literacy, such as adaptive [55] and selective ex-
planation techniques [35], integrating them into decision-making
workflows. By progressively introducing details as needed, cogni-
tive load can be minimized for less experienced users, ultimately
enhancing decision-making for a broader range of users.
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