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Abstract
Cyber-Physical Systems (CPS) integrate computing, networking,
and physical processes, making them critical in applications such
as smart homes, industrial control systems, autonomous vehicles,
smart grids, and medical devices. Ensuring CPS security is essential,
as vulnerabilities can have serious consequences. CPS share key
security requirements with traditional IT systems—confidentiality,
integrity, and availability—but also introduce additional challenges
due to real-time constraints, interactions with physical processes,
and safety considerations. Standard security practices include se-
cure design principles, redundancy, continuous monitoring, re-
silient control algorithms, and rigorous verification and validation
procedures. However, security techniques must be tailored to spe-
cific CPS domains. Some of the requirements may interact with each
other, e.g., adding security mechanisms violating timely responses,
or lack of security measures impacting safety. The complexity of
securing CPS is further heightened by the integration of artificial
intelligence (AI), which enables greater system autonomy in tasks
like energy optimization and security monitoring. In this paper, we
present results from two previous projects that focused on smart IoT
systems and avionic systems, respectively. In both cases, arriving
at solutions that combine many requirements is at the heart of the
methodology. Based on this past work, we discuss open research
directions.

CCS Concepts
• Security and privacy→ Systems security; Distributed sys-
tems security.
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1 Introduction
Cyber-physical systems (CPS) integrate computing, networking,
and physical processes. Examples include smart houses, industrial
control systems, autonomous vehicles, smart grids, and medical de-
vices. The security of CPS is crucial because vulnerabilities can lead
not only to data breaches but also to physical damage, operational
disruptions, or threats to human safety.

CPS share key security requirements with conventional IT sys-
tems, namely: (i) Confidentiality: protecting sensitive data and sen-
sitive operations from unauthorized access. (ii) Integrity: preventing
malicious alterations to system operations or data. (iii) Availability:
protecting systems function from disruptions, especially in crit-
ical infrastructure. However, unlike traditional IT systems, CPS
security must account for real-time constraints, physical processes,
and potential safety risks. Attacks can range from malware, sensor
spoofing, and sensor data alterations [5, 15] to denial-of-service
(DoS) attacks, requiring a combination of cybersecurity, control sys-
tems, and safety engineering approaches to defend against threats.

Typical guidelines for building secure CPS include:

• Secure design: incorporating security and safety consider-
ations from the design phase (e.g., secure-by-design princi-
ples).

• Redundancy: introducing backup systems and fail-safe mech-
anisms to maintain functionality in case of failure.

• Monitoring and anomaly detection: monitor the state of the
system continuously to detect faults or malicious activities.

• Resilient control: designing control algorithms that can adapt
to disturbances and degraded conditions.

• Verification & validation: Rigorously testing the behavior of
the system in various scenarios to ensure that the safety and
security requirements are met.

However, because of the diversity of CPS application domains,
specific security techniques must be deployed for different domains.
For example, consider industrial control systems (ICS) – e.g., power
grids andmanufacturing. Key challenges for ICS include the reliance
on legacy systems not designedwith cybersecurity inmind, and real-
time requirements, as downtime can cause widespread disruptions.
Therefore, relevant security approaches include: (i) Defense-in-
depth: layered security combining network segmentation, intrusion
detection systems (IDS), and access controls. (ii) Anomaly detection:
using machine learning or model-based approaches to identify
deviations in sensor data or control commands that may indicate
cyberattacks or equipment faults. (iii) Resilient control systems:
algorithms designed to maintain stability and safe operation even
when parts of the system are compromised.

On the other hand, for autonomous vehicles, key challenges in-
clude sensor spoofing (e.g., GPS jamming, LiDAR blinding), which
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can mislead navigation systems, and split-second decision-making
required for safety. Therefore, relevant security approaches include:
(i) Sensor fusion: combining data from multiple sensors (e.g., cam-
eras, LiDAR, radar) to detect and correct for discrepancies. (ii) Re-
dundancy & fail-safes: using backup systems for critical functions
such as braking and steering. (iii) Secure communication: using en-
cryption and authentication protocols to prevent message spoofing
or hacking of vehicle-to-vehicle (V2V) or vehicle-to-infrastructure
(V2I) communication.

The complexity of securing CPS is today complicated by the use
of artificial intelligence (AI) techniques, as these techniques allow
these systems to increase their autonomy in various tasks, such as
energy optimization. As autonomous decisions by a CPS may result
in unsafe physical actions, it is important to introduce constraints
on these actions. On the other hand, AI techniques can also enhance
security. Examples include: (i) AI-driven anomaly detection and
predictive analytics to identify potential system failures before they
occur, reducing downtime and maintenance costs; (ii) AI-driven
analysis of vast amounts of sensor and network data to detect and
respond to security threats, cyberattacks, or system anomalies;
(iii) AI-driven adaptation of CPS to changing conditions, such as
handling concept drift in security monitoring or environmental
variations in industrial settings. In addition, AI techniques can be
used to find architectural solutions that can remain secure, safe,
and provide timeliness in the long run, even though detailed design
decisions change some functionality over time.

In this paper, we review some of our previous work on securing
CPS in two domains, namely:

• Smart IoT Systems. These are autonomous systems consisting
of several IoT devices that use reinforcement learning to auto-
matically optimizemetrics of interest to end-users/applications.
A typical example of such a metric is energy consumption.
However, a critical problem is represented by safety and se-
curity. Therefore, these systems represent a useful example
of an AI-driven autonomous CPS, whose actions have to be
constrained to ensure safety and security.

• Avionics concept design optimisation. Here we consider the
interrelation of the extra functional properties of a CPS in the
early concept design stage and use search-based heuristics
and AI techniques to navigate within the complex design
space. This is demonstrated to considerably speed up the
concept design time while at the same time provide example
solutions that respect the stipulated redundancy, isolation,
and timeliness properties, within given cost constraints.

On the basis of this past work, we also discuss novel research
directions.

2 Smart IoT Systems
The advent of advanced communication protocols for devices of
the Internet of Things (IoT), such as 6LoWPAN, CoAP, and Zigbee,
combined with significant advancements in artificial intelligence
(AI), has enabled seamless interconnectivity between IoT devices,
leading to the creation of intelligent and autonomous IoT systems.
In the consumer market, IoT technology is often associated with the
concept of ’smart home’. This encompasses a wide range of devices

and appliances, including lighting fixtures, thermostats, home secu-
rity systems, and cameras, all of which are integrated into common
ecosystems. These ecosystems also incorporate various sensors,
such as motion, sound, light, heat, and touch sensors, that can
be controlled through smartphones or other ecosystem-connected
devices.

A popular approach to deliver intelligent IoT services involves
the use of trigger action applications (T/A) or applets. These apps
enable functionalities ranging from simple tasks, such as “unlocking
a door as an authorized user approaches”, to complex operations,
such as “autonomous vehicle navigation through predefined areas.”
These applications facilitate communication between the manage-
ment device and the IoT devices, including sensors and actuators,
through edge or cloud computing through API calls. Platforms like
IFTTT [8], Zapier [20], and Apiant [1] allow third-party develop-
ers to create and deploy custom T/A apps. This approach fosters
vibrant developer communities that design applications tailored to
various environments, devices, and protocols.

However, the development of smart IoT-based systems faces sig-
nificant challenges due to the need for seamless interconnection
and interoperability among devices, apps, and users. The complex
and dynamic nature of IoT ecosystems, where devices and applica-
tions interact continuously, introduces potential safety and secu-
rity risks. Furthermore, T/A apps are often designed with narrow,
device-specific goals (e.g., ‘turn on the heater if the temperature
drops below a set threshold’) and lack a holistic understanding of
the broader IoT environment. This limited perspective can lead to
suboptimal decisions or actions that do not align with global user
requirements or overarching system goals.

Existing research has explored the application of reinforcement
learning (RL) to optimize IoT systems for specific objectives, such
as energy management, efficient resource allocation, and cost mini-
mization. Although these RL-based frameworks excel in achieving
their target goals, they often neglect critical aspects of safety and
security, which are essential in IoT ecosystems.

This highlights the urgent need for intelligent monitoring sys-
tems that not only ensure safety and security but also optimize
functionality with a global view of all interconnected devices and
their interactions. Such systems should integrate security, function-
ality, and user-centric goals into a cohesive framework, addressing
the shortcomings of current approaches and paving the way for
safer, more efficient IoT ecosystems. The design of such systems is
challenging because it requires novel constrained RL-based frame-
works that can autonomously predict ‘optimal’ and ‘safe’ decisions
in an IoT system.

In what follows, we first introduce the relevant background,
followed by an overview of Jarvis, the first autonomous system
based on RL that supports safety and security policies [12], and
then discuss open research directions.

2.1 Background
2.1.1 IoT Architecture. At a high level, an IoT architecture can be
conceptualized as comprising four key components: devices, edge,
cloud, and control devices.

• Devices include sensors, actuators, and appliances that inter-
act with their environment. Examples include smart locks,
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Figure 1: Deep Q Learning Environment (figure from [12])

lights, thermostats, and motion sensors. These devices are
designed with standardized “capabilities,” enabling them to
modify specific “attributes” in response to “commands.” For
instance, actuators like smart locks or lights can perform
actions such as locking/unlocking, powering on/off, or ad-
justing temperature, while sensors can detect states like
motion/no motion, specific sound levels, or temperature vari-
ations.

• Edge components act as intermediaries, comprising hubs,
routers, and other connection-enabling devices. They facili-
tate communication between devices and higher-level sys-
tems by translating device-specificmessages (e.g., “lock/unlock”
or “heat/cool”) into normalized, edge-readable events (e.g.,
“door locked” or “temperature reached X degrees”).

• Cloud systems encompass services such as databases, ana-
lytics servers, and other cloud-based platforms that support
data processing, storage, and advanced analysis.

• Control devices include interfaces such as smartphones, tablets,
and desktops with which users interact to monitor and con-
trol IoT systems.

The operation of these components is organized around an event-
driven, publish-subscribe architecture. Devices generate and pub-
lish events (e.g., "door opened" or "device turned on"), which are
processed by edge handlers and made available to subscribing apps.
These apps, having subscribed to relevant events, can respond ap-
propriately, ensuring seamless interoperation and coordination
within the IoT ecosystem.

2.1.2 DeepQ Learning. A reinforcement learning (RL) framework [18]
(illustrated in Figure 1 [12]) operates within an environment where
each state-action pair (𝑠, 𝑎) or state transition is associated with
a reward function 𝑅(𝑠, 𝑎), which assigns a reward value 𝑟 . An RL
agent navigates this environment following a policy 𝜋𝜃 (𝑠, 𝑎) for a
time period 𝜃 , accruing a cumulative reward based on the state tran-
sitions encountered and the underlying model of state transition
probabilities. The objective of an RL system, such as a Q-learning
framework, is to discover the optimal policy that maximizes the
total accumulated reward. This is achieved through the exploration
and evaluation of a Q function, which represents the expected
cumulative reward for every state-action pair.

In a deep Q learning system, a Deep Neural Network (DNN) is
used to determine the optimal Q function using a temporal differ-
ence equation defined as follows:
𝑄𝑡 (𝑠, 𝑎) = 𝑄𝑡−1 (𝑠, 𝑎) +𝛼 [𝑅(𝑠, 𝑎) +𝛾𝑀𝑎𝑥𝑎′ {𝑄𝑡 (𝑠′, 𝑎′)}−𝑄𝑡−1 (𝑠, 𝑎)]

where 𝑄𝑡 (𝑠, 𝑎) is the current Q function and 𝑄𝑡−1 (𝑠, 𝑎) is the
previous Q function for the environment. The estimated next state
and action are denoted by 𝑠′ and 𝑎′, respectively. The learning
rate (𝛼) determines to what extent the newly acquired information
overrides the old information. The discount factor (𝛾 ) determines
the importance of future rewards.

2.2 Overview of Jarvis
2.2.1 IoT Environment. The design of Jarvis assumes an environ-
ment represented by a finite state machine (FSM), consisting of 𝑘
devices {𝐷1, .., 𝐷𝑘 },𝜂 users {𝑈0, ...,𝑈𝜂 }, and𝑚 apps {𝑎𝑝0, , ...., 𝑎𝑝𝑚}.
Manual operations in the model are represented by a pseudo app
𝑎𝑝0. Each device in the environment is modeled by a set of device-
states and a set of device-actions. At any point of time, device𝐷𝑖 can
be in one of a set with a number 𝑖𝑠𝑠 of device-states: {𝑝𝑖0 , 𝑝𝑖1 , ...𝑝𝑖𝑠𝑠 }.
At a time instance 𝑡 , a device-action can be executed on device 𝐷𝑖

from a set with a number 𝑖𝑎𝑠 of device-actions:𝑎𝑡𝑖 ∈ {𝑎𝑖0 , 𝑎𝑖1 , . . . , 𝑎𝑖𝑎𝑠 }.
Specifically for IoT platforms, device capabilities and device at-
tributes can be translated to device-actions and device-states respec-
tively. Each device 𝐷𝑖 has a transition function 𝛿𝑖 which is the link
between a device-action and a device-state. For a device 𝐷𝑖 in state
𝑝𝑖𝑥 and having device action 𝑎𝑖𝑦 take place on it, 𝛿𝑖 (𝑝𝑖𝑥 , 𝑎𝑖𝑦 ) = 𝑝𝑖𝑥 ′
gives the new state of the device. Alongwith this, each device𝐷𝑖 has
a dis-utility function 𝜔𝑖 (𝑝𝑖𝑥 , 𝑎𝑖𝑦 ) which represents the dis-utility
per time instance that results if the execution of device-action 𝑎𝑖𝑦 is
delayed in state 𝑝𝑖𝑥 . A device can exist in different locations and thus
have varying contexts in terms of accessibility, user permissions etc.
Jarvis thus follows the container based approach commonly used
by IoT platforms. Each container acts as a boundary between the
devices; the containers are organized hierarchically according to
user accounts, locations, and groups. Therefore, device 𝐷𝑖 can only
be accessed by a set of authorized users 𝑢𝑖 , 𝑢𝑖 ⊆ {𝑈0,𝑈1, ...,𝑈𝜂 },
depending on its location 𝑙𝑖 and its group 𝑔𝑖 , and corresponding
device and app subscription policies.

2.2.2 State Transition Model. For the overall environment state
𝑆𝑡 , at the next time instance 𝑡 + 1, a set of authorized users 𝑈 𝑡 ⊆
{𝑈0,𝑈1, ...,𝑈𝜂 } can use a set of apps 𝐴𝑃𝑡 ⊆ {𝑎𝑝0, 𝑎𝑝1, ...., 𝑎𝑝𝑚}
to perform an action 𝐴𝑡 on a set of devices 𝐷 ⊆ {𝐷1, 𝐷2, .., 𝐷𝑘 },
to get the new state of the environment 𝑆𝑡+1. So the state transi-
tion of the environment is represented as the current state 𝑆𝑡 =

(𝑠0, 𝑠1, ., 𝑠𝑖 , ., 𝑠𝑘 ) plus a set of at most 𝑘 (one per each device) device-
actions. 𝐴𝑡 = {𝑎𝑡0, 𝑎

𝑡
1, ..., 𝑎

𝑡
𝑘
} is the set of actions taken at time in-

stance 𝑡 by a set of users𝑈 𝑡 through a set of apps𝐴𝑃𝑡 resulting in the
next state 𝑆𝑡+1 at time instance 𝑡+1. The next state is computed using
the transition function for each device and corresponding action on
the device such that 𝑆𝑡+1 = (𝛿0 (𝑠0, 𝑎𝑡0), 𝛿1 (𝑠1, 𝑎

𝑡
1), ...., 𝛿𝑘 (𝑠𝑘 , 𝑎

𝑡
𝑘
) =

Δ(𝑆𝑡 , 𝐴𝑡 ) where Δ is the overall transition function of the environ-
ment.

Definition 2.1. [12] A 𝐹𝑆𝑀 consists of tuple (𝑆𝑆,𝐴𝑆,Δ) where:
𝑆𝑆 =

⋃𝜈
𝑖=0 𝑆𝑖 is the state space with 𝜈 =

∏𝑘
𝑖=0 𝑖𝑠𝑠 ; 𝐴𝑆 =

⋃𝜐
𝑖=0𝐴𝑖

is the action space with 𝜐 =
∏𝑘

𝑖=0 𝑖𝑎𝑠 ; and Δ is the overall state
transition function. The overall state of the 𝐹𝑆𝑀 at time instance 𝑡
is defined as 𝑆𝑡 = (𝑠0, 𝑠1, ., 𝑠𝑖 , ., 𝑠𝑘 ), where 𝑠𝑖 is the state of the i-th
device such that 𝑠𝑖 ∈ {𝑝𝑖0 , 𝑝𝑖1 , ...𝑝𝑖𝑠𝑠 }.

5



SaT-CPS ’25, June 6, 2025, Pittsburgh, PA, USA Elisa Bertino and Simin Nadjm-Tehrani

State transitions are monitored in terms of “episodes”, where
each episode is characterized by two parameter: time period 𝑇 and
interval 𝐼 . The state transitions occur every 𝐼 time units, such as
seconds, minutes, and hours, until the timestamp reaches 𝑇 time
units, after which the state is reset to the initial state and marks
the end of an episode. An episode basically consists of 𝑇 /𝐼 time
instances at which the state transitions of the environment are
recorded. For example, for {𝑇, 𝐼 } = {60, 1} minutes, the episodes
are an hour long with state transitions every minute.

The following definition defines the Jarvis model of the IoT
environment state transitions in terms of episodes.

Definition 2.2. [12] An episode is a tuple (𝑁, 𝑆0,𝑇 , 𝐼 ). 𝑁 =

{𝑆0, 𝑆1, ., 𝑆𝑡 , ..𝑆𝑛} is an ordered list of states reached in the episode
where each next state 𝑆𝑡+1 = Δ(𝑆𝑡 , 𝐴𝑡 ) for an action 𝐴𝑡 and 0 <

𝑡 ≤ 𝑛; 𝑛 = ⌈𝑇 /𝐼⌉; 𝑆0 is the initial state of the episode; 𝑇 is the time
period; 𝐼 is the interval.

2.2.3 Jarvis Optimization Problem. The functionality optimization
goal is modeled as an Markovian decision problem (MDP), a se-
quential decision-making problem where the results are under the
control of an agent. The agent’s goal is to maximize functionality
as specified by the user by choosing a sequence of actions for the
upcoming episode of the environment. In the Jarvis model, the func-
tionality requirements defined by the user are measured through
a reward function. The specified functionality requirements deter-
mine the utility (𝐹 ()) that the user gains, which is one part of the
reward function in the environment. The other part derives from
the di-sutility (𝐷 ()) caused to the user in terms of delays, waiting
time, and discomfort. The general structure of the reward function
is defined as follows: 𝑅(𝑆, 𝑆 ′, 𝑡) = 𝐹 (𝑆, 𝑆 ′, 𝑡) −𝐷 (𝑆, 𝑆 ′, 𝑡) where 𝑆 is
the current state, 𝑆 ′ is the next state of the environment, and 𝑡 is
the current time instance of the episode. The goal of Jarvis is thus to
maximize the cumulative reward at the end of the episode, which
is an MDP defined formally as follows.

Definition 2.3. [12] A MDP is a tuple (𝐹, 𝑅, 𝑃,𝑇 , 𝐼 , 𝑆0). 𝐹 is the
FSM of the environment; 𝑅 is the reward function; 𝑃 is the state
transition probability table; 𝑇 is the time period; 𝐼 is the interval;
and 𝑆0 is the initial state of the environment. The agent’s goal is
to find a strategy of actions according to 𝑃 , maximizing the total
value of 𝑅 of the next episode, for the environment in state 𝑆𝑖 in 𝐹

where 0 ≤ 𝑖 ≤ ⌈𝑇 /𝐼⌉.

The application of the RL approach to IoT systems requires
addressing two major challenges, which we discuss in what follows
together with the approach adopted in the design of Jarvis.
Safety/Security of State Transitions: State transitions in IoT systems
can pose safety or security risks to users or the environment. Uni-
form state transition probabilities are unsuitable; instead, transi-
tions must depend on context and environment. Unsafe or insecure
transitions should have probabilities set to zero, requiring identifi-
cation of environment-specific safety and security policies before
defining the state transition probability table. Examples of safety
policies in a smart house environment are “the front door must be
locked when nobody is in the house or when everyone in the house
is sleeping,” and “the security system and fire alarm must always be
on.”Examples of security policies are “only authorized users should
enable/disable devices” or "installation of new software on a device

can only be authorized by a user with the admin authorization for
the device or a user with delegation from an admin.”

Addressing this challenge requires defining safe state transitions.
In Jarvis, state transitions that occur naturally during a defined
learning phase are considered safe. This phase, set up by the user,
involves approving or performing actions manually to ensure that
the transitions are safe and secure, that is, they verify all the speci-
fied safety and security policies. These transitions are recorded as
trigger-action (T/A) behaviors: T: Current State 𝑆𝑡 → A: Next
Action 𝐴𝑡+1, forming the training dataset TD. To prevent learning
benign device malfunctions or user errors as unsafe, the dataset is
filtered using a feedforward artificial neural network (ANN) trained
via backpropagation with user-labeled benign anomalies. Label-
ing can be done offline or in real time based on user preferences.
Filtered transitions and their instance counts are stored, and only
transitions exceeding a specific threshold 𝑇ℎ𝑟𝑒𝑠ℎ𝐸𝑛𝑣 are assigned
uniform probabilities. All others are marked as null to prevent
unsafe transitions.
Unknown Reward Function: Quantifying the exact “utility" or “re-
ward" for actions is challenging due to non-Markovian factors, such
as environmental variables (e.g., electricity prices, temperature) and
user behavior. As a result, the reward function 𝑅(𝑠, 𝑎) is not strictly
Markovian and depends on the state, action, and specific time in-
stance, making its precise value uncertain for the agent.

To address the challenge of unknown reward functions, the
approach is to estimate the reward function using user input and
previous experiences. The estimated (smart) reward function for
environment state 𝑆𝑡 , action 𝐴, and time instance 𝑡 is defined as:

𝑅𝑠𝑚𝑎𝑟𝑡 (𝑆,𝐴, 𝑡) =
𝜅∑︁
𝑗=0

(𝑓𝑗 )𝐹 𝑗 (𝑠, 𝑎, 𝑡) −
𝐼

𝑘𝑇

𝑘∑︁
𝑖=0

𝜔𝑖 (𝑠𝑖 , 𝑎) (𝑡 − 𝑡 ′)

User inputs define 𝜅 functionality requirements through normal-
ized reward functions 𝐹 𝑗 , such as energy consumption, electricity
costs, temperature difference, or network usage. Each reward is
assigned a weight 𝑓𝑗 , reflecting user priorities. These weights en-
able the system to learn strategies aligned with user goals while
considering the overall environment. Users can adjust weights to
prioritize specific goals, but the system autonomously selects strate-
gies that balance all requirements. The user can alter weights to
give more preference to one goal over the others but the essential
strategy choices are made by the system keeping in mind the entire
environment.

The second part of the expression represents the estimated dis-
utility caused by each device based on its state and predefined
dis-utility values over episodes of duration 𝑇 with intervals of size
𝐼 . Dis-utility refers to user discomfort or waiting time, estimated
from past user behavior. Higher dis-utility indicates a significant
deviation from typical user preferences, influenced by the time
difference 𝑡 − 𝑡 ′ between the current and preferred state-action
instances. The normalized 𝜔𝑖 function captures the dis-utility cost
for each device. Incorporating dis-utility into the reward function
ensures the agent balances functionality optimization with user
convenience. For example, in a smart home, the agent might avoid
actions that conserve maximum energy (e.g., shutting off all appli-
ances) if it causes high user discomfort. Reward function parameters

6



Invited Paper: Smart Autonomous Cyber-Physical Systems SaT-CPS ’25, June 6, 2025, Pittsburgh, PA, USA

(𝑓𝑗 and𝜔𝑖 ) are tuned to balance utility and dis-utility using a utility-
dis-utility ratio 𝑋 . The ratio 𝑋 reflects user preferences and the
environment set-up.

2.2.4 Q Learning Algorithm. The FSM of the IoT environment is
used to build a simulated environment where an agent can run
multiple episodes to find the optimal and safe device actions for
the upcoming episodes. The agent balances exploration and ex-
ploitation according to the exploration rate 𝜖 . The exploration of
the agent is constrained by security and safety policies at each step
by using the safe state transition table (𝑃𝑠𝑎𝑓 𝑒 ) learned based on
the approach described above. Random batches of previous agent
experiences are selected and replayed to learn cumulative rewards
according to a discount factor 𝛾 and a batch size 𝐵𝑠𝑖𝑧𝑒 . Finally, the
random batch with cumulative rewards is used to further train the
RL framework DNN in order to learn optimal Q table values for
each state action pair and timestamp of the episode.

2.2.5 Experimental Results. Several experiments to evaluate Jarvis
were carried out in a smart home environment and its performance
was evaluated using simulated and real-world data. In the experi-
ments Jarvis was able to detect 100% of the 214 manually crafted
safey and security violations collected from previous work and
was able to correctly filter 99. 2% of the user-generated benign
anomalies and malfunctions from safety violations. With respect to
functionality benefits, Jarvis was evaluated using real-world smart
home datasets on energy use minimization, energy cost minimiza-
tion, and temperature optimization. The experimental evaluation
showed that Jarvis has significant advantages over normal device
behavior in terms of functionality and over general unconstrained
RL frameworks in terms of safety and security.

2.3 Future Research Directions
2.3.1 Complex IoT Systems. It is important to note that in the for-
mulation of the MDP for Jarvis, optimal actions are chosen with
respect to the current state and timestamp of the episode. It is
possible that in complex IoT systems, a more sophisticated policy
identification is required in terms of higher-order temporal trajec-
tories. In this case, an MDP model that relies on the immediate
previous state is a limitation. A research direction is to address this
limitation by incorporating the temporal parameters of the episode
in the state definition of the model. Such an approach would result
inmore fine-grained optimization policies, but at the cost of a higher
number of state spaces and computation cost. It is also important
to analyze the optimal temporal parameters and specifics of the
DNN, like number of hidden layers, activation functions, optimiz-
ers, network organization (feed forward/recurrent/convolutional),
based on different device configurations and user requirements, for
different IoT systems.

2.3.2 Adapting Security and Safety Policies. The Jarvis framework
requires a learning phase by which the framework can learn safe
state transitions by “observing” the user or explicitly asking the user.
To minimize such training activity, an approach is to use some ex-
isting policies and then adapt them to the IoT system of interest. An
approach is to generalize existing policies using symbolic learning.
An example of such a specific form of symbolic learning is inductive
logic programming. An inductive logic programming system aims

to find a set of logical rules, called a hypothesis, that together with
some background knowledge explain a set of positive and negative
examples. FastLAS [9] is a well-known symbolic learner based on
inductive logic programming. Systems like FastLAS are usually
able to generalize quite well from specific examples. Informally,
the generalization capabilities of a learner like FastLAS are due to
the fact that, when evaluating multiple hypotheses, the hypothesis
with the shorter rules is preferred (based on the Occam’s razor
principle). The selected hypothesis is thus the most general.

In order to apply such an approach to IoT systems, one would
need to not only observe the user behavior, but also collect context
information about the actions executed by the user. For example,
time of the day when a certain action is executed and events oc-
currences in response to which actions are executed. In addition,
knowledge about the functions of IoT devices is critical. For exam-
ple, which devices can execute actions that allow external access to
a given house.

Therefore, given a set of policies learned in a given IoT system
(referred to as the source IoT system) and context information, one
can identify which of these policies are relevant for the IoT system
of interest (referred to as target IoT system) based on the devices
in the latter. One can then execute a short training phase to verify
which policies are confirmed by the observed user actions, which
ones are not confirmed, and thus must be discarded, and which
user actions are not covered by the policies. In the latter case, new
policies would need to be generated and added to the initial set of
policies. The sharing of learned policies and ontologies describing
IoT devices can be supported by community-based mechanisms
(see the notion of WikiHow for IoT devices [3]).

2.3.3 Real-Time RL Framework. From an architectural point of
view, Jarvis is based on a centralized RL system that controls all
devices in a given IoT system. The centralized RL system would
typically be connected to control devices, such as mobile phones
and desktops. Such an approach allows one to run the framework
on a machine with adequate resources. However, there are applica-
tions with real-time constraints on the actions taken by IoT devices.
Relevant examples can be found in mobile devices, computing while
communicating through wireless channels [2], which have to per-
form autonomous data acquisition [4] or some data analysis tasks.
For applications with real-time constraints, a centralized RL archi-
tecture is not suitable.

To address real-time requirements, a possible approach is to
adopt design a split edge-based architecture, such as the Deep-
WiERL framework [14], by which two RL systems are deployed:
(a) an edge RL system, referred to as control RL system - which is
the Jarvis framework, and (b) a device RL system, referred to as
operative RL system - which simply decides the next action to be
executed based on the current device state. The edge RL system
continuously learns and adapts its DNN, implementing the Q func-
tion, and periodically transmits the parameters of this DNN to the
operative RL system. The operative RL system then modifies the
parameters of its own DNN accordingly.

For the Jarvis specific approach, an additional element that must
be transferred from the edge RL system to the operative RL system
is the set of security and safety policies, as DeepWiERL does not
address safety and security and only focuses on adapting parameters
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for wireless communications of devices. The policies do not need
to be periodically transmitted but only when there are changes
in these policies. In addition, each device would receive only the
policies relevant to it.

The design of the split edge-based RL architecture requires ad-
dressing a challenge related to the case when multiple IoT devices
have to collaborate to perform actions, as the DeepWiERL only
covers the case of a single device. To address such a problem, one
needs to include, among the actions that devices can take, the com-
munication actions among IoT devices. The control RL system can
then also learn which communication actions are beneficial and
need to be executed by the devices, depending also on the com-
munication capabilities of the devices. Such an approach has the
advantage of scalability and decentralization as the devices would
be autonomous and directly able to initiate communications with
other devices without having to rely on some central intermediary.

Another critical challenge related to real-time requirements is
that RL has high convergence times [10]. In a split architecture, this
issue would affect the bootstrap phase of the control RL system.
To address this issue, one possibility is to use transfer learning
techniques based on generative adversarial networks (GANs) [17].
This approach allows one to transfer a neural network trained on a
dataset in a source domain to a target domain that does not have
many training data. Lack of training data is a common occurrence
in several domains, including cyber security. Previous work [17]
has used GANs to create a domain-invariant mapping of a source
dataset (SD) and a target dataset (TD). Experiments show that such
an approach is effective for target domains with limited training
data.

The application of such a methodology to quickly bootstrap the
DNN in the control RL system has two variations:

• Reward Knowledge Transfer: Under this variation, some explo-
rations are performed by the control RL system. Then a GAN
is used to generate augmented or synthetic data (enhanced
exploration data) by minimizing domain loss between SD
and TD. The resulting dataset is then used to train the DNN
of the RL control system. A key environment-specific param-
eter in this setting is the bias introduced during the training
of the DNN in the control RL system. For optimal conver-
gence, the new exploration samples should be preferred over
stale samples from the SD. This approach requires two learn-
ing/training steps, one to train the GAN and one to train the
DNN at control RL system.

• Quality Value Knowledge Transfer: This variation is similar to
previous one except that here one would transfer knowledge
about the RL model directly by exchanging Q values instead
of exploration samples. Here, the TD is generated from the
baseline control RL system model (Q values) trained by some
new explorations. Here, the GAN has two tasks: (i) minimize
domain loss and (ii) optimize the Q function. The key goal
here is to balance domain loss and quality loss while training
the GAN. Since there is only one learning step here, one
would need to introduce a bias (TD over SD) into the GAN
itself; this can be done when selecting batches to train the
GAN.

Research is required to refine, evaluate, and compare these ap-
proaches.

3 Trade-off Analysis at Early Concept Stage
Jarvis operates on actions performed by 𝑘 autonomous devices
within a trade-off space between the optimization of certain goals
and safety and security. The set of devices, apps, and potential action
space is fixed in that devices provided by vendors have predefined
actions that they can make; for example, a smart lock can only open
or close the door it is managing.

We now move on to a completely different kind of trade-off anal-
ysis in the life cycle of CPS. Here, the focus is on two distinguished
characteristics: (1) the expected system life-time is very long, the
architectural decisions of which application to run on which pro-
cessing component are not fixed at an early concept design stage;
and (2) the system has critical fault tolerance, security, and timing
requirements that are specified early, need to be assured while the
design space is explored, as the design progresses, but long before
detailed design and implementation is fixed.

An example is an avionic system with airborne application func-
tions where multiple possible concepts are studied in the early
conception stage. Many decisions made at this stage impact future
adaptations and further development in non-trivial ways. For exam-
ple, once a network topology is fixed and the placement of functions
on computing elements is decided, a further change for addition
of redundant network paths for fault tolerance may become costly
since it may change other satisfied requirements. Isolation of data
exchanges within sub-nets to ensure information security across
multiple sub-nets may be possible in a range of concept designs,
but impacts allocation of software to potentially different hard-
ware components. The addition of new functionality (realized as
new software applications) without jeopardizing the end-to-end
timeliness of calculations at a later implementation stage may be
hard to consider and expensive to verify. In these systems achiev-
ing “smartness” and “autonomy” is much more challenging than in
conventional IoT systems (like the ones addressed by Jarvis). Here,
smartness amounts to finding the right configurations in the design
space in a novel and efficient way. Autonomy translates to finding
the trade-offs with a good deal of tool support.

Similar instances of the problem exist when allocating micro-
services to a set of compute elements in base band units in radio
access controllers in future generation networks, where capacity,
latency and power consumption requirements co-exist with non-
trivial trade-offs [16, 19].

In the rest of this section, we elaborate on the challenges en-
countered in addressing the high-level problem with avionics as
an example. Although studying safety in avionics systems has a
long tradition, the impact of security breaches on safety has only re-
cently been modeled, leading to methods to deal with such risks[13].
Still, hazard and risk analyses are typically performed when archi-
tectural decisions have been made and the system is hard to change
in many dimensions.
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3.1 Terminology
To make the problem space clear in the avionics concept design
stage, we introduce the following terminology used to character-
ize various solutions in recent works, starting with the NetGAP
methodology[6].

• Application: defines functionality and is represented by
software processes that exchange messages and work to-
gether to provide the expected behavior.

• Platform: the set of conceivable hardware and system soft-
ware components on which processes can be hosted or de-
ployed. Hardware modules provide resources (i.e. com-
munication bandwidth, memory, and computing capacity)
used by application processes in their computation or com-
munication.

• Platform Configuration or Topology: is the arrangement
of a selected set of hardware modules according to a certain
pattern of interconnection.

3.2 NetGAP for State Exploration
Here we give a brief overview of NetGAP and illustrate the overall
scheme in Figure 2, reused from [6].

NetGAP uses graphs to represent topologies and employs a graph
grammar to describe how platformmodules can potentially connect.
A candidate topology is formed by applying the grammar rules one
by one, starting with an initial graph, which may be empty, until
a topology that meets the application requirements is discovered.
This involves solving 3 subproblems, denoted SP1 to SP3, as follows.

The process allocation sub-problem (SP1) consists of finding a
suitable allocation of software processes (with their associated com-
munication needs) to computing modules to be consistent with the
computation capacities of the processing modules, and characterise
communication needs for each computation module. This problem
can be solved by a genetic algorithm (GA).

The topology generation sub-problem (SP2) consists of building
the topology graph by deciding how many and which types of mod-
ules (computing modules, communication modules, etc.) should be
present in the topology and how they should interconnect to re-
spect the safety (requiring fault tolerance), timeliness, and security
related requirements.

The mapping sub-problem (SP3) consists of finding a mapping
between the solutions of the first two problems. This means es-
tablishing which computing modules in the solution for SP1 (now
hosting software processes) correspond to which hardware modules
in the topology generated as a solution to SP2.

SP1 thus focuses on meeting the application’s requirements for
communication and computation resources. Its solution suggests a
suitable number of computing modules, but also defines the inter-
module communication patterns (how often will messages be ex-
changed and how big message sizes are envisaged) to observe when
tackling the next two subproblems.

Solving SP2 starts from an initial topology graph (which can be
either an empty graph or a partially known topology), applying
various sequences of graph grammar rules leading to alternative
topologies. Each topology connects the computation modules using
the available communication modules. Monte Carlo Tree Search
(MCTS) is applied to study alternative topologies for consideration.

This process involves the repeated resolution of SP2 and SP3 until
a termination condition is met.

Different topologies allow different routings of inter-process
messages and induce different end-to-end delays. In addition, safety
requirements inducing fault tolerance aspects are respected by some
topologies and not others. Similarly, security-related requirements
disallow or promote certain topologies.

SP3 is a subproblem embedded in SP2, which attempts to see
whether the application and topology requirements are satisfied
by a given candidate topology. Alternative methods can be used to
solve SP3. In the original NetGAP approach, a fast genetic algorithm
was used to represent the cross-influence of the two partial solu-
tions, namely the outcome of the process allocation problem and
the topology generation problem. The algorithm evaluates the mer-
its, i.e. the rewards of each configuration in terms of the envisaged
requirements.

In a refinement of the approach, NeuralGAP [7], the topology
evaluation problem is formalised and solved using Graph Convolu-
tional Networks (GCN).

3.3 Topology Evaluation by NeuralGAP
Once the state space of possible topologies is known, the candidate
topologies are to be evaluated to meet the software application
requirements, which may have unknown interactions between
functional and extra-functional aspects. Meeting dependability and
timeliness requirements has subproblems such as routing data ex-
changes in the network, finding shortest paths and cliques, and
clustering network elements according to their different attributes.
To understand the complexities in the solution space, we consider
the following formalisation.

Let𝑇 = (𝑉 , 𝐸, 𝑙𝐸 , 𝑙𝑉 ) be the graph representing a candidate topol-
ogy, where 𝑉 represents a set of hardware modules, 𝐸 is a set of
directed edges representing the links between the hardware mod-
ules, and 𝑙𝐸 and 𝑙𝑉 are labelling functions that assign labels to
edges and vertices, respectively. Let 𝑉𝑝 ⊆ 𝑉 be the subset of ver-
tices of 𝑇 labeled as processing modules. Let 𝑃 = {𝑝1, . . . , 𝑝𝑚} be a
finite set of software processes, and 𝐺 = {𝑔1, . . . , 𝑔𝑛} be a partition
over the set P, i.e. each process 𝑝 in 𝑃 is contained in some 𝑔𝑖 and∑𝑛
𝑖 |𝑔𝑖 | = 𝑚. Finally, let 𝑤𝑖 : 𝑉𝑝 −→ 𝐺 be a bijective mapping

from labeled (processing) vertices in 𝑉𝑝 to process groups in𝐺 and
𝑊 = {𝑤1, . . . ,𝑤ℎ} be the set of all such possible mappings. Note
that in practice, each𝑤𝑖 represents a possible allocation of software
processes to processing modules in 𝑉𝑝 .

Now, let 𝑓 : (𝑇,A) ×𝑊 −→ [0, 1] be a function that evaluates
the extent to which a topology 𝑇 with the mapping 𝑤𝑖 is able to
host the envisaged application given the requirements expressed
by A.

The reward of a topology𝑇 based on a grouping𝐺 (representing
the mapping of processes onto modules) evaluated against the
requirements A, is expressed by the function 𝑟 (𝑇,𝐺,𝐴).

Then our goal is to find the maximum reward expressed as fol-
lows:

𝑟 (𝑇,𝐺,A) = 𝑓 (𝑇,𝑤𝑚𝑎𝑥 ,A),
𝑤𝑚𝑎𝑥 = 𝑎𝑟𝑔𝑚𝑎𝑥

𝑤𝑖 ∈𝑊
𝑓 (𝑇,𝑤𝑖 ,A)
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Figure 2: The main loop of NetGAP[6]. Grey shaded areas identify the techniques used to solve each subproblem.

where𝑤𝑚𝑎𝑥 is the maximum reward, calculated across all map-
pings in𝑊 .

Solving the last equation corresponds to solving SP3 and high-
lights the first challenge of the topology evaluation problem: as
there might exist up to𝑛! (factorial of the number of process groups)
possible mappings in𝑊 , finding𝑤𝑚𝑎𝑥 is computationally expen-
sive.

The second challenge of the topology evaluation problem is per-
tinent to the existence of requirements in A that result in complex
morphological analysis of the topology 𝑇 within 𝑓 . These require-
ments are typically use-case specific and hard to predict in advance.
They encompass tasks such as finding paths, cliques, and minimal
covers in a graph, among others. Although efficient algorithms exist
for some tasks, others are difficult to approximate when evaluating
thousands of candidate solutions.

NeuralGAP addresses the named complexities by adopting a hy-
brid approach whereby genetic algorithms and GCNs are combined
to make fast evaluations of the possible topologies and mappings.

The hybrid evaluator works in two steps: filtering and refine-
ment. During the filtering step, the neural network swiftly analyzes
candidate topologies. If the reward for the neural network exceeds
a defined threshold, the topology is passed to the genetic algorithm
for further refinement. If the score falls below the threshold, the
solution is abandoned.

This mechanism enables the rapid sorting and pinpointing of
promising candidates for in-depth analysis, while ignoring those
that do not offer viable solutions. The choice of threshold 𝑡ℎ𝑟𝑒 𝑓
is determined empirically and should be chosen considering the
reward function and the accuracy of the GCN module. Figure 3
shows the internal organization of the proposed hybrid evaluator.

Figure 3: The hybrid evaluation module of NeuralGAP [7].
Green shaded box shows the GCN module (filtering step),
blue shaded box represents the GA evaluator (refinement
step). The double weight arrows represent the flow of data,
and the thin arrows represent the control flow.

3.4 Use Case and Outcomes
The analysis of the state space exploration was evaluated on a
realistic avionics use case with two components, a mission-oriented
part and a flight-critical part. The mission-oriented part contains 8
periodic processes and 31 periodic messages, and the flight-critical
part consists of 91 periodic processes that exchange 629 periodic
messages. The application of NetGAP on this usecase identified
60 different solutions in around 7 hours (with a mean time to find
a solution of 477 s). These could be charted as clusters of highly
resilient ones, low or high degree of link overloads, low or high
latency scores, and costs (reflecting the amount of hardware used
in the topology). These solutions were also compared with a nearly
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optimal solution that was calculated using the mixed integer linear
programming (MILP) approach. After 12 hours of running the MILP,
a solution with almost 8% distance to the expected optimal was
accepted and charted. Several NetGAP solutions were "close" to the
MILP solution with various prioritisations of requirements. This
justifies applying the mix of heuristics in the NetGAP approach,
since multiple good enough solutions were identified in seconds[6].

Moving on to NeuralGAP, the speedup was evaluated on the
same use case, but this time focusing on how the MCTS termination
condition affects the found solutions. First, in terms of convergence,
it was shown that the same set of experiments performed with Net-
GAP, when repeated with NeuralGAP, led to finding high-reward
solutions faster. Several variations were studied: when the time to
terminate was specified at different levels(15s, 45s, 90s, and up to
300s). It was first at a higher timeout (300s) that the two methods
produced similarly attractive outcomes. NeuralGAP significantly
improves search space exploration for the same amount of time
spent doing it. In other words, for the same time span, the solver of
SP3 in NeuralGAP can consistently explore more of the solution
space than the genetic algorithm, helping the main search loop
prune out worse regions and focus on looking for solutions in the
more promising regions. This was then confirmed by charting the
amount of state space covered given a fix number of iterations[7].

The usability of the approach by practitioners has been partially
confirmed through discussions with industrial stakeholders. The
method is conceived as being more systematic and more efficient
compared to concept design in classic avionics systems engineering.
To quantify the gains, one would have to use the method in a real
case within industry, the data for which would unfortunately not
be shareable. Having an open synthetic use case "representing" real
cases is in some sense the nearest one can get to quantifying the
benefits.

3.5 Future Research Directions
While the above project startedwith industrial needs in the aerospace
sector, we believe that the inclusion of generic methods (graph
grammars, MCTS, genetic algorithms and GCNs) makes its adapta-
tion possible in other domains. An example is topology generation
for the cloud-RAN use case with latency and energy efficiency
requirements [11].

Adding to complexities of such cloud-RAN solutions is the de-
gree of independence of the core network functionality vis-à-vis
access network connectivity provision. In the forthcoming evolu-
tion of future networks beyond 5G, some scenarios envision open
RAN interfaces whereby different providers are able to provide sim-
ilar connectivity solutions, and the operators can mix and match
different solutions based on cost, resilience, timeliness, security,
privacy or other requirements. This space makes the analysis of the
overall network resilience a difficult task depending on knowledge
about the individual sub-components. On the one hand, a multi-
provider setup may give the impression of better fallback options
upon failure. On the other hand, quantifying the gains compared to
costs requires significant analysis that can easily end up in similar
search spaces as the one discussed above.

Further instances of these trade-off problems also exist in auto-
motive, industry 4.0, and multi-cloud (or hybrid cloud) solutions

for societal critical functions. We believe that variations of the
scheme need to be studied in those contexts to identify whether
they provide similar gains.

Further research is needed to find out which criteria to formalize
for each problem at hand (what should the reward functions look
like) and how to ensure that system owners are made aware of the
impact of a given choice on the whole solution.

Finally, the generative component in our approach was based
on genetic algorithms (NetGAP), and later complemented by GCNs
in NeuralGAP. Other generative AI approaches can be studied and
compared with the gains achieved in the presented papers.

4 Conclusions
In this paper, we discuss two research projects in different CPS
domains and highlight relevant research directions. The potential
of AI in the design and run-time management of complex CPS is
still in its infancy. Much research is needed to realise the full po-
tential of AI in enhancing security, for adding functionality in a
more efficient manner, and for understanding the trade-off between
different requirements at the design stage. This needs further ex-
ploration in these domains and others. However, using AI to realise
a system function may also introduce some risks, in addition to the
safety risks mentioned in Section 2, as AI models may not always be
consistent. They can also be attacked by smart adversaries aiming
to induce model mis-classifications, e.g. evasions in a monitoring
context, and for creation of new attack surfaces such as backdoors.
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