Check for
Updates

Demo: Ul Based Attacks in WebXR

Chandrika Mukherjee
Purdue University
West Lafayette, IN, USA
cmukherj@purdue.edu

Habiba Farrukh
University of California, Irvine
Irvine, CA, USA
habibaf@uci.edu

Abstract

The WebXR API enables immersive AR/VR experiences directly
through web browsers on head-mounted displays (HMDs). How-
ever, prior research shows that security-sensitive UI properties and
the lack of an <iframe> like element that separates different origins
can be exploited to manipulate user actions, particularly within the
advertising ecosystem. In our prior work, we proposed five novel
Ul-based attacks in WebXR, targeting the ad ecosystem. This demo
presents these attacks in a unified gaming application, embedding
each into distinct interactive scenarios. Our work highlights the
need to address design challenges and requirements for improving
immersive web-based experiences. We provide our demo video at:
https:// youtu.be/ ITBQbxnNg34.

CCS Concepts

« Security and privacy — Usability in security and privacy.

Keywords
WebXR, Security and Privacy, User Interface-Based Attacks

ACM Reference Format:

Chandrika Mukherjee, Reham Mohamed Aburas, Arjun Arunasalam, Habiba
Farrukh, and Z. Berkay Celik. 2025. Demo: UI Based Attacks in WebXR. In
The 23rd Annual International Conference on Mobile Systems, Applications
and Services (MobiSys °25), June 23-27, 2025, Anaheim, CA, USA. ACM, New
York, NY, USA, 2 pages. https://doi.org/10.1145/3711875.3734381

1 Introduction

End-users can engage in immersive 3D AR/VR scenes directly from
the web browser of their head-mounted displays (HMDs) without
installing additional software. This enables the development of
diverse WebXR [10] applications, from entertainment to education
and training, allowing users to interact using novel input methods
(such as controllers and gaze) within a 360° immersive environment.
In addition, various UI properties, such as transparency, overlapping
objects in the same space, and synthetic input enable the design of
complex scenes and interactions. However, these properties can be
exploited to trick users into actions that benefit an adversary.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).

MobiSys 25, Anaheim, CA, USA

© 2025 Copyright held by the owner/author(s).

ACM ISBN 979-8-4007-1453-5/2025/06

https://doi.org/10.1145/3711875.3734381

Reham Mohamed Aburas

American University of Sharjah
Sharjah, UAE
raburas@aus.edu

Arjun Arunasalam
Purdue University
West Lafayette, IN, USA
aarunasa@purdue.edu

Z. Berkay Celik
Purdue University
West Lafayette, IN, USA
zcelik@purdue.edu

Aline of prior work [2, 4] has shown that any entity within the ad
ecosystem, such as the developer, ad service provider, or advertiser,
can employ these manipulation strategies to profit from fraudulent
ad clicks and impressions or to artificially boost visibility. These
attacks compromise user autonomy in immersive environments,
potentially leading to data theft and malware downloads, while also
causing financial and reputational harm to involved stakeholders.
For example, a developer may place an ad in the same space as a
bait object so that clicks intended for the bait trigger the hidden ad
instead [2], enabling the developer to profit fraudulently while the
advertiser incurs a loss due to the lack of meaningful engagement
with their ad content.

Building on prior work, our recent study [7] analyzed the security-
sensitive UI properties that contribute to nine previously proposed
attacks [2, 4]. Specifically, we identified 14 contributing UI proper-
ties including two new properties (3D capture, gaze-fusing override),
and proposed five novel Ul-based attacks by combining them. We
developed a taxonomy of these 14 attacks, categorizing them into
four groups: Click Manipulation, Peripheral Exploitation, Functional-
ity Disruption, and Ul-based Privacy Leakage, based on the primary
objective of the adversary. We implemented a logging framework to
capture granular user interactions in the 3D WebXR environment
and conducted a between-subjects study with 100 participants to
assess the impact of the attacks [6, 7].

In this work, we demonstrate the effectiveness of these five
Ul-based attacks [7] by integrating them into a publicly available
WebXR gaming app [3]. We describe how each of these attacks
can be integrated into different interaction contexts and high-
light the potential malicious use of security-sensitive UI properties,
e.g., transparency, synthetic input, first-click interception, and aux-
iliary browser screen. Our demonstration highlights the critical
need for user-centered design approaches that maintain action
awareness in immersive environments.

2 Design: Ul Attacks in Gaming

We selected an active target-shooting game [3] for our demo as
it encourages high user engagement and requires continuous 360°
awareness, making it well-suited for illustrating the attacks. Built
with A-Frame (v1.4.0) [1] and Three.js [9], the app was modified
to suit our needs. A user starts a session where targets appear ran-
domly in 360°, earning one point per hit, with the option to replay
after the session ends. To accommodate different attack contexts,
we created two immersive scenes: a controller-based one featuring
Visual Overlapping, Sequential Rendering, and Malvertising attacks,

https://orcid.org/0009-0001-1777-6492
https://orcid.org/0009-0002-1364-0229
https://orcid.org/0009-0001-1631-6064
https://orcid.org/0000-0002-3582-5999
https://orcid.org/0000-0001-7362-8905
https://youtu.be/lTBQbxnNq34
https://doi.org/10.1145/3711875.3734381
https://doi.org/10.1145/3711875.3734381
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3711875.3734381&domain=pdf&date_stamp=2025-09-25

MobiSys ’25, June 23-27, 2025, Anaheim, CA, USA

Intended Target

Sequential
Rendering
Attack (2)

Redirects In /<

[partially N,
/ Transparent Ad,,
/" InFront \
Of The Target

ded Target

)

Unclickable L
Bait Object Ad Appears

/ Transparent

=

Visual
Overlapping

N Malvertising
~._ | Attack (1)

Attack (3)

Controller Enabled
WebXR Scene

Mukherjee et al.

o Intended
'y Target
v
Exit The Scene
To Adjust Better

. Exits The
* Scene

-~ Prompting User | &

& AD] +" ToRoentry in30 J
’ v
= \ | Scene Adjusted,) §
/| Please Continue..
© script »
@ Distracting Injected e
User

User ® False Information Do through

NN Overriding !
NN Attack (5) /
AU | >
. Invisible Controller Cursors, L

GUI Switch

Attack (4)
Injects Seloctive Raycasting,

- ~~.__ Overrides Gaze Fusing Events

Closes The Current Scene, Changes
Focus To The Replica Malicious
Scene When User Exits

——— Gaze Interaction |
~ — —» Invisible
Controllers

Gaze Enabled
WebXR Scene

Figure 1: UI attack integration in WebXR gaming scene: (Left) visual overlapping, sequential rendering, and malvertising
attacks and (Right) GUI switch, and DoS through overriding attacks.

and a gaze-based one with GUI Switch and DoS through Overriding
attacks. Figure 1 illustrates the integration of these attacks into the
WebXR gaming scene.

Visual Overlapping. The attack designs the start button as an
unclickable bait object, placing a clickable ad directly behind it.
Although partially covered, the ad remains visible and may still
attract genuine user interest. However, when the user clicks the
start button, the click is registered on the ad behind instead (Figure 1
Left). To maintain the illusion of expected functionality, the attack
verifies whether the raycasting line to the ad intersects the bounding
box of the start button. If this condition is met, it programmatically
emits a synthetic click event on the button. This prevents the user
from noticing any discrepancy.

Sequential Rendering. The attack is triggered when the user
clicks the restart button. A transparent, unclickable object is placed
in front of it, and an image or video ad is dynamically loaded inside,
making the ad invisible while the restart button remains visible.
As a result, when the user clicks restart, the click is registered on
the hidden ad (Figure 1 Left). To preserve functionality, a synthetic
click is simultaneously emitted to the restart button.
Malvertising. The attack is integrated when the user clicks on
target objects to earn points. While the attack can involve fully or
partially transparent ads, the latter is used here to better illustrate
its impact. A partially transparent ad, with only a small visible
section showing product information, is placed near and in front of
the targets. Since most of the ad is transparent and its visible portion
is positioned off to the side, it appears spatially distant from the
target, potentially reducing user suspicion. Consequently, clicking
the ad’s transparent area while aiming for a target registers as an
ad click, triggering a redirection in the auxiliary browser screen or
initiating a drive-by download (Figure 1 Left).

GUI Switch. This attack programmatically captures scene screen-
shots (components.screenshot.getCanvas) and extracts them as data
URLs, potentially enabling the adversary to infer the scene context.
Periodic screenshot captures degrade user experience, especially
during rapid head movements. Leveraging this, the attack creates vi-
sual distractions that may prompt the user to exit immersive mode
and rejoin in pursuit of a better gaming experience. Upon exit,
the script replaces the browser URL with an adversary-controlled
replica constructed using information from the captured scene to

appear genuine, and re-entry may lead to unauthorized 3D data
collection (Figure 1 Right).

DoS through Overriding. This attack is integrated into the second
scene when the user enters the compromised replica via the GUI
Switch. In the gaze-based environment, it introduces two transpar-
ent controllers without the user’s knowledge. These controllers’
raycasting events override gaze-fusing interactions, which are typ-
ically triggered when the user initiates focus on an object. This
allows the adversary to present false information, disrupt intended
functionality, and potentially damage the service provider’s reputa-
tion (Figure 1 Right).

3 Demonstration

We will remotely serve our app on an HMD (Meta Quest) via
Glitch [8] and MQDH [5]. Attendees can wear the headset and
interact with the gaming app. Their post-interaction perceptions
will provide insights for further investigation.

4 Acknowledgments

We thank the anonymous reviewers for their valuable feedback.
This work was partially supported by NSF through grants CNS-
2144645 and 1IS-2229876. The findings and recommendations in
this work are those of the authors and do not necessarily represent
the views of the NSF.

References

[1] A-Frame. https://aframe.io/. [Online; accessed 11-Apr-2025].

[2] Kaiming Cheng et al. 2024. When the User Is Inside the User Interface: An
Empirical Study of UI Security Properties in Augmented Reality. In USENIX
Security Symposium.

[3] A-Frame Gaming. https://heyvr.io/arcade/games/wackarmadiddle. [Online;
accessed: 11-Apr-2025].

[4] Hyunjoo Lee, Jiyeon Lee, Daejun Kim, Suman Jana, Insik Shin, and Sooel Son.
2021. AdCube: WebVR Ad Fraud and Practical Confinement of Third-Party Ads.
In USENIX Security Symposium.

[5] MQDH. https://developers.meta.com/horizon/documentation/unity/ts-odh/.

[Online; accessed: 11-Apr-2025].

Chandrika Mukherjee, Arjun Arunasalam, Habiba Farrukh, Reham Mohamed,

and Z. Berkay Celik. 2025. Towards Secure User Interaction in WebXR. In

HumanSys Workshop.

[7] Chandrika Mukherjee, Reham Mohamed, Arjun Arunasalam, Habiba Farrukh,

and Z. Berkay Celik. 2025. Shadowed Realities: An Investigation of UI Attacks in

WebXR. In USENIX Security Symposium.

Glitch Platform. https:/glitch.com/. [Online; accessed 11-Apr-2025].

Three.js. https://threejs.org/. [Online; accessed 11-Apr-2025].

WebXR. https://www.w3.org/TR/webxr/. [Online; accessed 11-Apr-2025].

G

[8
[o

=
L2.0.%

https://aframe.io/
https://heyvr.io/arcade/games/wackarmadiddle
https://developers.meta.com/horizon/documentation/unity/ts-odh/
https://glitch.com/
https://threejs.org/
https://www.w3.org/TR/webxr/

	Abstract
	1 Introduction
	2 Design: UI Attacks in Gaming
	3 Demonstration
	4 Acknowledgments
	References

