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Zero Trust (ZT) is a security paradigm aiming to curtail an attacker’s lateral movements within a network
by implementing least-privilege and per-request access control policies. However, its widespread adoption
is hindered by the difficulty of generating proper rules owing to the lack of detailed knowledge of commu-
nication requirements and the characteristic behaviors of communicating entities under benign conditions.
Consequently, manual rule generation becomes cumbersome and error prone. To address these problems, we
propose ZT-SDN, an automated framework for learning and enforcing network access control in Software-
Defined Networks (SDNs). ZT-SDN collects data from the underlying network and models the network
“transactions” performed by communicating entities as graphs. The nodes represent entities, whereas the
directed edges represent transactions identified by different protocol stacks observed. It uses novel unsuper-
vised learning approaches to extract transaction patterns directly from the network data, such as the allowed
protocol stacks and port numbers and data transmission behavior. Finally, ZT-SDN uses an innovative ap-
proach to generate correct access control rules and infer strong associations between them, allowing proactive
rule deployment in forwarding devices. We show the framework’s efficacy in detecting abnormal network ac-
cesses and abuses of permitted flows in changing network conditions with real network datasets. Additionally,
we showcase ZT-SDN’s scalability and the network’s performance when applied in an SDN environment.
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1 Introduction

Zero Trust (ZT) [45] is a security paradigm that can significantly enhance network security. With
ZT, the traditional perimeter-based security model is replaced by a rigorous approach that focuses
on authenticating and authorizing every access attempt, regardless of whether it originates within
or outside the network. By strictly controlling access and adhering to a “need-only” basis, ZT
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ensures that only authorized parties can access critical resources and services in the least privileged
manner. Such fine-grained control mitigates the risks of unauthorized access and curtails lateral
movement by attackers. It reduces the impact of compromised entities, as attackers would have
limited access to sensitive resources even if the network perimeter is breached.

Problem and Scope. Enforcing strict network access control poses a significant problem for
several reasons. First, achieving the least privileged network access requires a comprehensive
understanding of the communication requirements of every network component, including
applications, Internet of Things (IoT) devices, and services [10, 24, 25, 36, 46]. Second, once
these requirements are identified, network administrators are tasked with manually generating
appropriate flow rules to allow authorized traffic within the network. This process is highly
susceptible to errors, and even the slightest oversight could lead to a chain of failures [25].
Lastly, there is often no understanding of the benign behavior of applications that utilize those
permissions during data transmission, such as the typical structure of exchanged packets and
data exchange patterns. The goal of this work is thus to design an end-to-end automated framework
for the learning, generation, deployment, and monitoring of ZT policies in network systems.
We cast our design in the context of Software-Defined Networks (SDNs) [26] as it is an

effective framework to facilitate efficient solutions based on ZT principles. The reason is that an
SDN employs a centralized controller in the control plane tomanage communication requests from
data plane hosts and services. This centralized controller has the authority to make decisions for
handling these communications, such as granting or denying access based on the established ZT
policies or how the data should be routed in the data plane. Using this centralized control, the SDN
enables a granular and adaptive approach to implementing ZT, allowing for enhanced security and
fine-grained control over network communications.

Challenges. The design of our framework requires addressing the following challenges: (C1)
The communication requirements of the network components are often not provided. Relevant
information includes network-related intricacies, such as the allowed communication protocol
stacks (e.g., ETHERNET_IP_TCP). (C2) The operation of the network components during benign
conditions is not known in advance, making it impractical to effectively identify anomalous
behaviors abusing allowed flows. That is, C2(a) the typical format of the messages and C2(b) the
typical behavior of a particular component during data transmission are not often known. (C3)
The correct access control rules allowing the network components to complete their missions
successfully are often unknown (e.g., allow bidirectional Transmission Control Protocol (TCP)

and User Datagram Protocol (UDP) communications at port 5555).

Our Approach. To address those challenges, we propose ZT-SDN, a ZT framework that learns the
benign communication patterns and behaviors of communicating entities (i.e., users, applications,
services) from the underlying network and automatically generates fine-grained access control
rules using unsupervisedmachine learning (ML) techniqueswhile also understanding how those
rules should be used under benign conditions.
ZT-SDN collects and analyzes data on communications and patterns of every communicating

entity. The analysis is carried out by identifying which entities use the network and how. This
is achieved by collecting network traffic and network-related actions performed by applications
on hosts. ZT-SDN then constructs a communication requirements graph in which the nodes
represent the communicating entities and the edges represent the different network “transactions”
carried out. The network transactions are represented by the protocol stack of the exchanged
network packets. Each transaction direction can be thought of as network access (addressing C1).
Therefore, the key idea is to extract the patterns from these accesses. We extract the patterns
of the network transactions in two forms: (1) the structure of packets involved in a transaction
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(e.g., protocol stacks used, port numbers) and (2) the characteristic behavior of data transmission.
Those patterns are obtained using ML models and trained using datasets specific to each entity
performing transactions. For extracting the structure of the packet, we use unsupervised artificial
neural networks (ANNs) [47]. This allows ZT-SDN to determine the access patterns of benign
data originating from a particular source in the graph, allowing the identification of anomalous
accesses that deviate from the learned distribution (addressing C2(a)). To extract the behavior of
data transmission, ZT-SDN observes the pattern of data transmissions on ongoing connections
using a novel time series approach. The idea is to measure how far (or close) the observed patterns
are to the learned patterns (addressing C2(b)). Those ML approaches allow for identifying deviant
behavior and pinpointing the specific entity causing the issue. Deviant behavior may occur due to
attacks or abnormal yet benign behavior. A typical example of the latter case is two applications
with different transmission patterns, yet both of them are benign applications. We demonstrate
that our approach can effectively identify the abnormality in both attack and abnormal benign
patterns while exhibiting a reasonable tolerance against changing network conditions, including
reduced bandwidth, link delays, and jitter.
The quality of the extracted patterns is intricately linked to the duration of the training process.

However, given the diverse complexities of different applications, determining the optimal amount
of data required for each can be challenging. To address this issue, ZT-SDN incorporates user-
provided training heuristics as part of the solution. Such heuristics include the minimum training
time and the desired performance on unseen benign training data. Then, ZT-SDN employs an
iterative learning approach, continuously updating themodels until the performance requirements
are achieved. The training is then terminated or resumed until those requirements are met.
Finally, ZT-SDN analyzes network patterns and generates correct flow rules, which are installed

in the data plane devices (i.e., network switches), allowing the permitted traffic to pass while
restricting transactions not encountered during training. We introduce an innovative approach
wherein ZT-SDN autonomously infers the appropriate protocol stack features (i.e., predicates) for
rule construction and their respective values. This process involves measuring the correlations
between protocol header–value pairs through association rule-mining techniques. Subsequently,
ZT-SDN identifies the most extensive set of feature–value pairs that can collectively constitute
the rule with the highest association measure (e.g., 100%). As a result, the constructed rules are
correct, as each header–value pair strongly associates with the rest of the pairs in the dataset
(addressing C3). Our framework not only generates the rules but also finds strong associations
between them. The core concept revolves around identifying which of the generated rules apply
to the traffic transmitted within a specific time window and how often. For example, as the TCP is
a bidirectional protocol, the forward and backward direction rules will be automatically classified
as strongly associated, thus capturing the intricacies of network protocols. ZT-SDN leverages this
knowledge by deploying strongly associated rules together in the data plane. Our results show
that such an approach reduces the number of interaction roundtrips between the control and data
planes, thus improving efficiency.
The ZT-SDN training process is designed to be performed directly from the underlying network,

assuming that all collected data are benign. However, this assumption may be impractical in many
network scenarios in which adversarial absence cannot be guaranteed. To address this concern,
we have developed ZT-Gym, an alternative approach to facilitating data generation and model
training offline before integration into the SDN infrastructure. ZT-Gym operates as a Linux-based
controlled environment in which relevant applications or services are deployed and executed,
generating datasets for offline model training.

Novelty. To our knowledge, ZT-SDN is the first end-to-end ZT pipeline for automated learning,
enforcement, and monitoring of access control policies in the context of SDNs.
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Contributions. The article makes the following contributions:

— ZT-SDN, a novel end-to-end ZT architecture for SDN networks.
— Automated learning processes supported by datasets collected from the underlying network
infrastructure without requiring prior knowledge about the communication requirements
of applications or services.

— ZT-Gym, a virtualized environment for the deployment of software applications and offline
dataset generation and model training.

— Techniques for profiling different aspects of communications executed by different applica-
tions using unsupervised ML models and making access control decisions.

— A novel technique for automatic flow rule generation and identification of strong rule
associations.

2 Background

In an SDN, the network policies are installed and enforced in the network in the form of flow
rules, in which each rule consists of a set of matching predicates (e.g., source/destination addresses,
protocol, port numbers) and corresponding actions (e.g., forward, drop, modify) to be performed on
matching packets. The flow rules are communicated from the network controller to the forwarding
devices (i.e., switches) via the southbound channel, which uses a communication protocol that those
devices support (e.g., OpenFlow [31] and ForCES [50]). Once a switch receives the rules, it installs
them in its flow table. Each rule within a switch is assigned a unique identifier set by the network
controller, known as a cookie value according to the OpenFlow specification. This unique identifier,
set by the network controller, facilitates actions ordered by the controller, such as rule updates or
revocations.
Typically, the forwarding rules are installed according to a reactive forwarding approach. In this

approach, the controller installs a rule on a switch as a result of a packet receipt at an input port
of the switch. The switch first checks its flow table to see whether there is any matching policy for
handling the packet. The rules in the switch are matched in descending order of priority. The rule
with the lowest priority is typically installed by the network controller (ONOS) and instructs the
switch to forward the packet to the controller encapsulated in an OFPT_PACKET_IN message [2].
We define this as the default rule. This message includes the default rule’s cookie (responsible for
triggering the PACKET_IN) and the switch’s identifier, providing essential information to the con-
troller. The controller checks the request and makes a decision. If the packet should be forwarded
to its destination, the controller replies with an OFPT_PACKET_OUT message [2] to the switch in-
dicating how the packet should be dispatched (e.g., forward packet to output port 2). Typically,
after the latter message, the controller sends to the switch an OFPT_FLOW_MOD message [2], which
includes a rule that the switch needs to install in its forwarding table. The controller may set a rule
timer in which the switch revokes the rule automatically after a period of inactivity. The controller
may also set the hard and idle expiration timers, which instruct the switch to revoke the rule after
the specified time. The hard timer revokes the rule after a specified number of seconds, whereas
the idle timer revokes the rule only if there is no packet matching the rule for the specified number
of seconds. As long as a rule has not expired, future packets matching the rule are directly han-
dled as per the controller-specified treatment. Thus, the switch does not need to consolidate with
the controller again, which saves a significant amount of time. The controller can also install for-
warding rules proactively. Such an approach reduces the performance overhead imposed when the
switch has to hold the packet transmission until a decision is received from the control plane [22].
However, one must know the policies that must be installed in advance, which may not be the case.
The forwarding decisions in the control plane are handled by network applications. The

controller exposes control plane functionality to network applications via its northbound channel.
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This functionality is typically exposed as Application Programming Interfaces (APIs) or
REST APIs. An application registers to listen to specific events (e.g., PACKET_IN) and may provide
the logic that handles those events.

3 Related Work

Network access control. Several approaches have been proposed for enforcing access control
in organizational networks [6, 7, 10, 13, 25, 35, 48]. Nayak et al. [35] proposed Resonance, a
framework for the specification and enforcement of access control policies. Katsis et al. [25]
proposed NEUTRON, a graph-based framework for defining and enforcing least privilege access
control policies. Csikor et al. [13] proposed an approach to implementing ZT on domain name

system (DNS) infrastructure, thereby controlling client domain name resolutions based on their
identity and privileges. Anjum et al. [6] proposed a framework supporting the definition of least
privilege access control policies for SDNs. Vanickis et al. [48] proposed a high-level framework,
FURZE, for ZT networking. The framework is composed of multiple components involving
policy authoring using FURZE language for generic AC policies and firewall rules. All of those
approaches have many limitations: (1) they assume that the network-wide security policies are
provided by some administrator; (2) they assume that policies are correct and detailed, thus, the
generated rules allow “need only”–based communication; (3) they do not capture behavioral as-
pects of the communications, such as the message or data transmission patterns that are essential
to understanding how the permissions are used in benign conditions; and (4) the predicates used
in the generated rules are limited to administrator-specified fields (e.g., source and destination
addresses and ports). All of these limitations are addressed by ZT-SDN in an automatic manner.

Rule mining. Golnabi et al. [19] proposed an approach to mine-generalized firewall policy rules
from network traffic logs based on rule frequency analysis. Apiletti et al. [8] proposed the NetMine
framework to extract generalized rules from network traffic data using association rule mining.
Those approaches have the following limitations: (1) the rule extraction is limited to user-specified
predicates or user input; (2) the generalization process is not designed with least-privilege network
access in mind, which results in rules allowing a potentially wide range of hosts to access network
resources. ZT-SDN addresses those limitations. It analyzes the packets transmitted between differ-
ent hosts separately. Then, it uses a novel rule-generation approach that automatically extracts the
predicates and uses them for constructing rules with high confidence and support. Finally, ZT-SDN
generates rules specific to the communicating entities, restricting access to resources not specified
in the Communication Requirements (CR) graph.

Anomaly detection in SDN flows. El Sayed et al. [15] proposed a supervised learning method
based on Long Short-Term Memory and AE to detect distributed denial of service (DDoS)

attacks. Peng et al. [39] proposed another supervised approach based on the K-Nearest Neigh-

bor (KNN) algorithm for detecting DDoS attacks. Da Silva et al. [14] developed the ATLANTIC
framework, which identifies flow anomalies based on entropy analysis and a supervised algorithm
based on support vector machines (SVMs). Garg et al. [17] proposed a supervised deep
learning–based anomaly detection scheme for suspicious flow detection in the context of social
multimedia. Additionally, Nanda et al. [34] evaluated various supervised ML algorithms trained
on historical network attack data to predict potential malicious flows. Unsupervised approaches
have also been proposed to detect anomalies based on techniques such as entropy analysis,
clustering, and isolation forest [3, 9, 42].
In contrast, our ZT-SDN framework offers a novel approach, fundamentally different from

prior works. Rather than focusing solely on detecting ongoing attacks, we aim to prevent abuse
of network permissions by entities by understanding how those permissions are used in benign
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conditions. Our approach distinguishes itself in three key aspects: (1) it operates entirely in
an unsupervised manner; (2) it tailors the training to the specific entities using the network
permissions, thereby understanding how the communicating entities typically use the network
permissions; and (3) it detects anomalies in granted flow permissions using time series modeling
to assess pattern similarities between observed and learned patterns (e.g., sending too fast/slow
or too much/few data).

Relation to NIDSs.While ZT-SDN and Network Intrusion Detection Systems (NIDSs) share
complementary goals in network security, critical distinctions set them apart. NIDS technologies
function at the data plane, continuously monitoring traffic streams for anomalies based on diverse
indicators, such as connection resets, SYN attempts, and traffic patterns [21, 28, 33]. This moni-
toring allows a NIDS to classify traffic and detect attack signatures accurately. However, a NIDS
does not typically perform access control enforcement; it is typically deployed at specific network
ingress or egress points and thus cannot comprehensively mediate all traffic between internal
network entities. Deploying NIDSs to every access point across all subnets would lead to prohibi-
tive costs and complex management challenges. Additionally, relocating NIDS functionality to the
control plane is impractical owing to the overwhelming volume of data plane traffic, which would
exhaust the control plane’s resources.
The NIDS provides alerts on detected anomalies but does not handle access control decisions,

meaning it cannot assess whether a communication should be permitted or denied. Furthermore,
the core objective of the NIDS is to detect attacks rather than manage deviations in network
permissions assigned to specific components, making it unable to distinguish subtle variations
between legitimate traffic flows. In contrast, ZT-SDN operates within the control plane, enabling
it to dynamically enforce network-wide access control policies. ZT-SDN actively decides whether
packets should be allowed or blocked, and it can analyze flow statistics in real time, aligning with
OpenFlow specifications, to detect deviations in permitted network behavior. Thus, while ZT-SDN
and the NIDS both contribute to network security, they cannot be directly compared or replace
one another.

4 Design of ZT-SDN

In this section, we first present an overview of the ZT-SDN architecture, followed by an outline of
the threat model and assumptions.

4.1 Architecture Overview

ZT-SDN has three modules (Figure 1): the host module (HM), the controller-specific mod-

ule (CSM), and the ML module. The HM provides information about which applications on the
hosts require network access (addressing C1). The CSM is a network application that consumes
the northbound interface exposed by the network controller (i.e., the Open Network Operat-

ing System (ONOS)). Thus, the execution of the network application has to be adjusted to the
underlying controller. This module performs a different set of operations depending on its mode:

Training mode. It identifies the communicating entities by analyzing network traffic from
the data plane. It also leverages information from the HM instances to map specific traffic
streams in the data plane to the corresponding applications running on the hosts. This mapping
facilitates the extraction of a communication requirements (CR) graph, representing different sets
of communications (edges) between the identified entities (nodes). For each edge in the graph,
the CSM generates datasets used by the ML module for training the models and extracting the
communication patterns (addressing C1, C2). Once the models have been trained, the module
transitions into enforcement mode.
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Fig. 1. The ZT-SDN architecture.

Enforcement mode. In this mode, the CSM uses the ML module to make network access control
decisions. It also constructs the rules generated by the ML module and installs them at the net-
work’s appropriate switches (i.e., policy enforcement points – PEPs). It retrieves flow statistics
associated with the installed flow rules in real time and provides them to the ML module.
The ML module is a controller-independent module, thus allowing interoperability across dif-

ferent SDN controllers. Like the CSM module, it operates in two modes:

Training mode. During this mode, the ML module processes the data plane traffic datasets. Uti-
lizing unsupervised learning techniques, it extracts the benign communication patterns modeled
by the CR graph and derives corresponding flow rules (addressing C1, C2, C3).

Enforcement mode. In this mode, the trained models authorize network access requests from
hosts in the data plane based on temporal factors and packet headers. It also continuously analyzes
flow statistics of ongoing communications to identify potential deviant behaviors.

4.2 Threat Model and Assumptions

ZT-SDN operates under the assumption that no prior knowledge is available regarding the appli-
cations running on the hosts in a network. Additionally, we assume that there is an authentication
process for the host machines before the training process commences. This is essential, especially
in cases in which the entity network identifiers (e.g., Internet protocol (IP) or media access

control (MAC)) change over time. Therefore, endpoint identity is used for training and access
request authorization.
Throughout the ML training phase, it is crucial that the host applications running are not com-

promised. However, once the model is trained and the ML and CSMmodules switch to the enforce-
ment mode, an adversary may compromise host applications or services running inside or outside
the network. Finally, we assume that the control plane operations (i.e., network controller), the
southbound channel and the data plane forwarding devices (i.e., the PEPs) are never compromised
at any point in time.
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Nevertheless, the assumption that the host applications are not compromised during the
training phase may be overly stringent for practical adoption in some organizations, particularly
in scenarios in which network administrators cannot guarantee the absence of abnormal network
activity, even during the training phase. To address this concern, we developed an offline approach
to dataset generation and model training. In this approach, applications are deployed and executed
within a controlled “gym environment,” referred to as ZT-Gym – a virtualized setting in which
the application(s) under scrutiny run. Network traces collected from ZT-Gym are then used for
training the models for deployment in the network. We provide technical details of this alternative
approach in Section 11. The approach discussed in the rest of the section performs the training
phase directly from the network.

5 Host Module (HM)

The HM is deployed on endpoint systems as a lightweight Python program designed to con-
tinuously interface with the underlying operating system (OS) to detect network-related
events generated by system processes. These events include port bindings and data trans-
missions. To accomplish this, it uses the Linux utility ss-plan to identify ports bound by
applications [5]. The collected data includes the timestamp of event detection, applications
binding to OS ports, identification of applications transmitting data, the transport-layer protocol
in use, and destination details such as IP addresses and ports. This information is subsequently
transmitted to the CSM, enabling the correlation of network flows with their respective host
applications.

Support for Embedded Systems. The HM’s installation is not required on embedded systems,
including the IoT and operational technology control devices. Given that these devices execute
highly specific tasks, they can be treated as standalone applications.

6 The Controller-Specific Module (CSM)

The CSM builds upon the ONOS’s reactive forwarding application, known as Fwd, to manage
the PACKET_IN, PACKET_OUT, and FLOW_MOD operations, which facilitate effective communication
between entities in the data plane. The initial step involves the CSM registering with the network
controller via the northbound interface and requesting to handle any PACKET_IN messages from
the data plane.

Trainingmode.When a packet is sent from a host in the data plane, the switch sends it to the CSM
encapsulated in the PACKET_IN message. This happens when there is no existing flow rule per-
mitting communication, essentially indicating a network access or communication request from
a source to a destination. Subsequently, the CSM extracts the source and destination addresses
from the packet, along with the packet’s protocol stack (e.g., ETHERNET_ARP or 802.11_IP_TCP).
The CSM identifies the communicating hosts using the extracted information and determines

the applications involved through HM updates. It then utilizes this knowledge to create the CR
graph. In such a graph, each node represents an application running on a host, encompassing both
client-side applications and network services. The directed edges between the nodes represent the
identified protocol stack used for communication. Essentially, each edge in the graph represents
a necessary network access, which is defined by the source and sink nodes and the protocol stack
of the transmitted packets over that edge. The CR graph represents the essential flows required
for applications to perform their intended functions successfully. Additionally, it provides insights
into the endpoints, such as IP addresses and domain names, with which applications typically
communicate.
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Fig. 2. An example of a simple communication requirements graph.
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Fig. 3. Rule deployment for traffic collection and forwarding. The notation is [matching packet headers]:[List

of forwarding interfaces].

Figure 2 shows a simple example of a CR graph. The example illustrates a streaming application

that uses two protocol stacks: ETHERNET_IP_TCP (flows 1 – 2 ) for the authentication procedure

and ETHERNET_IP_UDP (flows 3 – 4 ) for content consumption.
For every discovered edge in the CR graph, the CSM generates two types of datasets: (1) packet

datasets and (2) flow statistics datasets. The packet datasets capture all transmitted packets asso-
ciated with a specific edge in the graph. For instance, if an application communicates with TCP
and UDP protocols, the CSM will generate two individual datasets for the application: one for the
TCP packets and one for the UDP packets. The CSM currently supports various protocols, such
as Address Resolution Protocol (ARP), IP, Internet Group Management Protocol (IGMP),
Internet Control Message Protocol (ICMP), TCP, and UDP. Each entry in the dataset contains
temporal information (i.e., day, time) and the parsed packet header, which includes protocol-level
details such as addresses, virtual local area network (VLAN) ID, frame types, ports, and flags.

The CSM then sends a PACKET_OUT command to forward the packet to its intended destination.
The CSM installs a custom rule using the source and destination addresses, ports, and the transport
layer protocol. This rule ensures that subsequent packets related to the same flow can be efficiently
forwarded to their destinations. The action set of the rule is configured to forward the packet
through a designated egress port determined by the ONOS’s topology service [38] at the time of
rule installation. For the edge switch1, an additional action is configured in the flow rule. This
additional action instructs the edge switch to send a copy of matching packets to amirroring port2

(Figure 3). The mirroring port of each edge switch is connected to an end system that passively
collects data, such as the controller or organization-owned hosts3.While the CSM can collect traffic
data passively at the controller, this may consume significant bandwidth and processing power,
particularly with numerous hosts connected to an edge switch. This can slow down control and
data plane operations. Therefore, a more scalable alternative is for the CSM to obtain traffic data
separately from the mirroring systems.

1The edge switch is the switch where a host attaches to the network.
2Port mirroring is typically supported by hardware for efficiency [11].
3There are several efficient approaches for packet capturing at least 100 Gbps, such as [16]. This choice does not impact
ZT-SDN.
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Upon installing the corresponding rule in a switch’s flow table, the CSM utilizes the ONOS flow
statistics service [26] to generate datasets for different CR graph edges. For each flow direction,
the CSM obtains flow statistics for the edge switch connected to the source host. For instance, in
Figure 3, the flow H1→H2 is queried at switch A, while the flow H2→H1 is queried at switch C.
The flow statistics that can be collected by OpenFlow switches are predefined by the OpenFlow

specification [2]. The available statistics for each flow include the total number of packets and
bytes transmitted since the installation of the flow rule until the time of the query. Thus, ZT-SDN
has access to those statistics only. The queries are performed by the controller at predetermined
intervals of f seconds. At the time of the query t , the number of transmitted packets and bytes are
computed as follows:

#packetst =
∑

rule ∈edдe .rules

rule .packetst (1)

and

#bytest =
∑

rule ∈edдe .rules

rule .bytest . (2)

In essence, the number of packets (or bytes) at t is computed as the sum of packets (or bytes)
for each installed flow rule associated with the specific edge in the CR graph. Each entry in the
dataset comprises the query time (t ) along with the total number of packets (#packets) and bytes
(#bytes) reported during that query.

ZT-SDN performs data collection operations at edge switches instead of core switches because
(1) edge switches mediate the communication even in multi-path packet propagation, and (2) edge
switches typically handle less traffic load than core switches, allowing for more scalable data
collection.

Enforcement mode. The CSM parses the PACKET_IN message (similar to the training mode) and
performs a query on the CR graph to determine whether the specific communication has been
previously modeled during the training phase. If it finds a match in the graph, the packet is then
forwarded to the access request learning (ARL) module for verification against the learned dis-
tribution of packet headers. Upon successful verification, the CSM receives the flow rules generated
by the rule generator and association miner (RGAM) module and proactively deploys them
across all switches between the source and the destination. The path for rule deployment is deter-
mined by the ONOS at the time of rule deployment. Similar to the training mode, the action set for
the rules is set to “forward” and the egress ports are specified based on the path determined by the
ONOS. However, if the communication has not been modeled during training in the CR graph or if
the packet does not belong to the learned distribution (as determined by ARL), the communication
request is denied. ZT-SDN allows network administrators to set hard and idle flow timers for the
deployed rules. By default, it sets an idle timer at 10 seconds so that inactive rules are retracted
from the data plane.
The ZT-SDN system allows network administrators to dictate whether copies of subsequent

packets, for either all or specific edges in the CR graph, should be forwarded to the controller dur-
ing enforcement mode; this can even be set for a specific time duration. This decision, however,
involves balancing security and network performance. Forwarding packet copies to the controller
enables the ARL module to conduct more thorough security checks, thereby enhancing network
security. Conversely, this method increases bandwidth usage, negatively impacting network per-
formance. Therefore, administrators need to consider these aspects and decide what best aligns
with their specific security and performance needs.

Following the deployment of the rules, the CSM continues to query the statistics of the installed
flow rules in the edge switches (similar to the training period), allowing for real-time flow
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Fig. 4. The model training procedure for each CR graph edge.

monitoring. The collected statistical information is passed to the real time flow statistics

learning (RTFSL) module, which actively checks for any deviations in the usage of allowed
network flows. If any deviation is detected, the CSM ends the communication between the
endpoints by removing the corresponding flow rules from the data plane, effectively cutting off
the communication.

NetworkOverheads. The processing of PACKET_IN requests in ZT-SDN increases due to the CSM
processing and the access control decision made by the ARL module. However, as demonstrated in
Section 12.5, this increase in processing is offset by the proactive rule deployment approach. The
RTFSL module does not cause network overhead as the ONOS controller obtains flow statistics
from all network switches at a predetermined frequency. Thus, it utilizes the statistics that have
already been collected. Lastly, rule generation is done once during training; thus, it does not add
overhead during enforcement.

7 The Access Request Learning Module (ARL)

The module’s objective is to determine whether to grant or deny a communication request origi-
nating from an entity in the data plane by evaluating the packet contained in a PACKET_IN request.
To achieve this, the module must learn the allowed values for the different protocol stack head-
ers typically used for the specific edge in the CR graph, such as the permissible port numbers,
time-to-live values, typical header and packet lengths.

Training. PACKET_IN requests may contain a packet that can be exchanged at any point in time
between entities, as connections may be interrupted and later resumed from where they left off.
Therefore, training solely on the initial packets of an edge is insufficient; the module must be able
to recognize any benign exchanged packet. The ARL module receives traffic datasets generated
for each application from the CSM, with each dataset corresponding to a different protocol stack.
Figure 4 shows the ARL training process. Each sample in these datasets contains the day and time
of packet receipt along with the protocol header values.
To prepare the data, we first apply protocol-specific processing, which involves feature

transformations and deletions. For instance, to preserve the semantic meaning of the TCP flags,
we one-hot encode the TCP flags header to differentiate the set flags for each packet. Protocol
features with no meaningful values for the access control learning process are removed, such as
acknowledgment values and checksums. Then, standard scaling is applied, which removes the
mean and scales the data to unit variance. We then train a model composed of autoencoder (AE)
ensembles for each CR edge to capture the distribution of packet headers in that edge. An AE is a
neural network architecture used for unsupervised learning, primarily designed to learn efficient
representations of input data by reconstructing the original input from a compressed intermediate
representation. The goal of an AE is to minimize the reconstruction error–the difference between
the original input and the decoder output–thus learning essential features and patterns of the
input data in the latent space.
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We specifically use the KitNet model [33], which is a lightweight, highly efficient central pro-
cessing unit (CPU)–based model built on AE ensembles. KitNet uses a feature mapper to create
smaller clusters of features, with each cluster fed to a separate AE in the ensemble. This allows the
AE ensemble to capture and learn the distinguishing aspects of normal network behavior, enabling
the model to effectively identify deviations and anomalies.
KitNet operates in two modes: training and execution. Initially, it requires the specification

of the number of training examples. Once this number of samples has been observed, KitNet
transitions to the execution mode. In this mode, the model calculates the reconstruction error
for all subsequent samples. However, this approach poses a significant challenge, as determining
the precise number of training samples needed beforehand can be difficult. First, different
applications vary in complexity, necessitating a unique number of training instances for each
application-specific model. Second, the model must capture the temporal factors associated
with the access request, such as the time of the request. To address these issues, we have
modified the algorithm’s design by allowing network administrators to provide heuristics on the
desirable model performance on both seen and unseen training data. We perform the following
modifications:

(1) Introduction of the minimum training time. This refers to the minimum duration during
which an application is expected to demonstrate its typical behavior associated with tempo-
ral factors.

(2) Introduction of the minimum number of training samples. We establish a minimum thresh-
old for the number of training samples required to adequately train the model (e.g., 20K
samples).

(3) Incorporation of a validation period. A designated time span is introduced to assess the
model’s performance on unseen benign data.

(4) Introduction of a maximum reconstruction error threshold. During the validation period,
we define a maximum reconstruction error threshold. If the average reconstruction error
during the validation period falls below this threshold, indicating satisfactory performance,
the model proceeds to the execution mode. Otherwise, it resumes training to improve its
accuracy.

Therefore, the model training becomes an iterative process in which the model is updated until
the user-provided performance requirements are met. The model observes data for a minimum
duration and a minimum number of training samples. Then, its performance during the validation
period determines the transition to the execution mode.

Enforcement. The packet is extracted from the PACKET_IN message and the endpoint addresses
are used to identify the corresponding edge in the CR graph. The packet is then preprocessed and
passed through the scaler, followed by the inference of the KitNet model trained on that edge,
which either allows or denies the communication.

8 The Real Time Flow Statistics Learning Module (RTFSL)

When an access request is granted based on the CR graph and the ARL module, a flow rule or
policy is installed, allowing the traffic to proceed to its intended destination. However, from a ZT
perspective, we want to ensure that the granted network permissions are used as per the learned
transmission patterns. For instance, a resource that typically transmits very little data in an active
flow starts transmitting rapidly or at the same rate with very different payload sizes. Therefore, the
RTFSL module addresses two critical requirements: (1) learning the normal flow usage permitted
by the access rules for the modeled entities in the CR graph and (2) detecting deviations from the
learned communication patterns and terminating the flows.
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(a) Packet Time Series ({ }
=1) Δ )

Fig. 5. Transformation of the packet time series (a) to the first-order difference representation (b).

ALGORITHM 1: Traffic Pattern Similarity Checker

Require: {Δxt }
n
t=2, New Observations

1: new_obs ← first_order_diff(New Observations)
2: min_dist ← ∞

3: for i in range(size({Δxt }nt=2) - size(new_obs) + 1) do
4: seдment ← {Δxt }

n
t=2[i : i + size(new_obs)]

5: dist ← DTW(new_obs, seдment )
6: if dist < min_dist then
7: min_dist ← dist
8: min_match_seдment ← seдment
9: end if

10: end for

Training. The RTFSL module uses the flow statistics datasets generated by the CSM for train-
ing. The collected statistics are limited to the ones supported by the OpenFlow specification [2],
ensuring the compatibility of our approach with the specification and, by extension, the vendor
implementations. The training examples are essentially measurements of the transmitted packets
and bytes transmitted over time. The data are sampled from a network switch at a predefined fre-
quency, f , and the total numbers of packets and bytes are computed as per Equations (1) and (2).
Thus, due to the data’s semantic meaning and structure, we model it as a time series to capture
the inherent dependencies and patterns present in time-dependent data.
We first scale the training data of the CR edge using standard scaling, which removes the mean

and scales to unit variance. We then remove the trend to reveal the data transmission patterns over
the sampling time, as shown in Figure 5. Figure 5(a) shows the cumulative packet transmission
behavior of a real client machine transmitting to an HTTPS service from the MAWI 2024 traffic
dataset [49]. To remove the trend, we apply first-order differencing to the data as follows: Given a
time series {xt }nt=1, the first-order differencing is formally defined as

Δxt = xt − xt−1, for t = 2, 3, . . . ,n, (3)

where Δxt represents the first-order difference of the series at time t . Figure 5(b) illustrates Δxt ,
which clearly shows the behavioral patterns between consecutive observation samples.

The idea is to collect long enough Δxt time series from the CR’s edge such that future benign
observations from the same edge can be matched to the Δxt model with low error. We develop
an approach to detect behavioral deviations in ongoing traffic flows (Algorithm 1) from the
series {Δxt }

n
t=2. We query the edge’s traffic flows with the same sampling rate, f , for some
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pre-determined time duration, d . From the observation, we compute the first-order difference
(line 1) of the measurements. We perform dynamic time warping (DTW) [41], which is a
distance measure that quantifies the similarity between two-time series (line 5). DTW considers
the possible variations in the alignment and scaling of the time series, making it suitable for
matching time series with different lengths and shapes. We use the Euclidean distance as the
distance metric between the two time series. Our experiments with various time series shapes and
sizes have shown that Euclidean distance is a good quantification metric for measuring similarity
between them. Finally, we set a maximum distance threshold in which patterns that exceed the
threshold are added to the {Δxt }nt=2 series. We use the FastDTW implementation of DTW [29, 41],
which has an O(n) time and space complexity, where n is the length of the time series.

We use four heuristics to stop the learning process:

(1) We use a predefined minimum data duration in which the model should be able to capture
all the potential traffic patterns.

(2) We use a minimum number of training samples in the {Δxt }nt=2.
(3) We define a predefined validation period and a maximum Euclidean distance threshold to

ensure that the model works well on unseen benign data.

Enforcement. During model enforcement, the new observations are scaled and compared with
the learned {Δxt }nt=2 using Algorithm 1. We then define an anomaly threshold, which, if it exceeds
the pattern, is recognized as anomalous.
We define a window size,w , which denotes the number of consecutive flow statistics samples, as

shown in Figure 6. The window of the samples is run through Algorithm 1 to evaluate the observed
behavior against the learned behavior. The process continues on a rolling basis as long as the flow
is active.

Model Effectiveness. From our evaluation results, we observe several key strengths of the
proposed model. First, the fine-grained analysis provided by our novel CR graph enables the
extraction of transmission behaviors along the graph’s edges. Second, this level of analysis allows
us to identify not only deviations in attack patterns, such as flooding attacks, but also deviations in
between other benign traffic patterns, enabling the model to distinguish between different uses of
the granted network permissions. Finally, we found that the approach demonstrates a reasonable
resilience to statistical fluctuations caused by changing network conditions, including delays
and jitter. Notably, the model remains effective even when trained under conditions different
from those present during enforcement, showcasing its adaptability across diverse operational
scenarios.

9 The Rule Generator and Association Miner Module (RGAM)

This module has a twofold objective. First, it generates network access control rules specific to
each edge in the CR graph based on the observed packet traffic during training. Our approach
automatically infers which protocol header attributes (i.e., predicates) from the observed traffic
should be used to construct those rules. For instance, the predicates could be the Ethernet type,
ARP operation type, ICMP code, protocol codes, IP addressing, and transport layer ports. In the
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case of the example in Figure 2, it will identify which predicates are needed for permitting each
of the four flows. The generated rules will eventually be installed in the network switches if the
appropriate access request is made.
Thismodule, therefore, generates only positive rules, meaning that the generated rules only allow

the appropriate traffic to pass. Traffic that does not match any generated rules will be matched to
the default rule and, therefore, sent to the controller. The ARL makes the access control decision
and denies the traffic if it does not belong to the learned packet distribution.
Second, the RGAM utilizes the generated rules to identify strong associations among them. The

underlying concept is that when a rule is scheduled for deployment based on an access request,
it is efficient to deploy all strongly associated rules proactively. Such a strategy helps minimize
the exchange of OFPT_PACKET_IN, OFPT_PACKET_OUT, and OFPT_FLOW_MOD messages between the
control and network switches, thereby reducing the overhead caused by these control plane opera-
tions. Moreover, identifying rule associations enables ZT-SDN to learn the unique communication
characteristics of different protocols. For example, in the case of the TCP, bidirectional flows are
required between the endpoints, whereas in the UDP, the receiver is not obligated to respond to
the sender. In the illustrated example in Figure 2, the RGAM finds strong correlations between

rules of the same protocol stack (i.e., rule pairs for flows 1 – 2 , and 3 – 4 are strongly as-

sociated) as well as between rules of different protocol stacks (i.e., rules for flows 1 to 4 are
strongly associated). Therefore, once the streaming application makes an approved access request
for the authentication server, all permitted flows are proactively deployed, saving communication
overhead and allowing the application to operate successfully.
The RGAM is based on association rule mining, a technique for discovering relationships and

patterns in datasets [4, 27]. It focuses on identifying frequent itemsets and extracting association
rules based on co-occurrence patterns in the data. Association rules capture the dependencies and
associations between different items or attributes in a dataset. These rules are typically in the form
of {antecedents} ⇒ {consequences} statements, where certain attributes in a transaction (i.e., the
antecedents) imply the presence of other attributes (i.e., the consequences).
Each generated rule has metrics to measure how strong the association is. First, the support

metric is defined as

P(A ∩ B) =
f req(A,B)

N
, (4)

where A and B are itemsets (i.e., sets of one or more attributes) of various lengths, and P(A ∩ B)
is the joined probability of A and B. Thus, support measures the occurrence of a rule in a dataset.
Second, the confidence metric is the conditional probability defined as

P(B |A) =
support(A,B)

support(A)
. (5)

Thus, confidence measures how often itemset B appears with itemset A given the frequency of A.

Rule Generator. It takes as input the CR graph and an application represented as a node in the
CR graph. The output is the inferred rules. A rule is defined as

rule = [key1 = value1, . . . ,keyn = valuen], (6)

where a key is a protocol header name (e.g., source_ip), value is the value of that header, and n is
the rule’s cardinality. A network packet matches a rule if all header-value pairs present in the rule
are also present in the packet’s header.
Algorithm 2 shows the pseudo-code of our rule generator algorithm. We limit the processing to

all of the packet header features available for enforcement per the OpenFlow standard [2], such as
VLAN ID, Ethernet/IP addresses, protocol flags and options, and ports. First, we fetch a subgraph
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ALGORITHM 2: Rule Generator
Require: An application identifier, CR graph
1: all_streams ← CR.get_streams(app)
2: binary_tables ← Ø
3: for stream in all_streams do
4: columns ← Ø
5: for column in stream.columns do
6: columns ← columns+ get_unique(column)
7: end for

8: table ← stream.no_packets × columns
9: binary_tables .add(table)
10: end for

11: populate(binary_tables)
12: дenerated_rules ← Ø
13: for table in binary_tables do
14: f req_items ← apriori(table,min_support )
15: rules ← assoc_rules(f req_items,min_conf idence)
16: rules ← rules .antecedents ∪ rules .consequents
17: rules ← unique(rules)
18: дenerated_rules .add(max_cardinality(rules))
19: end for

(i.e., a part of the CR graph), which contains all nodes and edges (i.e., streams) for which the
application is a source or a sink (i.e., the application and the destination services). The traffic
pertaining to the edges of the CR subgraph is essentially the traffic datasets used to train the ARL
module. Asmentioned earlier, the ARLmodule determines those datasets’ length dynamically until
the distribution is learned. Once the dataset sufficiently captures the distribution, it is used to mine
access control rules, a one-time process.
Subsequently, the algorithm prepares the binary tables, one of each stream direction (lines 3–10).

The columns of a binary table are the unique header–value pairs of each column in the flow dataset.
For instance, if the source_port attribute has three unique values in the dataset, 4455, 5588, and
6699, then that would result in three columns in the binary table: source_port : 4455, source_port :
5588, and source_port : 6699. The number of rows would equal the total number of packets in the
stream.
Next, the algorithm populates the binary tables. For each packet (i.e., row), we set the value of

a cell to 1 if the condition of the column holds for the packet; otherwise, we set it to 0. Finally,
we apply the Apriori algorithm [43] (line 14) with a predetermined minimum support value (90%
for the experiments). The generated frequent itemsets are then used to generate the association
rules (line 15). The algorithm uses a high minimum confidence score threshold (100% for the ex-
periments) to eliminate the less confident associations. For each generated rule, we then unify
the antecedences and consequences (line 16) to create sets of header–value pairs and discard any
duplicate sets (line 17). Finally, the algorithm stores the rules of maximum cardinality.
The generated rules are considered correct owing to the use of high support and confidence

scores. However, completeness is not always guaranteed, as this requirement heavily relies on the
intricacies of applications. For instance, consider an application that employs two communica-
tion channels with a particular service. If the second channel rarely appears in the dataset, there
might be scenarios in which a rule allowing this infrequent flow is not generated. This is because
communication occurs so rarely that no rule with sufficiently high confidence or support can be
derived.
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ALGORITHM 3: Rule Association Miner
Require: Generated rules, Application’s traffic dataset
1: binary_table ← 1 × rules
2: while True do
3: if ws = 0 then
4: packet_time ← app_data[0].timestamp
5: ws ← packet_time
6: end if

7: we ← ws +w_duration
8: packets ← get_packets(app_data, [ws,we])
9: populate(binary_table)
10: index ← last_packet(packets).index
11: if index + 1 < app_data.lenдth then

12: index ← index + 1
13: ws ← app_data[index].timestamp
14: else break
15: end if

16: end while

17: f req_items ← apriori(binary_table,min_support )
18: associations ← assoc_rules(f req_items,min_conf idence)

To address this issue, ZT-SDN generates such rules at access request time. This means that if a
PACKET_IN request is authorized by the ARL module and the generated rules for the application
have already been installed but a packet does not match any of those rules, ZT-SDN dynamically
creates a proprietary rule based on the packet’s source/destination address, port numbers, and pro-
tocol. Specifically, ZT-SDN maintains a record of the rules installed in the data plane for particular
endpoints. If packets still arrive at the control plane despite the installed rules, it follows that the
packet cannot match the installed rules. Thus, ZT-SDN will generate a dynamic rule to accom-
modate this rare transaction provided that the ARL module authorizes the packet. This ensures
that the transmission can be accommodated even for flows that were infrequent or not explicitly
extracted during the rule generation phase.

Rule AssociationMiner.Once the rule generator computes the rules, we find strong associations
between those rules (see Algorithm 3). First, we construct a binary table (line 1) with columns
representing the generated rules from Algorithm 2. Then, we compute the initial time window
(lines 3–7) and get the packets within a predefined window size (line 8). The algorithm checks
which rules (i.e., columns) apply to the packets in the window and sets the corresponding cells to
1; otherwise, to 0 (line 9). Then, the next time window is computed (lines 10–15). We use packet
indexes to compute the time window as the application dataset may have time gaps. Thus, the
algorithm saves a lot of loop iterations by skipping time windows that do not include any pack-
ets. Finally, the rule association is computed using the Apriori algorithm (lines 17 and 18) while
setting the minimum support and confidence to high values (90% and 100% for the experiments,
respectively).

10 Relation to the ZT Paradigm

This section explores how ZT SDN aligns with the broader principles of the ZT network paradigm.
TheUSNational Institute of Standards and Technology (NIST) defines the ZT architecture

in its special publication [45]. This document provides an abstract framework for ZT, along with
general deployment models and scenarios.
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Fig. 7. Core logical components of Zero Trust architecture as defined by NIST [45].

NIST’s Core ZT Components. Figure 7 shows the core logical components of the ZTA as defined
by NIST. When a subject system (e.g., user device, IoT) requests access to a resource, the request is
mediated through a Policy Enforcement Point (PEP). The PEP forwards the request to a Policy
Decision Point (PDP), which comprises two primary components: the Policy Administration

(PA) module and the Policy Engine (PE).
The PA processes the request and passes it to the PE, which makes an access decision–

authorizing or denying the request–based on inputs from various sources. These inputs include
security policies, threat intelligence, endpoint health and patch status (monitored viaContinuous
Diagnostics and Mitigation (CDM) systems), and the identities of the involved endpoints. The
PE decision-making process integrates this intelligence to determine trustworthiness.
Although the NIST framework specifies these logical components, it leaves the design of the

decision-making algorithms and the detailed implementation of these modules as open research
challenges. Based on the PE’s decision, the PA enforces the policy by performing actions such as
issuing authorization tokens, generating configurations, or deploying rules.

Mapping to the ZT-SDNArchitecture. The principles of the NIST ZT framework can be directly
mapped onto the ZT-SDN architecture.
In ZT-SDN, an access request is represented by the first network packet sent from a subject sys-

tem (e.g., source) to a resource (e.g., destination). This packet is initially routed to an OpenFlow-
enabled network switch, which acts as the PEP in the NIST model. If the switch lacks a match-
ing policy (i.e., a rule), it forwards the packet to the control plane using a PACKET_IN message.
In the control plane, the CSM module corresponds to the PA component. The CSM processes the
PACKET_IN request and forwards it to theMLmodule, whichmaps to the PE. Here, the ARLmodule
evaluates and authorizes or denies the flow, whereas the RTFSL module performs communication
monitoring in alignment with NIST’s ZT requirements. Finally, the CSM (acting as the PA) pro-
cesses and deploys the rules generated by the RGAMmodule. These rules are then installed on the
relevant data plane switches to ensure enforcement across the communication path.

11 ZT-Gym

In this section, we present our offline approach for creating application network datasets. The
datasets are generated within a controlled environment devoid of any adversarial presence, ensur-
ing the production of benign data. These generated datasets are then employed in the ZT-SDN
training mode as outlined in Section 4.1.
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11.1 The ZT-Gym Environment

We developed ZT-Gym as a Linux-based virtual machine and a dataset generation pipeline, shown
in Figure 8. ZT-Gym supports the dataset generation for several applications simultaneously. The
actual applications or services are installed within the ZT-Gym environment. The data (i.e., net-
work traffic) is obtained directly from the network interface(s) to ensure that the generated data
are realistic and accurate.

11.2 Technical Details

Application input methods. To generate network data, the application requires input. We sup-
port two input methods: (1) Manual human interaction—a human user interacts with the applica-
tion in the virtual environment, performing the tasks it would typically do in normal conditions,
and (2) an existing framework for application testing automation.
The first method is straightforward but requires human time, which is expensive. To address this,

we use the Robot Framework [23, 30], an open-source automation framework that streamlines the
execution flows of applications with graphical user interfaces or those run via the command line.
Constructing test cases using the Robot Framework is an intuitive and straightforward process. To
write a Robot Framework test case, one needs to define settings, variables, and test cases in a plain-
text file with the “.robot” extension. The Robot Framework is widely adopted in corporate settings
for automated testing. Companies often possess their own .robot files tailored for applications,
developed as part of the software development life cycle. In this method, the test case executes the
actions that the application would normally exhibit in benign conditions.

Active packet repository. It captures real-time packets exchanged within the ZT-Gym environ-
ment. The packets are captured using the “tcpdump” tool and are stored in a MongoDB database.
These packets are stored in real time and the database is updated constantly to accommodate any
new packets generated or received by the system.

Network Actions Monitoring. Implemented as a Python script with administrative privileges
within the ZT-Gym environment, this module monitors network actions specific to the executing
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application(s). It focuses on aspects such as port bindings and the transport layer protocols
employed for transmission through these ports. Notably, this module replicates the functionality
described in the Host Module (Section 5). To achieve its monitoring objectives, the script uses
the Linux utility ss -plan to identify the ports bound by the applications [5]. Subsequently,
it transmits a tuple to the packet mapper, encompassing information such as the application
name, port numbers in use, destination IP address being communicated with, and the timestamp.
Any updates in these features trigger notifications to the Packet Mapper module, facilitating the
classification of packets to their respective applications.

Packet Mapper. It plays a crucial role in associating network packets with specific applications.
This module resembles part of the functionality of the Controller-Specific Module described in
Section 6. In this mapping process, five key features are considered: the packet’s timestamp,
source and destination IP addresses, and source and destination ports. Timestamp is a pivotal
parameter for the mapping packets to specific applications running in ZT-Gym. This is because
different applications may use the same port(s) at different points in time. To achieve this, the
module leverages the timestamp provided by the Network Actions Monitoring module. Packets
transmitted from this timestamp onward are attributed to the corresponding application identified
in the tuple. In cases in which the module detects another application utilizing the same port
at a later time, packets sent or received up until the second application binds the port are
categorized under the purview of the first application. The approach ensures accurate packet
classification.

Model Training. This module takes the generated datasets, containing benign network data from
applications, as input. Its functionality for training the models mirrors that of the ARL (Section 7),
RTFSL (Section 8) and RGAM (Section 9) modules, including the model retraining until the user-
specified heuristics are met.

Fidelity. Note that every component within the ZT-Gym environment replicates the exact
functionality of its counterpart in the ZT-SDN architecture (Figure 1). The key distinction lies
in the ZT-Gym environment’s controlled setting, where data is generated. In this environment,
the ML models are trained offline using the generated datasets. In contrast, ZT-SDN learns
directly from data generated and exchanged in the underlying network. Since the applica-
tions scrutinized are the same as the ones expected to run in the network, the corresponding
packet-level features (e.g., payload) are identical. Some packet-level features, such as TTL,
are standardized by the operating systems. However, flow statistics may vary from the actual
network due to different conditions, such as lower bandwidth. As demonstrated in Sections 12.3
and 12.4, RTFSL can tolerate reasonable degradations. Administrators can also adjust the band-
width within the Gym environment [1], allowing for data generation that closely mirrors their
networks.

12 Evaluation

We focus on answering the following research questions (RQ):

—RQ1: How effective is the ARL module in enforcing network access control?
—RQ2:Why is KitNet the preferred learning model for the ARL module, and how do baseline
anomaly detection models compare in terms of performance?

—RQ3: Once access has been granted, how effective is the RTFSL module in ensuring that the
usage of the deployed policies adheres to the learned benign behavior?

—RQ4: How do network delays impact the RTFSL model’s effectiveness?
—RQ5: Is ZT-SDN scalable when applied to an SDN network? Does it degrade the network
throughput?
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Table 1. Services Used for Evaluation from the MAWI Dataset

Service Port
Number

Service Protocol Description

80 HTTP TCP Hyper Text Transfer Protocol (HTTP): port used for web traffic.

443 HTTPS TCP
HTTPS / SSL: encrypted web traffic, also used for VPN tunnels over

HTTP.

3479 Games UDP

Microsoft Teams uses UDP ports 3478 through 3481 for media traffic,

as well as TCP ports 80 and 443. Apple FaceTime, Apple Game Center

use ports 3478-3497 (UDP). Call of Duty World at War. Playstation

4 game ports.

19305 VoIP UDP
Google Talk, DUO, Hangouts commonly use ports 19302-19308 UDP

and 19305-19308 TCP.

12.1 RQ1: ARL Module Effectiveness

The access control aspect concerns the evaluation of our module’s ability to correctly allow or
deny network accesses during ML module enforcement.

Experiment Setup. We evaluated the effectiveness of the ARL module using two experimental
setups: (1) a real-world traffic dataset captured at a major transit link and (2) synthetic traffic
generated within Mininet, an SDN environment.
Setup 1 – Real traffic dataset: For the real-world traffic evaluation, we used the MAWI traffic

datasets [49], a comprehensive collection of Internet traffic data from the WIDE (Widely Inte-
grated Distributed Environment) project. The dataset, monitored by the MAWI Working Group
since 2001, includes packet traces from trans-Pacific links between Japan and the United States.
The MAWI dataset is widely recognized as a benchmark in network traffic analysis owing to its
longitudinal coverage, diversity of protocols, and high-fidelity capture of real-world traffic and
network behavior.
We selected network traffic data from two periods: 2018 (older data) and 2024 (recent data). For

each period, we analyzed traffic from prominent protocol stacks, specifically ETHERNET_IP_TCP
and ETHERNET_IP_UDP. Services were chosen based on the following criteria: (1) At least one client
user or application connecting to the service. (2) A sufficient volume of packet data for model train-
ing and evaluation (minimum of 20K packets). (3) Adequate flow duration to capture transmission
behavior (minimum of 10 minutes).
While the MAWI dataset lacks direct information about the applications generating the traffic,

we inferred application types by mapping port numbers to services using the SpeedGuide database
[44]. SpeedGuide is a comprehensive online resource offering an extensive database of TCP and
UDP port numbers. It provides details about well-known, registered, and private port assignments,
along with information on associated protocols and services. Table 1 summarizes the selected ser-
vices, their port numbers, and protocol stacks. We extracted data from four service categories:
HTTP, HTTPS, Gaming/Web Calling, and Voice over IP (VoIP). HTTP and HTTPS represent dom-
inant, general-purpose traffic types that account for a significant portion of modern network com-
munication [20]. In contrast, Gaming/Web Calling and VoIP traffic, while less prevalent, exhibit
specialized characteristics such as real-time communication and low-latency requirements. We
test our approach in both traffic settings.
Setup 2 – Using Mininet: We utilized Mininet to simulate a controlled network environment.

A Linux-based server was deployed in one container, whereas a network client was set up in
another container, both connected to the same virtual network. The experiments revolved around
generating realistic network traffic between these two containers, for which we employed the
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iperf tool. The client uses two communication channels based on the ETHERNET_IP_TCP and
another two channels based on the ETHERNET_IP_UDP protocol stacks to communicate with the
server. Those channels are initiated from a random source port in every session on the client side
and directed to ports 5001 (TCP) and 5010 (UDP) on the server side. The application transmits data
as fast as possible, leveraging as much available bandwidth as possible.

Model Training. We train edge-specific KitNet models on the constructed CR graph following
the process outlined in Section 7. The model parameters were configured as follows: the number
of feature mapping samples was set to 200 [33] and the minimum number of training samples was
20K. The maximum reconstruction error, measured as Root-Mean-Square Error (RMSE), was
constrained to 0.009 during training and 0.7 during validation.

Model Testing. For model testing, we set the RMSE threshold to 0.7 (the threshold for the valida-
tion period). We evaluate the efficacy of the ARL module in three distinct settings:

(1) Normal Benign Performance: This setting assesses the module’s ability to perform on unseen
(future) benign data from the same application running on the same host machine.

(2) Abnormal Benign Detection: In this setting, we test whether the module can identify devi-
ations in benign traffic patterns. Specifically, we send benign traffic packets generated by
other applications (either of the same or different type) using the same protocol stack to
determine whether the model flags them as anomalous. Note that we change the source
and destination IP to the ones on which the model was trained. Thus, the module treats the
packets as packets sent from the same application on which it has been trained. These devia-
tions are categorized as “abnormal benign” because, while the traffic originates from benign
applications, it diverges from the patterns learned by the model.

(3) Abnormal Malicious Detection: To evaluate the module’s effectiveness in detecting malicious
traffic, we focused on two widely recognized attack types: flooding and port scanning. These
attacks were selected owing to their prevalence in evaluating anomaly detection systems
[18, 37, 51], their significance as common network threats, and their ability to cause notable
behavioral deviations in communication flows monitored by ZT-SDN.
These attack types are also highly relevant to access control for several reasons. Port scan-
ning involves probing systems and ports that an entity may not be authorized to access.
Similarly, flooding attacks aim to overwhelm resources that the attacker should not have ac-
cess to. Even if a compromised entity floods a resource to which they are supposed to have
access, it abuses the granted network permissions.
The attacks were executed using the Linux tool hping3. For port scanning, we used the
--scan option to target awide range of ports. For flooding attacks, TCP floodswere generated
using the -S --flood options, whereas UDP floods were generated with the --flood -2
options.

Packets are identified as normal benign if the RMSE computed by the model is less than the
detection threshold (0.7) and considered abnormal if the RMSE threshold is exceeded.

Results. We assess the detection performance of this module for the different attack and benign
data, employing the following metrics: true positives (TPs), true negatives (TNs), false pos-

itives (FPs), and false negatives (FNs). TP and FN are relevant to the abnormal benign or ma-
licious data, indicating the proportion of examples correctly classified as deviant or mistakenly
classified as normal benign. TN and FP pertain to normal benign data, representing the portion of
examples correctly classified as normal benign or mistakenly classified as deviant.
Table 2 shows the ARL prediction results for the UDP-based applications/services. The table

presents the results in a cross-evaluation manner in which the vertical axis indicates the data on
which the model is individually trained. For each set of training data, we report the number of
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Table 2. ARL Evaluation Results for UDP-Based Services

Testing (Unseen)→

Training ↓

2018 VoIP 1 (UDP) 2018 VoIP 2 (UDP) 2019 VoIP 3 (UDP) 2024 Game 1 (UDP) 2018 VoIP 4 (UDP) iperf (udp) Flooding (UDP) PortScan (UDP)

2018 VoIP 1 (UDP)

Training stop: 20204

Max validation score: 0.023

Total: 203409

TP: 0

TN: 203409

FP: 0

FN: 0

Max Error: 0.023

Min Error: 4.28e-5

Total: 1449

TP: 1449

TN: 0

FP: 0

FN: 0

Max Error: 2.57e18

Min Error: 2.57e18

Total: 1424

TP: 1424

TN: 0

FP: 0

FN: 0

Max Error: 4.9e18

Min Error: 4.9e18

Total: 32872

TP: 32872

TN: 0

FP: 0

FN: 0

Max Error: 8.67e19

Min Error: 8.67e19

Total: 335221

TP: 335221

TN: 0

FP: 0

FN: 0

Max Error: 2.09e19

Min Error: 2.09e19

Total: 35672

TP: 35672

TN: 0

FP: 0

FN: 0

Max Error: 1.22e20

Min Error: 7.21e19

Total: 24753

TP: 24753

TN: 0

FP: 0

FN: 0

Max Error: 2.6e20

Min Error: 7.2e19

Total: 5282

TP: 5282

TN: 0

FP: 0

FN: 0

Max Error: 2.81e20

Min Error: 2.80e20

2024 Game 1 (UDP)

Training stop: 20200

Max validation score: 0.006

Total: 170646

TP: 170646

TN: 0

FP: 0

FN: 0

Max Error: 8.677e19

Min Error: 8.67e19

Total: 1449

TP: 1449

TN: 0

FP: 0

FN: 0

Max Error: 8.57e19

Min Error: 8.57e19

Total: 1424

TP: 1424

TN: 0

FP: 0

FN: 0

Max Error: 8.49e19

Min Error: 8.49e19

Total: 39899

TP: 0

TN: 39899

FP: 0

FN: 0

Max Error: .006

Min Error: 4.05e-05

Total: 335221

TP: 335221

TN: 0

FP: 0

FN: 0

Max Error: 9.68e19

Min Error: 9.68e19

Total: 35672

TP: 35672

TN: 0

FP: 0

FN: 0

Max Error: 6.53e19

Min Error: 3.05e19

Total: 24753

TP: 24753

TN: 0

FP: 0

FN: 0

Max Error: 2.16e20

Min Error: 7.73e18

Total: 5282

TP: 5282

TN: 0

FP: 0

FN: 0

Max Error: 2.38e20

Min Error: 2.38e20

2018 VoIP 4 (UDP)

Training stop: 20200

Max validation score: 0.026

Total: 170646

TP: 170646

TN: 0

FP: 0

FN: 0

Max Error: 3.37e17

Min Error: 3.37e17

Total: 1449

TP: 1449

TN: 0

FP: 0

FN: 0

Max Error: 2.34e19

Min Error: 2.34e19

Total: 1424

TP: 1424

TN: 0

FP: 0

FN: 0

Max Error: 2.58e19

Min Error: 2.58e19

Total: 32872

TP: 32872

TN: 0

FP: 0

FN: 0

Max Error: 9.68e19

Min Error: 9.68e19

Total: 386575

TP: 0

TN: 386575

FP: 0

FN: 0

Max Error: 0.026

Min Error: 4.28e-5

Total: 35672

TP: 35672

TN: 0

FP: 0

FN: 0

Max Error: 1.4e20

Min Error: 7.28e19

Total: 24753

TP: 24753

TN: 0

FP: 0

FN: 0

Max Error: 7.2e19

Min Error: 2.8e19

Total: 5282

TP: 5282

TN: 0

FP: 0

FN: 0

Max Error: 3.01e20

Min Error: 3e20

iperf (UDP)

Training stop: 20201

Max validation score: 0.021

Total: 170646

TP: 170646

TN: 0

FP: 0

FN: 0

Max Error: 7.11e19

Min Error: 7.04e19

Total: 1449

TP: 1449

TN: 0

FP: 0

FN: 0

Max Error: 7.11e19

Min Error: 7.10e19

Total: 1424

TP: 1424

TN: 0

FP: 0

FN: 0

Max Error: 7.11e19

Min Error: 7.1e19

Total: 32872

TP: 32872

TN: 0

FP: 0

FN: 0

Max Error: 1.24e19

Min Error: 7.72e18

Total: 335221

TP: 335221

TN: 0

FP: 0

FN: 0

Max Error: 7.11e19

Min Error: 7.04e19

Total: 304952

TP: 0

TN: 304952

FP: 0

FN: 0

Max Error: 0.07

Min Error: 0.0018

Total: 24753

TP: 24753

TN: 0

FP: 0

FN: 0

Max Error: 1.02e19

Min Error: 1.02e19

Total: 5282

TP: 5282

TN: 0

FP: 0

FN: 0

Max Error: 1.54e20

Min Error: 7.18e18

The “e” notation denotes a power of 10.

training samples supplied to the model as well as the maximum RMSE reported during the vali-
dation period. The horizontal axis indicates the data on which the model is tested (unseen traffic
data). The orange cells denote the test to evaluate the effectiveness of the model in recognizing
normal benign data, whereas the green cells evaluate the effectiveness of the model in recognizing
abnormal benign data. Finally, the red cells indicate the effectiveness of the model in recognizing
abnormal malicious data. In each cell, we report the total number of packets on which the model
was tested as well as the TP, TN, FP, and FN numbers. We also report the minimum and maxi-
mum RMSE errors reported by the model while testing in those packets. The column/row naming
follows the following convention: “[Dataset Year] [Application Type] [Client ID] ([Protocol]).” At-
tack traffic data and iperf do not have a year as they were generated using tools. Note that the
“e” notation denotes a power of 10.

Our findings demonstrate that the module achieves a 100% accuracy in identifying normal be-
nign traffic, effectively learning the distribution for each of the CR graph edges with just 20,000
training samples. Furthermore, the model exhibits a 100% accuracy in detecting anomalous benign
packets, showcasing its ability to discern differences in protocol header values even when client
applications connect to the same service (e.g., VoIP-to-VoIP communication), therefore utilizing
the same destination ports. Last, the model maintains 100% accuracy in detecting anomalous ma-
licious traffic. In these scenarios, the port number is a key feature, as malicious activities such as
flooding and port scanning rely on a range of source or destination ports not utilized by the benign
applications on which the model is trained.
Tables 3 and 4 show the ARL performance results for TCP-based applications/services. As the

tables show, the ARL training requires more packet samples from each application as the TCP
protocol stack contains more features compared with the UDP stack. Thus, more training data is
required for our unsupervised model to understand the relation between header–value pairs. The
results are consistent with the ones presented in Table 2. The ARLmodule can distinguish between
normal benign and abnormal malicious or abnormal benign accesses.
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Table 3. ARL Evaluation Results for TCP-based Services

Testing (Unseen)→

Training ↓

2018 HTTP 1 (TCP) 2018 HTTP 3 (TCP) 2018 HTTPS 1 (TCP) 2018 HTTPS 2 (TCP) 2024 HTTP 1 (TCP) 2024 HTTP 2 (TCP)

2018 HTTP 1 (TCP)

Training stop: 30200

Max validation score: 0.03

Total: 200000

TP: 0

TN: 200000

FP: 0

FN: 0

Max Error: 0.39

Min Error: 0.60

Total: 200000

TP: 200000

TN:

FP: 0

FN: 0

Max Error: 1.04e16

Min Error: 8.4e15

Total: 80796

TP: 80796

TN:

FP: 0

FN: 0

Max Error: 1.56e18

Min Error: 1.56e18

Total: 26107

TP: 26107

TN: 0

FP: 0

FN: 0

Max Error: 1.56e18

Min Error: 1.56e18

Total: 134195

TP: 134195

TN:

FP: 0

FN: 0

Max Error: 2.20e16

Min Error: 2.12e16

Total: 22984

TP: 22984

TN: 0

FP: 0

FN: 0

Max Error: 2.59e17

Min Error: 2.59e17

2018 HTTPS 1 (TCP)

Training stop: 30200

Max validation score: 0.13

Total: 199999

TP: 199999

TN: 0

FP: 0

FN: 0

Max Error: 7.32e19

Min Error: 5.51e19

Total: 485192

TP: 485192

TN: 0

FP: 0

FN: 0

Max Error: 2.41e20

Min Error: 2.55e18

Total: 88528

TP: 0

TN: 88528

FP: 0

FN: 0

Max Error: 0.13

Min Error: 0.004

Total: 26107

TP: 26107

TN: 0

FP: 0

FN: 0

Max Error: 3.66e19

Min Error: 3.65e19

Total: 134195

TP: 134195

TN: 0

FP: 0

FN: 0

Max Error: 8.21e19

Min Error: 8.78e18

Total: 22984

TP: 22984

TN: 0

FP: 0

FN: 0

Max Error: 3.18e19

Min Error: 3.06e19

2024 HTTP 1 (TCP)

Training stop: 30200

Max validation score: 0.15

Total: 199999

TP: 199999

TN: 0

FP: 0

FN: 0

Max Error: 2.46e16

Min Error: 2.46e16

Total: 485192

TP: 485192

TN: 0

FP: 0

FN: 0

Max Error: 2.65e16

Min Error: 2.65e16

Total: 80796

TP: 80796

TN: 0

FP: 0

FN: 0

Max Error: 1.81e18

Min Error: 1.81e18

Total: 26107

TP: 26107

TN: 0

FP: 0

FN: 0

Max Error: 1.81e18

Min Error: 1.81e18

Total: 1170

TP: 0

TN: 1170

FP: 0

FN: 0

Max Error: 0.59

Min Error: 0.21

Total: 22984

TP: 22984

TN: 0

FP: 0

FN: 0

Max Error: 3.25e17

Min Error: 3.25e17

2024 HTTPS 2 (TCP)

Training stop: 100200

Max validation score: 0.011

Total: 199999

TP: 199999

TN: 0

FP: 0

FN: 0

Max Error: 1.59e18

Min Error: 1.59e18

Total: 485192

TP: 485192

TN: 0

FP: 0

FN: 0

Max Error: 1.59e18

Min Error: 1.59e18

Total: 80796

TP: 80796

TN: 0

FP: 0

FN: 0

Max Error: 8.8e15

Min Error: 8.8e15

Total: 26107

TP: 26107

TN: 0

FP: 0

FN: 0

Max Error: 4.3e15

Min Error: 2428.37

Total: 134195

TP: 134195

TN: 0

FP: 0

FN: 0

Max Error: 1.59e18

Min Error: 1.59e18

Total: 22984

TP: 22984

TN: 0

FP: 0

FN: 0

Max Error: 1.59e18

Min Error: 1.59e18

iperf (TCP)

Training stop: 30200

Max validation score: 0.014

Total: 199999

TP: 199999

TN: 0

FP: 0

FN: 0

Max Error: 2.28e19

Min Error: 2.29e19

Total: 485192

TP: 485192

TN: 0

FP: 0

FN: 0

Max Error: 4.18e16

Min Error: 4.18e16

Total: 80796

TP: 80796

TN: 0

FP: 0

FN: 0

Max Error: 2.11e19

Min Error: 2.11e19

Total: 26107

TP: 26107

TN: 0

FP: 0

FN: 0

Max Error: 2.12e19

Min Error: 2.11e19

Total: 134195

TP: 134195

TN: 0

FP: 0

FN: 0

Max Error: 2.29e19

Min Error: 2.28e19

Total: 22984

TP: 22984

TN: 0

FP: 0

FN: 0

Max Error: 2.29e19

Min Error: 2.28e19

Model Interpretability. The results demonstrate that a KitNet model trained on CR graph edges
effectively learns allowed protocol headers, particularly static fields such as protocol type, ser-
vice port numbers, and protocol flags. The model is highly sensitive to deviations: for example, if
an endpoint in the CR graph communicates with unauthorized ports or systems, it generates an
RMSE reconstruction error exceeding the anomaly threshold. Another example is the case of TCP
communications, which rarely set the RST flag unless an issue arises; deviations from this normal
behavior are detected if RST is absent from the baseline profile.
Notably, the model can detect abnormalities even in benign scenarios within the same appli-

cation domain (e.g., identical port sets) provided at least one header value, such as TTL, varies
across end systems. However, if a test client exhibits packet headers identical to the training data,
the model may not detect the difference. This, however, is not a problem as it aligns with ARL’s
objective: learning the allowed protocol stack. Future work will explore the importance of spe-
cific protocol headers in model interpretation and their impact on reconstruction error through an
ablation study.

12.2 RQ2: Comparing KitNet Performance With Other Anomaly Detection Models

In this section, we present an evaluation that supports the selection of KitNet as the model of
choice for the implementation of the ARL module.
We trained several baseline anomaly detection models to evaluate their performance on the indi-

vidual edges of our CR graph model, including Isolation Forest, One-Class SVM, and the Gaussian
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Table 4. ARL Evaluation Results for TCP-Based Services

Testing (Unseen)→

Training ↓

2024 HTTPS 1 (TCP) 2024 HTTPS 2 (TCP) iperf (TCP) SYN Flooding (TCP) PortScan (TCP)

2018 HTTP 1 (TCP)

Training stop: 30200

Max validation score: 0.03

Total: 866065

TP: 866065

TN: 0

FP: 0

FN: 0

Max Error: 1.54e18

Min Error: 1.54e18

Total: 256112

TP: 256112

TN: 0

FP: 0

FN: 0

Max Error: 1.54e18

Min Error: 1.54e18

Total: 163917

TP: 163917

TN: 0

FP: 0

FN: 0

Max Error: 2.09e19

Min Error: 2.09e19

Total: 375933

TP: 375933

TN: 0

FP: 0

FN: 0

Max Error: 2.09e19

Min Error: 2.09e19

Total: 1993

TP: 1993

TN: 0

FP: 0

FN: 0

Max Error: 2.51e19

Min Error: 2.09e19

2018 HTTPS 1 (TCP)

Training stop: 30200

Max validation score: 0.13

Total: 866065

TP: 866065

TN: 0

FP: 0

FN: 0

Max Error: 1.44e20

Min Error: 1.44e20

Total: 256112

TP: 256112

TN: 0

FP: 0

FN: 0

Max Error: 2.21e20

Min Error: 2.21e20

Total: 163917

TP: 163917

TN: 0

FP: 0

FN: 0

Max Error: 2.82e19

Min Error: 2.81e19

Total: 375933

TP: 375933

TN: 0

FP: 0

FN: 0

Max Error: 1.93e19

Min Error: 2.73e20

Total: 1993

TP: 1993

TN: 0

FP: 0

FN: 0

Max Error: 2.62e20

Min Error: 2.62e20

2024 HTTP 1 (TCP)

Training stop: 30200

Max validation score: 0.15

Total: 866065

TP: 866065

TN: 0

FP: 0

FN: 0

Max Error: 1.79e18

Min Error: 1.79e18

Total: 256112

TP: 256112

TN: 0

FP: 0

FN: 0

Max Error: 1.79e18

Min Error: 1.79e18

Total: 163917

TP: 163917

TN: 0

FP: 0

FN: 0

Max Error: 2.42e19

Min Error: 2.42e19

Total: 375933

TP: 375933

TN: 0

FP: 0

FN: 0

Max Error: 2.42e19

Min Error: 2.42e19

Total: 1993

TP: 1993

TN: 0

FP: 0

FN: 0

Max Error: 2.92e19

Min Error: 2.42e19

2024 HTTPS 2 (TCP)

Training stop: 100200

Max validation score: 0.011

Total: 866065

TP: 866065

TN: 0

FP: 0

FN: 0

Max Error: 4.3e15

Min Error: 1015

Total: 70000

TP: 0

TN: 70000

FP: 0

FN: 0

Max Error: 0.22

Min Error: 0.003

Total: 163917

TP: 163917

TN: 0

FP: 0

FN: 0

Max Error: 2e19

Min Error: 2e19

Total: 375933

TP: 375933

TN: 0

FP: 0

FN: 0

Max Error: 2e19

Min Error: 2e19

Total: 1993

TP: 1993

TN: 0

FP: 0

FN: 0

Max Error: 2.44e19

Min Error: 2e19

iperf (TCP)

Training stop: 30200

Max validation score: 0.014

Total: 866065

TP: 866065

TN: 0

FP: 0

FN: 0

Max Error: 2.12e19

Min Error: 2.11e19

Total: 256112

TP: 256112

TN: 0

FP: 0

FN: 0

Max Error: 2.11e19

Min Error: 2.11e19

Total: 133717

TP: 0

TN: 133717

FP: 0

FN: 0

Max Error: 0.07

Min Error: 0.0002

Total: 375933

TP: 375933

TN: 0

FP: 0

FN: 0

Max Error: 5.17e17

Min Error: 3.8e15

Total: 1993

TP: 1993

TN: 0

FP: 0

FN: 0

Max Error: 4.63e18

Min Error: 3.9e15

Mixture Model. All models, including KitNet, were trained on the same dataset and evaluated on
the same test (unseen) data.
Table 5 summarizes the performance of these models, including KitNet, across four real traffic

datasets derived from the MAWI traffic trace. The metric TN represents the number of instances
correctly classified as normal benign traffic, whereas FP denotes the number of legitimate instances
incorrectly flagged as anomalous. The results indicate that all baseline models exhibit suboptimal
performance compared with KitNet. Notably, KitNet consistently achieved zero false positives,
ensuring that no legitimate access requests are denied by the ARL module.

12.3 RQ3: RTFSL Module Effectiveness

Experiment Setup. We used the same experimental setup as in Section 12.1.

Model Training. We construct edge-specific {Δxt }
n
t=2 time series models on the computed CR

graph following the process outlined in Section 8. The model parameters are configured as follows:
the minimum number of training flow statistics samples is set to 150, with a sampling rate of 5
seconds. For anomaly detection, the maximum Euclidean distance threshold is set to 0.8. Finally,
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Table 5. Comparison of Our Model of Choice for the ARL Module Against Other Anomaly Detection

Candidate Models

Model

2018 VoIP 1 (UDP)

Unseen Data Size: 203409

2024 Game 1 (UDP)

Unseen Data Size: 39899

2018 VoIP 4 (UDP)

Unseen Data Size: 386575

2024 HTTP 1 (TCP)

Unseen Data Size: 1170

CR + Isolation Forest
TN: 187694

FP: 15715

TN: 39899

FP: 0

TN: 383428

FP: 3147

TN: 1093

FP: 77

CR + One-Class SVM
TN: 196637

FP: 6775

TN: 39619

FP: 280

TN: 384843

FP: 1732

TN: 0

FP: 1170

CR + Gaussian Mixture
TN: 193260

FP: 10149

TN: 37947

FP: 1952

TN: 367574

FP: 19001

TN: 1111

FP: 59

CR + KitNet (Ours)
TN: 203409

FP: 0

TN: 39899

FP: 0

TN: 386575

FP: 0

TN: 1170

FP: 0

the window size is configured to 70 samples for UDP-based communications and 90 samples for
TCP-based communications.

Model Testing.We evaluate the efficacy of the RTFSL module in ensuring that access granted to
endpoints is used in accordance with the learned transmission behavior from the training process.
In this experimental setup, the ARL module initially grants communication access to endpoints.
However, during the enforcement phase, the endpoints deviate from their normal behavior, either
adopting the transmission patterns of another benign application or exhibiting malicious behavior.
It is important to note that the model training and enforcement phases were conducted using

different traffic trace datasets captured during different periods in theMAWI dataset. These capture
periods experienced natural throughput fluctuations due to the starting and stopping of flows. As a
result, during testing, the model attempts to match transmission patterns that may have varied due
to these throughput fluctuations. Therefore, we evaluate the performance of the RTFSL module in
recognizing normality or abnormality in traffic patterns affected by the dynamic fluctuations of
network conditions.
Consistent with the evaluation objectives for the ARL module, we assess the RTFSL module’s

ability to (1) recognize normal benign transmission patterns and (2) detect deviations classified as
abnormal benign or malicious behaviors.

Results. Figures 9 and 10 show the evaluation results for the UDP-based flows; Figures 11 and 12
show the evaluation results for the TCP-based flows.
Similar to the previous section, we present the results in a cross-evaluation manner in which the

vertical axis indicates the data on which the model is individually trained. For each set of training
data, we report the number of training samples supplied to themodel. The horizontal axis indicates
the data on which the model is tested.
Each cell in the evaluation results shows a plot of how the anomaly error (i.e., DTW Euclidean

distance) progresses with the arrival of flow statistics samples for the packets (green curve) and
bytes (orange curve). The dotted blue line denotes the moment when the sliding window starts
(i.e., the number of collected samples equals the window length). The horizontal dotted red line
denotes the anomaly detection threshold (i.e., 0.8). The anomaly detection occurs when a curve
meets the anomaly detection boundary. Note that if the green and orange curves are tangent to
one another, only the orange curve will be visible in the plot, as it overlays the green curve. Plots
in orange boxes pertain to normal benign tests, green to abnormal benign, and red to abnormal
malicious.
In both types of flows, we make the following observations: (1) The DTW Euclidean distance

for normal benign patterns typically remains far below the anomaly threshold. (2) The module
detects both abnormal benign and malicious traffic patterns before the sliding window begins. In
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Fig. 9. RTFSL module evaluation results for the UDP-based flows.

other words, in all cases, the module detected the abnormality by collecting statistics samples less
than the window length (i.e., in the first couple of minutes of data transmission). For example, the
model trained on the “2024 Game 1 (UDP)” application data and tested on “2018 VoIP 1 (UDP)”
detected the anomalous flow within 10 samples (less than 1 minute of data transmission) from the
flow start (see Figure 9).

12.4 RQ4: RTFSL Effectiveness in Changing Network Conditions

We now explore a distinct scenario in which the training data is generated under network con-
ditions that differ from those present during model testing. This analysis aims to examine the
module’s robustness to variations in network conditions, specifically bandwidth, link delays, and
jitter.
It is worth noting that the experiments conducted with the MAWI datasets (Section 12.3) inher-

ently include fluctuations in these network condition attributes over time due to the thousands
of flows traversing the transit link from which the data was captured. In this scenario, we in-
tentionally introduce significant changes to these conditions to further stress-test the module’s
adaptability.

Experiment Setup. We use the experiment setup 2 discussed in Section 12.1.

Model Training. We train the module with data generated in a network with a bandwidth of
55 Mbps between the communicating entities and no observable link delays or jitter. In contrast,
during model enforcement, we enforce the model in a network with significantly lower bandwidth
(i.e., 20 Mbps) and progressively introduce link delays and jitter. Our investigation focuses on two
key aspects: (1) assessing whether normal benign transmissions are still accurately identified as
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Fig. 10. RTFSL module evaluation results for the UDP-based flows (continued).

Fig. 11. RTFSL module evaluation results for the TCP-based flows.
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Fig. 12. RTFSL module evaluation results for the TCP-based flows (continued).

Fig. 13. RTFSL module evaluation results on different training and enforcement network conditions for the

TCP-based flows.

benign, thereby preventing degradation of quality of service (QoS) by suspending benign flows;
and (2) evaluating the model’s ability to detect abnormal malicious flows under these changing
conditions.

Results. The results of the experiments are presented in the Figures 13 and 14. The name of each
plot denotes the traffic patterns on which the module is tested as well as the network conditions.
For instance, plot “iperf B20_D50_J40,” pertains to the exhibited transmission patterns of iperf
when the bandwidth is 20 Mbps with link delays of 50 ms and jitter of 40 ms.
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Fig. 14. RTFSL module evaluation results on different training and testing network conditions for the UDP-

based flows.

For both TCP- and UDP-based communication, the model demonstrates resilience against a
reduction in bandwidth of at least 64%. Specifically, the model exhibits no instances of FP or FN
for either benign or anomalous malicious traffic under these conditions.
Subsequently, we introduce a link delay of 50 ms along with a jitter of up to 60 ms. In the

case of TCP-based communication, the model identifies anomalies in the byte time series (orange
curve), having an anomaly error of 0.8. Consequently, ZT-SDN terminates the connection. It is
noteworthy that network delay and jitter of such magnitude significantly diminish the QoS, even
without ZT-SDN intervention. Typically, applications with high bandwidth requirements or real-
time communications, such as VoIP, are unable to tolerate jitter beyond 50 ms [12, 32]. Thus, the
communication, even without ZT-SDN, would be impractical in such scenarios.
Conversely, in the case of the UDP, the model remains robust even in the presence of extremely

high delay and jitter. This resilience can be attributed to the simplicity of the UDP, which lacks
congestion control and retransmission mechanisms found in the TCP. Consequently, the shape of
the time series in these situations does not undergo notable changes that would trigger anomalies
in ZT-SDN. Last, the abnormal malicious patterns exhibited by the flooding and port scanning
are detectable in the reduced bandwidth setting. The model continues to exhibit robustness in
detecting these attacks beyond 50 ms in both delay and jitter.

12.5 RQ5: Scalability of ZT-SDN

We evaluate the performance of ZT-SDN by comparing it to the baseline provided by the ONOS’s
reactive forwarding application, Fwd. Our evaluation focuses on three key metrics: (1) the number
of control plane invocations (i.e., PACKET_IN messages) from the data plane, (2) the achievable
bandwidth in the data plane as a result of control plane processing, and (3) the ZT-SDN’s control
plane processing delay.

Experiment Setup. We set up a network of varying sizes in terms of hosts, switches, and the
number of switches between communicating entities. Both the endpoints and switches run indi-
vidually in Linux containers within the Mininet environment. We utilize Open vSwitches [40]
for the switches. To generate traffic and measure the maximum achievable bandwidth between
each client and server machine, we use the iperf tool in bandwidth testing mode. In this mode,
iperf uses two bidirectional channels and sends packets rapidly to stress test the connection and
measure the bandwidth. In these experiments, we test the scalability of our approach under the
most stressful network conditions: (1) all client machines start their applications approximately
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Table 6. Number of Packet-In, Rules Per Switch, and Total Processing Times

Topology

(Hosts x Switches)

Total

Packet-In

Number of Rules

Per Switch

Total Processing

Time (sec)

ZT-SDN Fwd ZT-SDN Fwd ZT-SDN Fwd

2H x 4 SW 15 76 2 4 0.15 0.07
4H x 4 SW 73 138 6 12 0.85 0.12
10 H x 5 SW 152 449 18 36 1.07 0.47
20 H x 10 SW 596 1745 38 76 2.77 0.82
30 H x 10 SW 758 2198 58 116 4.37 0.83
40 H x 15 SW 1900 3624 78 153 6.27 0.89
100 H x 15 SW 7378 19588 198 396 20.98 2.68
150 H x 15 SW 16441 36836 298 596 30.28 3.06

at the same time and (2) the communication path between entities is always the longest possible,
traversing all network switches.

Model Training.We train ARL and RTFSL similarly to the methods described in Sections 12.1 and
12.3, respectively. Using our RGAM approach, we mine rules from CR graph edge-specific datasets
generated by the CSM. The datasets comprise approximately a total of 35,000 traffic samples from
application execution. RGAM generated two flow rules for each communication endpoint: r1 =
[dstAddr = SERVER_ADDR, dstPort = 5001, dscp = 0, ecn = 0, etherType = 2048, proto = TCP,
srcAddr = CLIENT_ADDR, vlanID= -1], and r2 = [destAddr = CLIENT_ADDR, dscp = 0, ecn =
0, etherType = 2048, proto = TCP, srcAddr = SERVER_ADDR, srcPort = 5001, vlanID = -1]. Here,
SERVER_ADDR and CLIENT_ADDR represent the IPv4 addresses of the server and each client,
respectively. According to our model analysis, the source port on any client machine cannot be
predicted; thus, it is excluded from the generated rules. Additionally, the analysis indicates that
these two rules have a 100% association score.

Results. Table 6 shows the scalability performance results comparing the Fwd with ZT-SDN. The
topology column reports the number of host machines (clients and server) and the number of
switches in the path between each client and the server. Packet-In indicates the number of times
the controller was invoked due to the absence of rules in the data plane. Number of rules expresses
the number of rules installed at the switches by each approach. Note that Fwd generates rules dy-
namically at run time based on PACKET_INmessage headers, which include source and destination
addresses, ports, and transport layer protocol. Finally, the total processing time represents the time
required for ZT-SDN and Fwd to process all the access requests (i.e., PACKET_IN). For ZT-SDN, this
includes the processing time of both the CSM and ML modules (encompassing packet header pro-
cessing and model inferences). It is important to note that Fwd does not enforce access control and
allows all accesses.
In all cases, ZT-SDN demonstrates a reduction in the number of PACKET_INmessages compared

with Fwd owing to ZT-SDN’s proactive rule deployment approach. Finally, the number of rules
installed in the network is reduced by 50% in ZT-SDN compared with rules installed by Fwd. This
is because Fwd enforces rules with both the source and destination ports. Since, in this scenario,
there are two bidirectional channels, the number of rules enforced by Fwd at each switch would
be double the number of rules enforced by ZT-SDN.
Table 7 shows the iperf reported average throughput and the amount of data transmitted per

host across the same network topologies reported in Table 6. The results suggest that ZT-SDN does
not cause network degradation despite the additional access request processing overhead at the
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Table 7. Average Maximum Achievable Bandwidth and Bytes Transmitted Between the

Communicating Entities

Topology

(Hosts x Switches)

Average Throughput

Per Client (Gbps)

Average Bytes Transmitted

Per Client (GBytes)

ZT-SDN Fwd ZT-SDN Fwd

2H x 4 SW 49.5 52.9 173 185
4H x 4 SW 44.16 43.43 154.3 151.66
10 H x 5 SW 31.29 31.07 109.22 108.44
20 H x 10 SW 16.27 16.12 56.85 56.29
30 H x 10 SW 11.86 12.15 41.44 42.47
40 H x 15 SW 9.20 9.16 32.15 32.02
100 H x 15 SW 3.63 3.15 13.66 12.2
150 H x 15 SW 2.59 2.55 9.91 9.77

control plane. In fact, as the network topology scales, ZT-SDN exhibits performance equivalent to
the baseline.

13 Conclusion and Future Work

In this article, we have introduced ZT-SDN, a novel end-to-end ZT architecture for SDNs. ZT-SDN
implements automated learning processes from the underlying network that (1) capture the
communication requirements of entities in the network, (2) derive the access control rules
allowing entities to execute their missions successfully in the least privilege, and (3) learn the data
transmission behavior of the entities using those granted network permissions by extracting their
communication patterns. Additionally, ZT-Gym is introduced to facilitate the offline generation of
application datasets and training of ML modules, ensuring benign training datasets in scenarios
in which network data transmissions are not guaranteed to be benign. Our experimental results
demonstrate that ZT-SDN effectively prevents unauthorized access to network resources and
detects deviant behaviors in entities using permitted flows. Furthermore, we show that ZT-SDN
exhibits reasonable tolerance to changing network conditions. We also present the scalability
performance of our framework across various topology sizes, comparing it against the ONOS
baseline reactive forwarding.

Future Work. Future research directions for ZT-SDN focus on addressing key challenges and
advancing the capabilities of the framework.
First, the current implementation trains models on the individual edges of the CR graph in both

the ARL and RTFSL modules. However, as the CR graph grows in complexity with hundreds of
edges, training time and model management become increasingly resource intensive. To address
this, our aim is to develop a graph-pruning strategy that simplifies the CR graph. One potential
approach is to identify and unify nodes that exhibit similar behaviors, such as users of the same ap-
plication instance with consistent usage patterns. This unification would reduce redundant edges
and training overhead.
Second, we plan to explore methods to relax the assumption of training data that are benign

only. This involves designing an automated data cleaning pipeline that identifies and excludes
anomalous examples from the training dataset, ensuring robust model performance even in sce-
narios with abnormal data. This approach could also reduce the overhead associated with running
applications in the ZT-Gym for offline dataset generation.
In addition, our goal is to implement an automated model relearning mechanism to adapt to

evolving benign network behaviors. For example, when an application is updated to introduce
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new capabilities—potentially generating new traffic flows—ZT-SDN would automatically update
its ML models. This adaptation will involve granting new access permissions, recognizing updated
flow behaviors, and generating the corresponding firewall rules to seamlessly accommodate the
new requirements.
Finally, we aim to scale the ZT-SDN architecture for much larger and more complex networks.

In networks with hundreds or thousands of nodes (e.g., user hosts, network switches, servers), a
distributed control plane is typically adopted, in which multiple controllers manage different seg-
ments of the data plane. This setup reduces the workload on individual controllers and improves
overall scalability. We plan to explore how ZT-SDN can be extended to effectively support dis-
tributed control plane architectures, enabling its deployment in large-scale network environments.
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