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GCFExpLAINER: Global Counterfactual Explainer for Graph
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Graph neural networks (GNNs) find applications in various domains such as computational biology, natural
language processing, and computer security. Owing to their popularity, there is an increasing need to explain
GNN predictions since GNNs are black-box machine learning models. One way to address this issue involves
using counterfactual reasoning where the objective is to alter the GNN prediction by minimal changes in the
input graph. Existing methods for counterfactual explanation of GNNs are limited to instance-specific local
reasoning. This approach has two major limitations of not being able to offer global recourse policies and
overloading human cognitive ability with too much information. In this work, we study the global explainability
of GNNs through global counterfactual reasoning. Specifically, we want to find a small set of representative
counterfactual graphs that explains all input graphs. Toward this goal, we propose GCFEXPLAINER, a novel
algorithm powered by vertex-reinforced random walks on an edit map of graphs with a greedy summary.
Extensive experiments on real graph datasets show that the global explanation from GCFEXPLAINER provides
important high-level insights of the model behavior and achieves a 46.9% gain in recourse coverage, a 9.5%
reduction in recourse cost compared to the state-of-the-art local counterfactual explainers. We also demonstrate
that GCFEXPLAINER generates explanations that are more consistent with input dataset characteristics, and
is robust under adversarial attacks. In addition, K-GCFEXPLAINER, which incorporates a graph clustering
component into GCFEXPLAINER, is introduced as a more competitive extension for datasets with a clustering
structure, leading to superior performance in three out of four datasets in the experiments and better scalability.
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1 Introduction

Graph neural networks (GNNs5s) [13, 22, 39, 55, 62, 63] are being used in many domains such as
drug discovery [17], chip design [37], combinatorial optimization [32], physical simulations [3, 51],
event prediction [12, 24, 34], and clustering [4, 53]. Taking the graph(s) as input, GNNs are trained
to perform various downstream tasks that form the core of many real-world applications. For
example, graph classification has been applied to predict whether a drug would exhibit the desired
chemical activity [17]. Similarly, node prediction is used to predict the functionality of proteins in
protein—protein interaction networks [7] and categorize users into roles on social networks [67].

Despite the impressive success of GNNs on predictive tasks, GNNs are black-box machine
learning models. It is non-trivial to explain or reason why a particular prediction is made by a
GNN. Explainability of a prediction model is important to understand its shortcomings and identify
areas for improvement. In addition, the ability to explain a model is critical toward making it
trustworthy. Owing to this limitation of GNNs, there has been significant efforts in recent times
toward explanation approaches.

Existing work on explaining GNN predictions can be categorized mainly in two directions [18]:
(1) factual reasoning [30, 58, 68, 69], and (2) counterfactual reasoning [1, 2, 29, 50]. Generally
speaking, the methods in the first category aim to find an important subgraph that correlates
most with the underlying GNN prediction. In contrast, the methods with counterfactual reasoning
attempt to identify the smallest amount of perturbation on the input graph that changes the GNN’s
prediction, for example, removal/addition of edges or nodes.

Compared to factual reasoning, counterfactual explainers have the additional advantage of
providing the means for recourse [19, 44, 54, 57, 59]. For example, in the applications of drug
discovery [17, 66], mutagenicity is an adverse property of a molecule that hampers its potential to
become a marketable drug [20]. In Figure 1, formaldehyde is classified by a GNN to be mutagenic.
Factual explainers can attribute the subgraph containing the carbon-hydrogen bond to the cause
of mutagenicity, while counterfactual explainers provide an effective way (i.e., a recourse) to turn
formaldehyde into formic acid, which is non-mutagenic, by replacing a hydrogen atom with a
hydroxyl.

In this work, we focus on counterfactual explanations. Our work is based on the observation
that existing counterfactual explainers [30, 58, 68, 69] for graphs take a local perspective, generat-
ing counterfactual examples for individual input graphs. However, this approach has three key
limitations:

— Lack of global insights: It is desirable to offer insights that generalize across a multitude of
data graphs. For example, instead of providing formic acid as a counterfactual example to
formaldehyde, we can summarize global recourse rules such as “Given any molecule with a
carbonyl group (carbon—oxygen double bond), it needs a hydroxy to be non-mutagenic.” This focus
on global counterfactual explanation (GCE) promises to provide higher-level insights
that are complementary to those obtained from local counterfactual explanations.

— Information overload: The primary motivation behind counterfactual analysis is to provide
human-intelligible explanations. With this objective, consider real-world graph datasets that
routinely contain thousands to millions of graphs. Owing to instance-specific counterfactual
explanations, the number of counterfactual graphs grows linearly with the graph dataset size.
Consequently, the sheer volume of counterfactual graphs overloads human cognitive ability
to process this information. Hence, the initial motivation of providing human-intelligible
insights is lost if one does not obtain a holistic view of the counterfactual graphs.

— Information leakage: In line with the information overload, local explanations tend to leak
information related to the model (i.e., GNN). Therefore, local explanations may need additional
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(a) Formaldehyde (b) Formic acid

Fig. 1. Formaldehyde (a) is classified by a GNN to be an undesired mutagenic molecule with its important
subgraph found by factual reasoning highlighted in red. Formic acid (b) is its non-mutagenic counterfactual
example obtained by removing one edge and adding one node and two edges.

procedures to ensure the information remains private. However, global explanations naturally
encounter this issue to a lesser extent and leak less information regarding the GNN, making
them potentially preferable for model designers.

Contributions. In this article, we study the problem of model-agnostic, global counterfactual ex-
planations of GNNs for graph classification. More specifically, given a graph dataset, our goal is
to counterfactually explain the largest number of input graphs with a small number of counter-
factuals. As we will demonstrate later in our experiments, this formulation naturally forces us
to remove redundancy from instance-specific counterfactual explanations and hence has higher
information density. Algorithmically, the proposed problem introduces new challenges. We the-
oretically establish that the proposed problem is NP-hard. Furthermore, the space of all possible
counterfactual graphs itself is exponential. Our work overcomes these challenges and makes the
following contributions:

— Novel formulation: We formulate the novel problem of GCE of GNNs for graph classification.
In contrast to existing works on counterfactual reasoning that only generate instance-specific
examples, we provide an explanation on the global behavior of the model.

— Algorithm design: While the problem is NP-hard, we propose GCFEXPLAINER, which organizes
the exponential search space as an edit map. We then perform vertex-reinforced random
walks (VRRWs) on it to generate diverse, representative counterfactual candidates, which are
greedily summarized as the global explanation. An extension of it based on graph clustering,
K-GCFEXPLAINER, is also introduced to better leverage the clustering structure of input
datasets.

— Experiments and case study: We conduct extensive experiments on real-world datasets to
validate the effectiveness of the proposed method. Results show that GCFEXPLAINER not
only provides important high-level insights on the model behavior but also outperforms
state-of-the-art baselines related to counterfactual reasoning in recourse quality metrics,
consistency with input graphs, and robustness against adversarial attacks. We also include
a detailed case study demonstrating the usefulness of the generated global counterfactual
summary in providing high-level insight for the underlying GNN model in the domain of drug
discovery.

While this work is based on our previous conference article [14], we have extended its scope
significantly in this version. Specifically, the list of differences between this work and our conference
article is as follows:

—We extend GCFEXPLAINER to K-GCFEXPLAINER by incorporating a graph clustering component
(Section 4), and provide extensive empirical analysis to demonstrate its superior performance
(Section 5.9) and better scalability (Section 5.10) compared to the original GCFEXPLAINER
when the datasets have strong clustering structures.
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Table 1. Notations

() A binary graph classifier
G An input graph
G A collection of input graphs
n The number of input graphs
C A counterfactual graph
C A collection of counterfactual graphs
c The size of the global counterfactual representation
r(.) A recourse function
d(..) A distance function (between graphs)
0 The distance parameter (threshold)
G A meta-graph (edit map)
h An average node degree in the meta-graph
I(.) An importance function
M The number of iterations for the VRRW
k The number of cluster

—We add new analysis of the consistency between the generated counterfactual summaries
and the input graphs for GCFEXPLAINER and baselines, showing our strength in preserving
the connectivity of input graphs (Section 5.4).

—We conduct additional experiments measuring the robustness of GCFEXPLAINER against edge
flips. Results illustrate that GCFExPLAINER outperforms the baselines even when the input
graphs are noisy or under attacks (Section 5.5).

2 GCEs

This section introduces the GCE problem for graph classification. We start with the background on
local counterfactual reasoning. Then, we propose a representation of the global recourse rule that
provides a high-level counterfactual understanding of the classifier behavior. Finally, we introduce
quality measures for recourse rules and formally define the GCE problem. The notations used in
this paper is listed in Table 1.

2.1 Local Counterfactual

Consider a graph G = (V, E), where V and E are the sets of (labelled) nodes and edges, respectively.
A (binary) graph classifier (e.g., a GNN) ¢ classifies G into either the undesired class (¢(G) = 0) or
the desired one (¢(G) = 1). An explanation of ¢ seeks to answer how these predictions are made.
Those based on factual reasoning analyze what properties G possesses to be classified in the current
class while those based on counterfactual reasoning find what properties G needs to be assigned to
the opposite class.

Existing counterfactual explanation methods take a local perspective. Specifically, for each input
graph G, they find a counterfactual (graph) C that is somewhat similar to G but is assigned to a
different class. Without loss of generality, let G belong to the undesired class, i.e., $(G) = 0, then the
counterfactual C satisfies ¢(C) = 1. The similarity between C and G is quantified by a predefined
distance metric d, for example, the number of added/removed edges [2, 29].

In our work, we consider the graph edit distance (GED) [47], a more general distance measure,
as the distance function to account for other types of changes. Specifically, GED(G;, G2) counts the
minimum number of “edits” to convert G; to G. An “edit” can be adding or removing edges and
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Node/edge addition
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Fig. 2. Edits between graphs.

nodes, or changing node labels (see Figure 2). Moreover, to account for graphs of different sizes, we
normalize the GED by the sizes of graphs: @(Gl, Gy) = GED(Gy, Go)/(|Vi| + |Va| + |E1| + |E2|).
Nonetheless, our method can be applied with other graph distance metrics, such as those based on
graph kernels (e.g., RW [6], NSPDG [8], WL [49]).

The distance function measures the quality of the counterfactual found by the explanation model.
Ideally, the counterfactual C should be very close to the input graph G while belonging to a different
class. Formally, we define the counterfactuals that are within a certain distance 6 from the input
graph as close counterfactuals.

Definition 1 (Close Counterfactual). Given the GNN classifier ¢, distance parameter 6, and an input
graph G with undesired outcome, i.e., #(G) = 0; a counterfactual graph, C, is a close counterfactual
of G when ¢(C) =1and d(G,C) < 0.

While the (close) counterfactual C found by existing methods explains the classifier behavior for
the corresponding input graph G, it is hard to generalize to understand the global pattern. Next, we
introduce the global recourse rule that provides a high-level summary of the classifier behavior
across different input graphs.

2.2 Global Recourse Representation

The GCE requires a global recourse rule r. Specifically, for any (undesired) input graph G with
$(G) = 0, r provides a (close) counterfactual (i.e., a recourse) for G: ¢(r(G)) = 1. While both
a recourse rule and a local counterfactual explainer find a counterfactual given an input graph,
their goals are different. The goal of the local counterfactual explainer is to find the best (closest)
counterfactual possible for each input graph, and therefore, r can be very complicated, e.g., in the
form of an optimization algorithm [2, 50]. On the other hand, a recourse rule aims to provide an
explanation of the classifier’s global behavior, which requires a simpler form that is understandable
for domain experts without prior knowledge of deep learning on graphs.

Existing global recourse rules for classifiers with feature vectors as input take the form of short
decision trees [44]. However, this is hard to be generalized to graph data with rich structure
information. Instead, we propose the representation of a global recourse rule for a graph classifier
to be a collection of counterfactual graphs C in the desired class that are diverse and representative
enough to capture its global behavior. This representation does not require any additional knowledge
for domain experts to understand and draw insights from, similar to the local counterfactual
examples. It is also easy to find the local counterfactual for a given input graph G based on C by
nominating the closest graph in C: r(G) = argmin,-d(G, C).

2.3 Quantifying Recourse Quality

Given a graph classifier ¢ and a set of n input graphs G in the undesired class, we want to compare
the quality of different recourse representations C. Similar to the quality metrics introduced for
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vector data [44], we aim to account for the following factors:

(1) Coverage: Like local counterfactual explainers, we want to ensure that counterfactuals
found for individual input graphs are of high quality. Specifically, we introduce recourse
coverage—the proportion of input graphs that have close counterfactuals from C under a
given distance threshold 6:

coverage(C) =|{G € G| rcnel(rC; {d(G,C)} < 0}|/1G|.

(2) Cost: Another quality metric based on local counterfactual quality is the recourse cost (i.e.,
the distance between the input graph and its counterfactual) across the input graphs:

cost(C) = agg{min{d(G,C)}},
GeG CeC

where agg is an aggregation function, e.g., mean or median.
(3) Interpretability: Finally, the recourse rule should be easy (small) enough for human cogni-
tion. We quantify the interpretability as the size of recourse representation:

size(C) = |C|.

2.4 Problem Formulation and Characterization

An ideal recourse representation should maximize the coverage while minimizing the cost and the
size. Formally, we define the GCE problem as follows:

ProBLEM 1 (GCE FOR GRAPH CLASSIFICATION). Given a GNN graph classifier ¢ that classifies
n input graphs G to the undesired class 0 and a budget ¢ < n, our goal is to find the best recourse
representation C that maximizes the recourse coverage with size c:

max coverage(C) s.t. size(C) =c.

We note that in our problem formulation only coverage and size are explicitly accounted for,
whereas cost is absent. We make this design choice since cost and coverage are intrinsically opposing
forces. Specifically, if we are willing to allow a high cost, coverage increases since we allow for
higher individual distances between an input graph and its counterfactual. Therefore, we take the
approach of binding the cost to the distance threshold 6 in the coverage definition. Nonetheless, an
explicit analysis of all these metrics including cost is performed to quantify recourse quality during
our empirical evaluation in Section 5. Below we discuss the hardness of GCE.

THEOREM 1 (NP-HARDNESS). The GCE problem is NP-hard.

Proor. To establish NP-hardness of the proposed problem we reduce it from the classical
Maximum Coverage problem.

Definition 2 (Maximum Coverage). Given a budget ¢ and a collection of subsets S = {S1,---,Sn}
from a universe of items U = {uy,- - ,u,}, find a subset S’ C S of sets such that |S’| < ¢ and the
number of covered elements | Jyg,es Si| is maximized.

We show that given any instance of a Maximum Coverage problem (S, U), it can be mapped to
a GCE problem. For u;, we construct a star graph with a center node with an empty label and n leaf
nodes with n — 1 empty labels and one label u;. For S;, we construct a similar star graph with a
center node with a special label y and n leaf nodes with |S;| labeled with the elements in S; and
n —|S;| with empty labels. The classifier ¢ classifies a graph as a desired one if and only if it is a star
graph with a y-labeled central node and n leaf nodes with a set of labels among S = {Sy,- -+ ,Sn}.
The allowed edit operations are either adding or deleting a set of labels (as a single edit), but not
both together. So, each S; corresponds to a counterfactual candidate C; and d(G;,C;) < 6 =1
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if and only if u; € §;. With this construction, it is easy to see that an optimal solution for
this instance of GCE is the optimal solution for the corresponding instance of the Maximum
Coverage problem. O

Owing to NP-hardness, it is not feasible to identify the optimal solution for the GCE problem in
polynomial time unless NP = P. In the next section, we will introduce GCFEXPLAINER, an effective
and efficient heuristic that solves the GCE problem.

3 GCFEXPLAINER

In this section, we propose GCFEXPLAINER, the first global counterfactual explainer for graph
classification. The GCE problem requires us to find a collection of ¢ counterfactual graphs that
maximize the coverage of the input graphs. Intuitively, we want each individual counterfactual
graph to be a close counterfactual to (i.e., “cover”) as many input graphs as possible. Additionally,
different counterfactual graphs should cover different sets of input graphs to maximize the overall
coverage. These intuitions motivate the design of our algorithm GCFEXPLAINER, which has three
major components:

(1) Structuring the search space: The search space of counterfactual graphs consists of all graphs
that are in the same domain as the input graphs and within a distance of 6. In other words, any
graph within a distance of 8 from an input graph may be a potential counterfactual candidate
and therefore needs to be analyzed. The number of potential graphs within 0 increases
exponentially with 6 since the space of graph edits is combinatorial [27, 43]. GCFEXPLAINER
uses an edit map to organize these graphs as a meta-graph G, where individual nodes are
graphs that are created via a different number of edits from the input graphs and each edge
represents a single edit.

(2) VRRW: To search for good counterfactual candidates, GCFEXPLAINER leverages VRRWs [41]
on the edit map G. VRRW has the nice property of converging to a set of nodes that are both
important (i.e., cover many input graphs) and diverse (i.e., non-overlapping coverage), which
will form a small set of counterfactual candidates for further processing.

(3) Iterative computation of the summary: After obtaining good counterfactual candidates from
VRRW, GCFEXPLAINER creates the final set of the counterfactual graphs (i.e., the summary)
as the recourse representation by iteratively adding the best candidate based on the maximal
gain of the coverage given the already added candidates.

3.1 Structuring the Search Space

The search space for counterfactual graphs in GCFEXPLAINER is organized via an edit map G. The
edit map is a meta-graph whose nodes are graphs in the same domain as the input graphs and
edges connect graphs that differ by a single graph edit. As an example, each graph in Figure 2
represents a node in the edit map, and the arrows denote edges between graphs (nodes) that are
one edit away. In the edit map, we only include connected graphs since real graphs of interest are
often connected (e.g., molecules, proteins).

While all potential counterfactual candidates are included as its nodes, the edit map has an
exponential size and it is computationally prohibitive to fully explore it. However, a key observation
is that a counterfactual candidate can only be a few hops away from some input graph. Otherwise,
the graph distance between the counterfactual and the input graph would be too large for the
counterfactual to cover it. This observation motivates our exploration of the edit map to be focused
on the union of close neighborhoods of the input graphs (see Section 3.2.3). Additionally, while
we cannot compute the entire edit map, it is easy to chart the close neighborhoods by iteratively
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performing all possible edits from the input graphs. Next, we introduce the VRRW to efficiently
explore the edit map to find counterfactual candidates.

3.2 VRRW

VRRW [41] is a time-variant random walk. Different from other more widely applied random
walk processes such as the simple random walk and the PageRank [15, 16, 23, 42], the transition
probability p(u,v) of VRRW from node u to node v depends not only on the edge weight w(u, v)
but also on the number of previous visits in the walk to the target node v, which we denote using
N (v). Specifically,

p(4,0) < w(u,0)N(0). (1)

GCFEXPLAINER applies VRRW on the edit map and produces n most frequently visited nodes in
the walk as the set of counterfactual candidates S. Next, we formalize VRRW in our setting and
explain how it surfaces good counterfactual candidates for GCE.

3.2.1 Vertex-Reinforcement. Our main motivation for using VRRW to explore the edit map
instead of other random walk processes is that VRRW converges to a diverse and representative
set of nodes [35, 38] in different regions of the edit map. In this way, the frequently visited nodes in
instances of VRRW have the potential to be good counterfactual candidates as they would cover a
diverse set of input graphs in the edit map. The reason behind the diversity of the highly visited
nodes is the previous visit count N (v) in the transition probability. Specifically, nodes with larger
visit counts tend to be visited more often later (“richer gets richer”), and thereby dominating all
other nodes in their neighborhood. This leads to a bunch of highly visited nodes to “represent” each
region of the edit map. We refer the readers to [35] for details on the mathematical basis and the
theoretical correctness of this property. Moreover, as our goal is to find counterfactual candidates,
we only reinforce (i.e., increase the visit counts of) graphs in the counterfactual class.

3.22 Importance Function. While the vertex-reinforcement mechanism ensures diversity of the
highly visited nodes, we still need to guide the walker to visit graphs that are good counterfactual
candidates. We achieve this by assigning large edge weight w(u, v) to good counterfactual candidates
via an importance function I(v):

w(u,0) =1(v). (2)

The importance function I(v) should capture the quality of a graph v as a counterfactual candidate.
It has the following components:

(1) Counterfactual probability py(v). The graph classifier ¢ predicts a probability for v to be in
the counterfactual class (¢(v) = 1). By using it as part of the importance function, the walker
is encouraged to visit regions with rich counterfactual graphs.

(2) Individual coverage coverage({v}). The individual coverage of a graph v computes the
proportion of input graphs that are close to v. This encourages the walker to visit graphs
that cover a large number of input graphs.

(3) Gain of coverage gain(v; S). Given a graph v and the current set of counterfactual candidates
S (i.e., the n most frequently visited nodes), we can compute the gain between the current
coverage and the coverage after adding v to S:

gain(v;S) = coverage(S U {v}) — coverage(S)

This guides the walker to find graphs that complement the current counterfactual candidates
to cover additional input graphs.
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The importance function is a combination of these components:

I(v) = pg(v)(x coverage({v}) + (1 — @) gain(v;S)), (3)

where « is a hyperparameter between 0 and 1. With the above importance function, the VRRW in
GCFEXPLAINER converges to a set of diverse nodes that have high counterfactual probability and
collectively cover a large number of input graphs.

3.2.3  Dynamic Teleportation. The last component of VRRW, teleportation, is to help us manage
the exponential search space of the edit map. Since our goal is to find close counterfactuals to the
input graphs, the walker only needs to explore the nearby regions of the input graphs. Therefore,
we start the walk from the input graphs, and also at each step, let the walker teleport back (i.e.,
transit) to a random input graph with probability 7.

To decide which input graph to teleport to, we adopt a dynamic probability distribution based on
the current counterfactual candidate set S. Specifically, let g(G) = [{v € S | d(v,G) < 0 and ¢(v) =
1}| be the number of close counterfactuals in S covering an input graph G. Then the probability to
teleport to G is

exp(-9(G))
Yeecexp(-9(G))’
This dynamic teleportation favors input graphs that are not well covered by the current solution
set and encourages the walker to explore nearby counterfactuals to cover them after teleportation.

pT(G) =

4)

3.3 Iterative Computation of the Summary

We have applied VRRW to generate a good set of n counterfactual candidates S. In the last step of
GCFEXPLAINER, we aim to further refine the candidate set and create the final recourse representa-
tion (i.e., the summary) with ¢ counterfactual graphs. This summarization problem is also NP-hard
and we propose to build C in an iterative and greedy manner from S.

Specifically, we start with an empty solution set Cy. Then, for each iteration ¢, we add the graph
v to C; with the maximal gain of coverage gain(v;C,). This is repeated c times to get the final
recourse representation C with ¢ graphs. It is easy to show that the summarization problem is
submodular and therefore, our greedy algorithm provides (1 — 1/e)-approximation.

Notice that the greedy algorithm can also be applied to the local counterfactuals found by existing
methods to generate a GCE solution. Here, we highlight three advantages of GCFEXPLAINER:

(1) Existing local counterfactual explainers [1, 2, 29, 50] are only able to generate counterfactuals
based on one type of graph edits—edge removal, while GCFEXPLAINER incorporates all types
of edits to include a richer set of counterfactual candidates.

(2) The set of counterfactual candidates from GCFEXPLAINER is generated with the GCE objective
in mind, while the local counterfactuals from existing methods are optimized for individual
input graphs. Therefore, they may not be good candidates to capture the global behavior of
the classifier.

(3) Itis easy to incorporate domain constraints (e.g., the valence of chemical bonds) into GCF-
EXPLAINER by pruning the neighborhood of the edit map, while existing methods based on
optimization require non-trivial efforts to customize.

We will empirically demonstrate the superiority of GCFEXPLAINER to this two-stage approach with
state-of-the-art local counterfactual explanation methods in our experiments in Section 5.2.

Pseudocode and Complexity: The pseudocode of GCFEXPLAINER is presented in Algorithm 1. Lines
1-16 summarizes the VRRW component of GCFEXPLAINER. Specifically, Lines 3-10 determine the
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Algorithm 1: GCFEXPLAINER(¢, G)

1: G « random input graph from G, N(G) « 1, S = {G}
2: forie1: Mdo
3:  Let e ~ Bernoulli(r)

4: if e =0 then
5 for v € Neighbors(G) do
6: Compute I(v) based on Equation (3)
7 Compute p(G,v) based on Equation (1)
8 v « random neighbor of G based on p(G,v)
9 else
10: v « random input graph from G based on Equation (4)
11:  if ¢(v) =1 then
12: if v € S then
13: N(v) « N(v) +1
14: else
15: S« S+{v},N(v) «1
16: Gevo
17: S « top n frequently visited counterfactuals in S
18: C— 0

19: fort € 1:cdo

20: 0 < argmax, g gain(o; C)
21:  C«— C+ {v}

22: return C, S

next graph to visit based on VRRW transition probabilities and dynamic teleportation, and Lines
11-16 update the visit counts and the set of counterfactual candidates. The iterative computation of
the counterfactual summary is described in Lines 17-21. The overall complexity of GCFEXPLAINER
is O(Mhn + cn), where M is the number of iterations for the VRRW, h is the average node degree
in the meta-graph, n is the number of input graphs, and c is the size of the global counterfactual
representation. Note that h here depends on the characteristics of input graphs and individual
random walk runs, which do not have a close-form bound. In practice, one can set a limit on
the number of neighbors to be explored at each VRRW iteration to maintain tractability. We
have included an empirical analysis on incorporating this limit (set as 10,000) in our algorithm in
Section 5.10. The results show that we can achieve significantly shorter running time (up to 3x
times in the Proteins dataset) with only a small effect on the cost (—3.3% on average) in terms of
performance. In addition, we also store the computed transition probabilities with a space-saving
algorithm [36] to further improve the running time of GCFEXPLAINER.

4 K-GCFEXPLAINER

In this section, we propose K-GCFEXPLAINER as an extension of GCFEXPLAINER. It first puts input
graphs into several clusters, and then apply GCFEXPLAINER to each cluster of graphs to generate
counterfactuals, which are combined together for a summary. Intuitively, when input graphs
exhibit a strong clustering structure (e.g., chemical compounds with different functional groups),
incorporating this prior information into our framework can lead to more effective and efficient
solutions. More specifically, in K-GCFEXPLAINER:

—VRRW only explores graphs in the same cluster, and the generated counterfactuals are more
representative with respect to each cluster.
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Algorithm 2: K-GCFEXPLAINER(J, G, k)

: {G1,Gy,...,Gi} « split G into k clusters
: foriel:kdo
Ci, S; « GCFEXPLAINER(¢, G;)
S0
: foriel:kdo
S; « top |G;| frequently visited counterfactuals in S;
S« S+ Si
C—0
: fortel:cdo
0 « arg max,.q gain(v; C)
C « C+ {v}
: return C, S

R A AR R S

_ =
N o= O

Table 2. The Statistics of the Datasets

NCI1 Mutagenicity AIDS Proteins

#Graphs 3,978 4,308 1,837 1,113

#Nodes 118,714 130,719 28,905 43,471

#Edges 128,663 132,707 29,985 81,044
#Node Labels 10 10 9 3

—Exploration on each cluster is independent from each other, making our algorithm
parallelizable.

We will empirically demonstrate the superiority of K-GCFEXPLAINER to GCFEXPLAINER when
the input datasets have a strong clustering structure in Section 5.9.

Pseudocode and Complexity. The pseudocode for K-GCFEXPLAINER is presented in Algorithm 2.
Line 1 applies a clustering algorithm to the input graphs. For each cluster, Lines 2-3 execute
GCFEXPLAINER, as described in Algorithm 1. Lines 4-7 combine frequently visited counterfactuals
from each cluster. Lines 8-11 generate the counterfactual summary, following a process similar to
that in Algorithm 1. The overall complexity of K-GCFEXPLAINER is O(Zi-‘:1 M;hn + cn), where k is
the number of clusters, M; is the number of VRRW iterations for the ith cluster, h is the average
node degree in the meta-graph, n is the number of input graphs, and c is the size of the global
counterfactual representation. Since we set Zle M; = M, the complexity of GCFEXPLAINER and
K-GCFEXPLAINER remains the same. Importantly, K-GCFEXPLAINER can be parallelized for each
cluster, enhancing its overall efficiency.

5 Experiments

We provide empirical results for the proposed GCFExplanier along with baselines on commonly used
graph classification datasets. Our code is available at https://github.com/mertkosan/GCFExplainer.

5.1 Experimental Settings

5.1.1 Datasets. We use four different real-world datasets for graph classification benchmark
with their statistics in Table 2. Specifically, NCI1 [60], Mutagenicity [20, 45], and AIDS [45] are
collections of molecules with nodes representing different atoms and edges representing chemical
bonds between them. The molecules are classified by whether they are anticancer, mutagenic,
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Table 3. Accuracy of the GNN Graph Classifier

NCI1 Mutagenicity AIDS Proteins

Training  0.8439 0.8825 0.9980 0.7800
Validation 0.8161 0.8302 0.9727 0.8198
Testing  0.7809 0.8000 0.9781 0.7297

and active against HIV, respectively. Proteins [7, 10] is a collection of proteins classified into
enzymes and non-enzymes, with nodes representing secondary structure elements and edges
representing structural proximity. For all datasets, we filter out graphs containing rare nodes with
label frequencies smaller than 50.

5.1.2  Graph Classifier. We follow [58] and train a GNN with three convolution layers [22]
of embedding dimension 20, a max pooling layer, and a fully connected layer for classification.
Note that our method only requires the predictions from the graph classifier and can be applied
to any black-box graph classifiers beyond GNNs. The model is trained with the Adam optimizer
[21] and a learning rate of 0.001 for 1,000 epochs. The datasets are split into 80%/10%/10% for
training/validation/testing with the model accuracy shown in Table 3.

5.1.3 Baselines. To the best of our knowledge, GCFEXPLAINER is the first global counterfactual
explainer. To validate its effectiveness, we compare it against state-of-the-art local counterfactual
explainers RCEXPLAINER [2] and CFF [50] combined with the greedy summarization algorithm
described in Section 3.3. Additionally, we design another baseline called GRouND-TRUTH that uses
graphs belonging to the desired class from the original dataset as local counterfactuals.

Note that one can interpret the factual explanation from a factual explainer in a counterfactual
way to allow a comparison between factual and counterfactual approaches. That is, if a factual
explainer identifies an important subgraph that leads to its predicted class, the residual graph after
removing this explanatory subgraph could be treated as a counterfactual explanation. However,
this usually leads to unfavorable comparison for the factual explainers as they are not designed
with counterfactual reasoning in mind.

5.1.4 Explainer Settings. We use a distance threshold 6 of 0.05 for training all explainers. Since
computing the exact GED is NP-hard, we apply a state-of-the-art neural approximation algorithm
[43]. For GCFEXPLAINER, we set the teleportation probability 7 = 0.1 and tune «, the weight
between individual coverage and gain of coverage, from {0, 0.5, 1}. A sensitivity analysis is presented
in Section 5.8. The number of VRRW iterations M is set to 50,000, which is enough for convergence
as shown in Section 5.7. For K-GCFEXPLAINER, we employ K-medoids [40] for the initial clustering of
input graphs based on their GED. Each cluster i utilizes the same hyperparameters as GCFEXPLAINER,
with the number of VRRW iterations M; proportional to the cluster size and Zf—“zl M; = 50,000,
where the k—the number of clusters—is chosen from {2,3,4,5}. For baselines, we tune their
hyperparameters to achieve the best local counterfactual rates while maintaining an average
distance to input graphs that is smaller than the distance threshold 6.

5.1.5 Experiment Environment. All our experiments are run on a machine with 2 NVIDIA
GeForce RTX 2080 GPU (8 GB of RAM) and 32 Intel Xeon CPUs (2.10 GHz and 128 GB of RAM).

5.2 Recourse Quality

We start by comparing the recourse quality between GCFEXPLAINER and baselines. Table 4 shows
the recourse coverage with 6 = 0.1 and median recourse cost of the top 10 counterfactual graphs
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Table 4. Recourse Coverage (6 = 0.1) and Median Recourse Cost Comparison between GCFEXPLAINER
and Baselines for a 10-Graph Global Explanation

NCI1 Mutagenicity AIDS Proteins

Coverage Cost Coverage Cost Coverage Cost Coverage Cost

GrounND-TRUTH 16.54% 0.1326 28.96% 0.1275 0.41%  0.2012  8.47%  0.2155
RCEXPLAINER 15.22% 0.1370  31.99% 0.1290 8.96%  0.1531 8.74%  0.2283
CFF 17.61% 0.1331 30.43% 0.1327 3.39%  0.1669 3.83%  0.2557
GCFExpLAINER 27.85% 0.1281 37.08% 0.1135 14.66% 0.1516 10.93% 0.1856

GCFEXPLAINER consistently and significantly outperforms all baselines across different datasets. We highlight the
best-performing method in bold and the second best-performing method with underlines.

NCI1 Mutagenicity AIDS Proteins
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Fig. 3. Coverage and cost performance comparison between GCFEXPLAINER and baselines based on different
counterfactual summary sizes. GCFEXPLAINER consistently outperforms the baselines across different sizes.

(i.e., k = 10). We first notice that the two state-of-the-art local counterfactual explainers have similar
performance as GROUND-TRUTH, consistent with our claim that local counterfactual examples from
existing methods are not good candidates for a global explanation. The proposed GCFEXPLAINER,
on the other hand, achieves significantly better performance for global recourse quality. Compared
to the best baseline, RCEXPLAINER, GCFEXPLAINER realizes a 46.9% gain in recourse coverage and a
9.5% reduction in recourse cost.

Next, we show the recourse coverage and cost for different sizes of counterfactual summary in
Figure 3. As expected, adding more graphs to the recourse representation increases recourse cover-
age while decreasing recourse cost, at the cost of interpretability. And GCFEXPLAINER maintains a
constant edge over the baselines.

We also compare the recourse coverage based on different distance thresholds 0, with re-
sults shown in Figure 4. While coverage increases for all methods as the threshold increases,
GCFEXPLAINER consistently outperforms the baselines across different thresholds.

5.3 Global Counterfactual Insight

We have demonstrated the superiority of GCFEXPLAINER based on various quality metrics for
global recourse. Here, we show how GCFEXPLAINER provides global insights compared to local
counterfactual examples. Figure 5 illustrates (a) four input undesired graphs with a similar structure
from the AIDS dataset, (b) corresponding local counterfactual examples (based on RCEXPLAINER
and CFF), and (c) the representative global counterfactual graph from GCFEXPLAINER covering the
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NCI1 Mutagenicity AIDS Proteins
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Fig. 4. Recourse coverage comparison between GCFEXPLAINER and baselines based on different distance
threshold values (6). GCFEXPLAINER consistently outperforms the baselines across different 6.
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Fig. 5. lllustration of global and local counterfactual explanations for the AIDS dataset. The global counter-
factual graph (c) presents a high-level recourse rule—changing ketones and ethers into aldehydes (shown in
blue)—to combat HIV, while the edge removals (shown in red) recommended by local counterfactual examples
(b) are hard to generalize.

input graphs. Our goal is to understand why the input graphs are inactive against AIDS (undesired)
and how to obtain the desired property with minimal changes.

The local counterfactuals in Figure 5(b) attribute the classification results to different edges
in individual graphs (shown as red dotted lines) and recommend their removal to make input
graphs active against HIV. Note that while only two edits are proposed for each individual graph,
they appear at different locations, which are hard to generalize for a global view of the model
behavior. In contrast, the global counterfactual graph from GCFEXPLAINER presents a high-level
recourse rule. Specifically, the carbon atom with the carbon-oxygen bond is connected to two other
carbon atoms in the input graphs, making them ketones (with a C=0 bond) or ethers (with a C-O
bond). On the other hand, the global counterfactual graph highlights a different functional group,
aldehyde (shown in blue), to be the key for combating AIDS. In aldehydes, the carbon atom with a
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Table 5. The Ratio of Connected Graphs for Both Input Graphs and Counterfactual Explanations across
All Methods and Datasets

NCI1 Mutagenicity AIDS Proteins
Ratio Difference Ratio Difference Ratio Difference Ratio Difference
InpuT GRAPHS 0.9188 0.9651 0.9973 0.9617
RCExPLAINER 0.9681 0.0493 0.8621 —0.1030 0.9493 —-0.0480 0.9671 0.0054
CFF 0.5263 —0.3925 0.6848 —0.2803 0.5192 —-0.4781 0.7487 —0.2130

GCFExpPLAINER 0.9229 0.0041 0.9578 —0.0073 0.9847 -0.0126 0.9754 0.0137

GCFEXPLAINER produces counterfactuals with connectivity closer (i.e., low difference) to input graphs. We highlight
the best-performing method in bold and the second best-performing method with underlines.

carbon-oxygen bond is only connected to one other carbon atom, leading to different chemical
properties compared to ketones and ethers. Indeed, aldehydes have been shown to be effective HIV
protease inhibitors [48].

Finally, this case study also demonstrates that counterfactual candidates found by GCFEXPLAINER
are better for global explanation than local counterfactuals. We note that while the GED between
the local counterfactuals and their corresponding input graphs is only 2, they do not cover other
similarly structured input graphs (with distance > 5). Meanwhile, our global counterfactual graph
covers all input graphs (with distance < 4).

5.4 Consistency

The consistency of graph properties between counterfactual explanations and the input graphs is
an important factor for their practical application in real-world scenarios. For example, in drug
discovery, we want the drug candidates (i.e., counterfactuals) to be valid molecules that can also
be manufactured in an easy manner, like those provided as input graphs. While evaluating the
consistency of such complicated and domain-specific graph characteristics is beyond the scope of
this work, here, we look at a simpler property, the connectivity of our generated counterfactuals,
and compare it against the original input graphs. Table 5 presents the percentage of connected
graphs for input graphs, counterfactual explanations by all methods, and their differences across
the datasets. GCFEXPLAINER generally outperforms the baselines in terms of maintaining the
original connectivity. The primary reason for this advantage is that, during our VRRW, we refrain
from removing any bridges from the graph. This approach ensures that the number of connected
components remains unchanged in the graph.

5.5 Robustness

The input graphs to the GNN explainers can be noisy or incomplete [33, 64], and sometimes even
under adversarial attacks [5, 9]. Here, we evaluate the robustness of GCFEXPLAINER against random
edge flips. Specifically, we randomly choose m node pairs from each input graph and perform an
edge flip—removing the edge if it already exists or adding it otherwise. We evaluate the robustness
of our model across different values of m, ranging from 1 to 5.

Table 6 compares the recourse coverage of GCFEXPLAINER, its attacked variants (denoted as
GCF4ttack=m)> and the baselines. Note that the reported performance of baselines is without any
noise or attack, yet their explanations are actually vulnerable to them [25]. While the coverage
performance of GCFEXPLAINER decreases when the noise level increases, the loss is not substantial
enough to negate its superior performance compared to the baselines without noise. The perfor-
mance loss is most significant in AIDS, which is expected as graphs in this dataset are generally
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Table 6. Comparison of Coverage Performance for GCFEXPLAINER, Its Attacked Variants, and Baselines
across Different Summary Sizes for All Datasets

NCI1 Mutagenicity

Summary Size 1 5 10 25 50 100 1 5 10 25 50 100

GCFExPLAINER 0.057 0.179 0.279 0441 0.568 0.694 0.117 0.282 0.371 0.508 0.617 0.728
GCFarack=1 0.051 0.179 0.264 0.411 0.536 0.660 0.097 0.262 0.346 0.485 0.585 0.690
GCFarack=2 0.050 0.160 0.235 0.382 0.488 0.599 0.097 0.240 0.329 0.468 0.570 0.673
GCFatrack=3 0.044 0.145 0.221 0.348 0.440 0.529 0.101 0.249 0.336 0.468 0.562 0.650
GCFtrack=a 0.045 0.138 0.198 0.292 0.367 0.437 0.110 0.230 0.293 0.398 0.494 0.588
GCF s rack=5 0.038 0.110 0.155 0.235 0.295 0.342 0.085 0.206 0.272 0.365 0.452 0.537
RCEXPLAINER 0.031 0.101 0.152 0.227 0.278 0.314 0.098 0.242 0.320 0.435 0.521 0.596
CFF 0.043 0.116 0.176 0.293 0.376 0.458 0.095 0.235 0.304 0.429 0.525 0.619

AIDS Proteins

Summary Size 1 5 10 25 50 100 1 5 10 25 50 100

GCFExPLAINER 0.037 0.107 0.147 0.206 0.263 0.335 0.022 0.068 0.109 0.194 0.265 0.402
GCFgttack=1 0.029 0.065 0.090 0.141 0.184 0.234 0.019 0.060 0.093 0.150 0.219 0.339
GCFattack=2 0.022 0.054 0.079 0.119 0.154 0.191 0.014 0.046 0.077 0.134 0.202 0.303
GCFatrack=3 0.016 0.046 0.063 0.091 0.109 0.118 0.014 0.049 0.071 0.112 0.180 0.186
GCFatrack=4 0.014 0.046 0.065 0.098 0.118 0.122 0.014 0.041 0.055 0.096 0.156 0.156
GCFatrack=5 0.009 0.028 0.041 0.060 0.071 0.071 0.011 0.038 0.052 0.093 0.117 0.117
RCEXPLAINER 0.019 0.060 0.090 0.140 0.187 0.236 0.008 0.030 0.046 0.087 0.134 0.134
CFF 0.011 0.025 0.034 0.043 0.043 0.043 0.006 0.025 0.038 0.079 0.118 0.118

Despite GCFEXPLAINER experiencing performance losses with increasing attack strength, GCFEXPLAINER still outperforms
the baselines in most cases. We highlight such cases with the strongest attack strength in bold. For example, the coverage of
GCF4ttack=4 for NCI1 with summary size 1, 0.045, is highlighted in bold, demonstrating GCFEXPLAINER still outperforms
all baselines while its input graphs are attacked by 4 edge flips. We highlight the best-performing variant in bold.

smaller. Intuitively, our method can counter the attacks by negating them first during the random
walk exploration and then proceeding with the original input graph, as long as such a direction
leads to higher importance values. Formally evaluating this effect as well as further enhancing the
robustness of our current method can be an interesting future direction.

5.6 Ablation Study

We then conduct an ablation study to investigate the effectiveness of GCFEXPLAINER components.
We consider three alternatives:

— GCFExPLAINER-NVR: no vertex-reinforcement (N (v) = 1)
—GCFExPLAINER-NIF: no importance function (I(v) = 1)
—GCFExPLAINER-NDT: no dynamic teleportation (p.(G) = 1/|G|)

The coverage results are shown in Table 7. We observe decreased performance when any of
GCFEXPLAINER components is absent.

5.7 Convergence Analysis

In this subsection, we show the empirical convergence of VRRW based on the Mutagenicity dataset
in Figure 6. We observe that the coverage performance for different summary sizes starts to converge
after 15,000 iterations and fully converges after 50,000 iterations, which is the number we applied
in our experiments.
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Table 7. Ablation Study Results Based on Recourse Coverage

NCI1 Mutagenicity AIDS Proteins

GCFEXPLAINER-NVR  24.56% 35.44% 11.33% 8.56%

GCFExPLAINER-NIF  13.29% 29.16% 4.54% 6.83%

GCFExPLAINER-NDT  27.34% 36.35% 14.05% 9.28%
GCFEXPLAINER 27.85% 37.08% 14.66% 10.93%

We highlight the best-performing variant in bold.
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Fig. 6. Convergence of VRRW for the Mutagenicity dataset based on recourse coverage with different
summary sizes. VRRW fully converges after M = 50,000 iterations.

Table 8. Sensitivity Analysis on a, the Weight between
Individual Coverage and Gain of Coverage in the
Importance Function

NCI1 Mutagenicity AIDS Proteins

a=0.0 27.85% 36.87% 12.83% 10.11%
a=0.5 27.50% 36.59% 14.66%  10.38%
a=1.0 22.27% 37.08% 13.99% 10.93%

We highlight the best-performing variant in bold.

5.8 Sensitivity Analysis

The only hyperparameter of GCFEXPLAINER we tune is « in Equation (3) that weights the individual
coverage and gain of coverage for the importance function. Table 8 shows the results based on
different o. While GCFEXPLAINER outperforms baselines with all different , we observe that
individual coverage works better for NCI1 and gain of cumulative coverage works better for other
datasets.

5.9 K-GCFEXPLAINER Performance

In this subsection, we present the performance of K-GCFExpLAINER with different values of k
(number of clusters) compared to the original model GCFEXPLAINER. Table 9 illustrates the coverage
performance of GCFExpLAINER and K-GCFExPLAINER with k set to 2, 3, 4, and 5. The results
suggest that while the best k for K-GCFExpLAINER differs across datasets, it still demonstrates
performance improvement across different summary sizes. This is especially evident for the NCI1
and Mutagenicity datasets. On the other hand, GCFEXPLAINER achieves better performance in AIDS.
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Table 9. Comparison of Coverage Performance for GCFExpLAINER and K-GCFExPLAINER with Different
Values of k across Various Summary Sizes for All Datasets

NCI1 Mutagenicity
Summary Size 1 5 10 25 50 100 1 5 10 25 50 100
GCFEXPLAINER 0.057 0.179 0279 0.441 0.568 0.694 0.117 0.282 0.371 0.508 0.617 0.728

K-GCFEXPLAINER,-; 0.055 0.176 0.273 0434 0569 0.698 0.109 0281 0375 0.518 0.624 0.728
K-GCFEXPLAINER =3 0.059 0.180 0.279 0443 0563 0.693 0.118 0.288 0.376 0516 0.619 0.723
K-GCFEXPLAINER;—s 0.049 0.183 0.281 0444 0569 0.699 0.115 0280 0372 0512 0.614 0.724
K-GCFEXPLAINERi—s  0.050 0.179 0.275 0.446 0.573 0.702 0.109 0260 0368 0511 0620 0.727

AIDS Proteins
Summary Size 1 5 10 25 50 100 1 5 10 25 50 100
GCFEXPLAINER 0.037 0.107 0.147 0.206 0.263 0.335 0.022 0.068 0.109 0.194 0.265 0.402

K-GCFEXPLAINERk—; 0.035 0.096 0.130 0.185 0.239 0.298 0.022 0.077 0.109 0.191 0.262 0.399
K-GCFEXPLAINERk=3 0.035 0.097 0.132 0.189 0.244 0.308 0.022 0.071 0.101 0.178 0.246 0.383
K-GCFEXPLAINERk—4 0.028 0.092 0.127 0.187 0.240 0.301 0.022 0.077 0.109 0.178 0.246 0.369
K-GCFEXPLAINERk=5; 0.028 0.087 0.125 0.183 0.238 0.298 0.019 0.066 0.098 0.180 0.251 0.380

We highlight the best-performing method from K-GCFEXPLAINER in bold and the performance of K-GCFEXPLAINER when
it either matches or outperforms GCFEXPLAINER underlined. Notably, K-GCFEXPLAINER exhibits consistently superior
performance compared to GCFExPLAINER for NCI1 and Mutagenicity. The AIDS dataset is the only dataset where we have
not seen performance gains, which has the lowest silhouette scores (or weakest clustering structure), as shown in Figure 7.
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Fig. 7. Silhoutte scores based on the number of clusters for input graphs of each dataset. Higher sil-
houette scores are associated with stronger clustering structures. We see that the clustering structure of
AIDS is the weakest among all datasets, explaining the absence of performance gains for clustering-based
K-GCFEXPLAINER.

We hypothesize that the input graphs of AIDS datasets cannot be easily clustered compared to
other datasets. To validate this hypothesis, we compute the silhouette scores [46] for the clustering
results in Figure 7. Higher sihouette scores are associated with stronger clustering structures. In
our case, AIDS indeed has a much lower silhouette score, indicating its lack of a strong clustering
structure.

The incorporation of a graph clustering component into GCFEXPLAINER has the potential to
enhance the effectiveness of the generated counterfactual summary when carefully designed.
Additionally, note that K-GCFEXPLAINER is a two-step algorithm that initially calculates clusters,
and then runs GCFEXPLAINER. One could argue that training these two steps end-to-end may
further improve performance. We believe that this can be a promising future direction in the
problem of global counterfactual explainers.
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Table 10. Counterfactual Candidates Generation Time Comparison in Terms
of Seconds

NCI1 Mutagenicity AIDS Proteins

RCEXPLAINER 30,454 52,549 29,047 8,444
CFF 22,794 31,749 21,296 6,412
GCFEXPLAINER 19,817 24,006 2,615 19,246
GCFEXPLAINER-S 19,365 18,798 2,539 7,429
K-GCFEXPLAINERg—3 13,209 18,035 1,078 10,360
K-GCFEXPLAINER-Sy—3 12,437 11,987 968 6,258

GCFEXPLAINER (-S) has a competitive running time albeit exploring more counterfactual
graphs compared to baselines. Additionally, K-GCFEXPLAINER scales better compared
to GCFEXPLAINER for both the original and sampled versions. We highlight the best-
performing and second best-performing method among GCFEXPLAINER and the baselines
in bold and with underlines. Results for K-GCFEXPLAINER are italicized to demonstrate
their improved running time compared to GCFEXPLAINER.

5.10 Running Time

Table 10 summarizes the running times of generating counterfactual candidates based on different
methods. GCFEXPLAINER has a competitive running time albeit exploring more counterfactual
graphs in the process. We also include results for GCFEXPLAINER-S which samples a maximum of
10,000 neighbors for computing the importance at each step. It achieves better running time at a
negligible cost of 3.3% performance loss on average. Additionally, K-GCFEXPLAINER(-S) exhibits
better scalability compared to GCFEXPLAINER, as each cluster run is independent and can be
parallelized. We set k = 3 and report the maximum running time of three cluster runs. Finally,
summarizing the counterfactual candidates takes less than a second for all methods.

6 Related Work

Explanations for GNN. There is much research on explaining GNNs. The first proposed method,
GNNExplainer [68], finds the explanatory subgraph and subfeatures by maximizing the mutual
information between the original prediction and the prediction based on the subgraph and subfea-
tures. Later, PGExplainer [30] provides an inductive framework extracting GNN node embeddings
and learns to map embedding pairs to the probability of edge existence in the explanatory weighted
subgraph. PGMExplainer [58] builds a probabilistic explanation model that learns new predictions
from perturbed node features, performs variable selection using Markov blanket of variables, and
then produces a Bayesian network via structure learning. In XGNN [69], the authors find model-level
explanations by a graph generation module that outputs a sequence of edges using reinforcement
learning. TAGExplainer [65] has a two-step approach where the first step involves task-agnostic
self-supervised training and the second step is for downstream tasks. GEM [28] extracts subgraphs
with a Granger causality and an autoencoder while SubgraphX [70] finds subgraphs using a monte
carlo tree search. These explanation methods focus on factual reasoning while the goal of our work
is to provide a global counterfactual explanation for GNNs.

Counterfactual Explanations. There have been attempts to explain GNNs via counterfactual
reasoning [1, 2, 29, 50, 56, 71]. CF-GNNExplainer [29], one of the earlier methods, provides coun-
terfactual explanations by parameterizing and applying closed formula of GCN on a learnable
perturbed adjacency matrix, which leads to a prediction flip for for node classification. On the other
hand, RCEXPLAINER [2] aims to find a robust subset of edges whose removal changes the prediction
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of the remaining graph by modeling the implicit decision regions based on GNN embeddings. In
[1], the authors investigate counterfactual explanations for a more specific class of graphs—the
brain networks—that share the same set of nodes by greedily adding or removing edges using a
heuristic. More recently, the authors of CFF [50] argue that a good explanation for GNNs should
consider both factual and counterfactual reasoning and they explicitly incorporate those objective
functions when searching for the best explanatory subgraphs and subfeatures. Another recent
method CLEAR [31] provides a generative approach that uses graph variational autoencoder to
generate counterfactual graphs. InduCE [56] proposes a new approach to inductive counterfactual
reasoning, expanding the perturbation space to include edge additions. All the above methods
produce local counterfactual examples while our work aims to provide a global explanation in
terms of a summary of representative counterfactual graphs. Also, recently, [61] applied reinforce-
ment learning to explore chemically valid global counterfactuals. Besides the graph-domain, global
counterfactual reasoning is also applied in vector data [11, 26, 52].

7 Conclusion and Future Work

We have proposed GCFEXPLAINER, the first global counterfactual explainer for graph classification.
Compared to local explainers, GCFEXPLAINER (and its extension K-GCFEXPLAINER) provide a high-
level picture of the model behavior and effective global recourse rules. We hope that our work will
not only deepen our understanding of GNNs but also build a bridge for experts from other domains
to leverage deep learning models for high-stakes decision-making.

Promising future directions of this research include:

—Extending our work to graph tasks other than graph classification, such as node classification
and link prediction.

—Incorporating domain-specific constraints (e.g., the valence of chemical bonds in drug discov-
ery setting) into our explainer framework to generate more useful counterfactuals.

—Collaborating with domain experts to evaluate the usefulness/actionability of the generated
counterfactuals.

—Developing a human-in-the-loop system to allow interactions between the algorithm and
experts for a more effective drug discovery process.

—Exploring the application scenarios of graph counterfactual explanation in settings beyond
drug discovery and validating/adapting the proposed algorithm.
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