SynopsisLake: Quality-aware Approximate Spatial Query
Processing Using Data Synopses

Xin Zhang
University of California, Riverside
Riverside, USA
xzhan261 @ucr.edu

ABSTRACT

Accurate cost estimation is crucial for optimizing spatial queries
and for data exploration. Partition-based spatial synopses, such as
histograms and sketches, offer greater accuracy than sampling for
the same space budget. In data lake systems, which are increasingly
adopted for managing large-scale geospatial data, synopses are stored
across immutable files. As data grows, these partition-based synopses
increasingly overlap and differ in shape, making them inherently un-
mergeable. This prevents traditional query optimizers from applying
standard estimation techniques. In this paper, we present Synopsis-
Lake, a Lakehouse system that enables geospatial query optimization
over data lakes. We introduce the Align-Reshape-Merge framework
to combine unmergeable spatial synopses and support quality-aware
approximate query processing. We also propose Skewness-Align, a
metric to evaluate the quality of merged synopses. Experiments on
real-world geospatial datasets show that SynopsisLake incurs less
than 10% overhead during synopsis construction while reducing
total execution time across ingestion and queries by up to 3x in
mixed workload throughput compared to baseline systems.

CCS CONCEPTS

 Information systems — Data management systems.

KEYWORDS

Data Lake, Data Lakehouse, approximate geospatial query processing,
data synopses combination

ACM Reference Format:

Xin Zhang and Ahmed Eldawy. 2025. SynopsisLake: Quality-aware Approx-
imate Spatial Query Processing Using Data Synopses. In The 33rd ACM
International Conference on Advances in Geographic Information Systems
(SIGSPATIAL ’25), November 3—6, 2025, Minneapolis, MN, USA. ACM, New
York, NY, USA, 13 pages. https://doi.org/10.1145/3748636.3762714

1 INTRODUCTION

Spatial data synopses are compact data models that extract the
vital properties of the original data while using less space [23].
They are the key component to provide approximate answers in the
query optimizers of spatial database management systems (DBMSs).
Overall, there are four categories of data synopses: samples [4, 49,
70, 78], histograms [6, 8, 18, 59, 63], wavelets [20, 52, 68, 71], and
sketches [26, 35, 50, 51, 57, 65, 77]. They can handle cardinality

This work is licensed under a Creative Commons Attribution 4.0 International License.
SIGSPATIAL °25, November 3-6, 2025, Minneapolis, MN, USA

© 2025 Copyright held by the owner/author(s).

ACM ISBN 979-8-4007-2086-4/2025/11.

https://doi.org/10.1145/3748636.3762714

Ahmed Eldawy
University of California, Riverside
Riverside, USA
eldawy @ucr.edu

estimation for range selectivity and join selectivity queries for spatial
vector data. Recently, data synopses have also become a default block
in the Apache Puffin [13], which is a data lake file format designed to
store information such as statistics and indexes about data managed
in an Apache Iceberg [10] table. Due to its distributed nature, data
lake systems and big data DBMSs, partition data in separate files,
each having its own data synopsis during the data loading phase. In
the query phase, multiple synopses need to be merged together to
provide approximate answers to estimate the query cost for the query
optimizer.

Agarwal et al. define synopses mergeability [3] as the ability to
merge two source synopses into a single synopsis while preserving
error and size guarantees similar to the source synopses. They
show that all linear function-based sketches, such as the Count-Min
sketch [25] and KLL sketch [77], are fully mergeable. In contrast,
widely used partition-based synopses, such as histograms [6, 8, 18,
59, 63], and hash function based synopses, such as spatial sketch [26]
and Hyper-Log-Log (HLL) sketch [34, 41] are mergeable under the
following stringent conditions. Specifically, partition-based synopses
must be built using the same predefined partitioning function, and
hash-based synopses must be created using the same set of hash
functions. In other words, two histograms can only be merged if
they are perfectly aligned. These constraints are often impractical in
real-world settings. In geospatial data management, partitioning is
fundamental, and data across different regions often follow diverse
distributions. Even within the same region, data files may overlap in
their value ranges. Using different partitioning functions tailored to
each file can better summarize the underlying data. Unfortunately,
the inability to merge spatial partition-based synopses restricts
the seamless integration of geospatial data applications into modern
data lake systems and large-scale DBMSs.

Our goal is to address the limitations of combining and querying
unmergeable spatial synopses. When new datasets are inserted, a
straightforward approach is to reload existing data files and construct
new, unified synopses. However, in data lake systems and large-
scale DBMSs such as LSM-tree-based systems [5], data files are
immutable. Frequently reloading and rewriting these files to update
synopses blocks can significantly degrade system throughput.

Without rebuilding unified synopses, we cannot support the full
mergeability property. To address this, we introduce the concept of
partial mergeability, which preserves the size guarantee of merged
synopses, while explicitly quantifying the loss of error guarantees.
We identify two major challenges that must be addressed: First, as
data volume grows, how can we merge unmergeable synopses while
preserving both quality and size constraints? Second, how can we
define and evaluate the quality of approximate answers provided by
partition-based synopses? Throughout this paper, we use histograms

https://doi.org/10.1145/3748636.3762714
https://creativecommons.org/licenses/by/4.0/legalcode
https://creativecommons.org/licenses/by/4.0/legalcode
https://doi.org/10.1145/3748636.3762714

SIGSPATIAL '25, November 3-6, 2025, Minneapolis, MN, USA

10 Heatmap legend for count histogram:

0 50 100 150 200 250 300 500 600 1500

Heatmap legend for density histogram:

0 15 30 45 60 75 100 125
Combined Histogram Align Reshape
Visualized by count values
Y Option-1 M%
o
Align Reshape
Option-2 Merge
Combined Histogram

Visualized by density values

Figure 1: Two options to combine six source histograms into a
single merged histogram with four buckets.

as a representative example of partition-based spatial synopses to
anchor our discussion.

In this paper, we propose an Align-Reshape-Merge framework to
address the mergeability challenge. This framework merges partition-
based synopses and supports the computation of approximate answers
from the merged synopsis. Within this framework, we define optimal
alignment problems tailored to different merging objectives and
introduce practical strategies for combining various types of statistical
information.

To tackle the challenge of quality estimation, we make two key
contributions. First, we extend existing histograms to include density
statistics, introducing only minimal computational overhead and no
additional storage cost. Second, we propose a new metric called
Skewness-Align, which estimates the error ratio of cardinality esti-
mations produced by histograms. This metric quantifies the skewness
of the underlying data distribution using the newly introduced density
statistics. For a given range query, the Skewness-Align metric applies
a statistical model to estimate the expected error ratio. During syn-
opsis reshaping, we use this metric to track accuracy loss, allowing
us to quantify and bound the degradation in error guarantees. This
enables our system to support the partial mergeability property in a
principled way.

Figure 1 shows how our Align-Reshape-Merge framework tackles
the challenge of combining overlapping 2D count histograms. Each
source histogram (H; to Hg) summarizes a spatial region using count-
based buckets. We enhance these buckets with a density statistic
(count divided by area) which we show in this paper to be more
effective in merging histograms. By aligning all bucket boundaries,
we create a unified 15-cell grid and generate a combined histogram,
visualized by count (blue) and density (orange), with darker shades
indicating higher values. Our goal is to produce a merged histogram

Xin Zhang and Ahmed Eldawy

with four buckets. If we follow the count histogram (blue), to find
the boundaries of the merged histogram, we will have the solution
highlighted as Option 1 which results in poor estimation of selectivity
queries due to the discrepancy in distribution within cells. On the
other hand, the density histogram (orange) reveals the difference in
skewness and allows us to find the merged histogram in Option 2
which merges the histogram cells into more uniformly distributed
buckets. Option 2 better preserves spatial skew, demonstrating the
advantage of using enhanced statistics to improve the quality of the
merged histogram.

Extensive experiments on large-scale real data demonstrate that
our approach maintains high-quality synopses and delivers accurate
approximate query results. In summary, this paper makes four key
contributions. First, we propose Skewness-Align, a statistical metric
for evaluating the quality of approximate answers produced by spatial
histograms (Section 3). Second, we design an Align-Reshape-Merge
framework to combine spatial synopses. We formulate two histogram
reshaping problems (data-driven and query-driven) and propose effi-
cient greedy algorithms to solve them. We also extend our approach
to support the combination of samples and spatial sketches (Sec-
tion 4). Third, we present SynopsisLake, a Lakehouse architecture
that integrates synopsis storage and indexes into the metadata and
indexing layers (Section 2). Finally, we validate the performance of
SynopsisLake on real-world datasets through extensive experiments
(Section 5).

2 SYNOPSISLAKE
2.1 SynopsisLake Architecture

Figure 2 shows the architecture of SynopsisLake. It extends from
an existing data Lakehouse [15, 17] which includes three layers and
a query engine. The three layers are the metadata, indexing, and
caching layers. The data Lakehouse is built on top of the data lake.

Metadata layer, indexing layer, and caching layer. The metadata
layer of Lakehouse stores files with a standard file format, such as
Apache Parquet [12]. The goal of this layer is to add management
capabilities such as ACID transactions for data lakes [15]. Synop-
sisLake stores the spatial synopses in the metadata layer to process
approximate spatial queries. The data synopses are constructed when
the data files are loaded into the data lake. The goal of the indexing
and caching layers of Lakehouse is to optimize the query perfor-
mance. SynopsisLake maintains one map, stored in memory, to track
the data range of each synopsis. The merged synopses reside in the
caching layer. During query time, if no cached merged synopses exist,
SynopsisLake will load unmerged synopses from the metadata layer,
compute merged synopses, and store them in memory for future
queries. The merged synopses are only computed once if no new
datasets are inserted into the data lake.

File Format and Storage Design. Parquet [12] and ORC [11] are
two widely used columnar data storage file formats for storing data in
data lake systems such as Delta Lake [14], Apache Iceberg [10], and
Apache Hudi [9]. Following a similar design, SynopsisLake stores
data synopses in Parquet files.

A synopses Parquet file includes two groups of columns: synopsis
information columns and synopsis content columns. Each file can
store multiple synopses. The synopsis information columns record
metadata about the summarized data and the parameters used to

SynopsisLake: Quality-aware Approximate Spatial Query Processing Using Data Synopses

SIGSPATIAL '25, November 3-6, 2025, Minneapolis, MN, USA

X

Data Lakehouse

AQP queries

DELTA LAKE

[B1,B2] [.,..]

SQL Queries and DataFrame APIs

e.g., Join Selectivity Est, Candidate
Selectivity Est, Group By Aggregates

Synopsis Parquet Table

Metadata: Unmerged synopses Metadata APIs | Synopsis Query APIs |
SQL Query Engine
Index Layer: Synopses indexes | Synopsis Operation APIs |
@ Delta Lake . , Synopsis Query Engine
Cache: Merged synopses Table Indexing Caching New Functions in SynopsisLake
N , . Metadata Layer Layer
ew Components in SynopsisLake Layer

B s
Data Lake

-

<:I Heterogeneous Sources

amazon \‘/
S3 IBM Cloud

Figure 2: The architecture of SynopsisLake.

construct the synopsis. These include the raw data file path in the
data lake, the data range covered, file ID, synopsis type, total number
of summarized items, histogram partition function, and sample
ratio. The synopsis content columns store the statistical information
contained in each synopsis.

2.2 Query Engine

Table 1: The supported data synopses and AQP queries

Synopsis Supported AQP Query

1D/2D Count Spatial Histogram | RangeScanEst, Clustering

Geometric Histogram([8] SpatialJoinEst

Spatial Sketches[26] SpatialJoinEst

Uniform and Stratified Samples and GroupByAggregatesEst

RangeScanEst, SpatialJoinEst, Clustering

1D/2D Wavelets Store and merge only

Table 1 summarizes the synopses and queries that are supported
by the current version of SynopsisLake. It includes both partition-
based and function-based synopses. SynopsisLake can process the
following types of AQP queries: candidate selectivity estimation,
spatial join selectivity estimation, group by aggregates estimation,
and approximate clustering. SynopsisLake is not limited to geospatial
query processing. For example, it also supports equi-join selectivity
estimation using samples. Additional query types can be supported
in the future.

Flowchart to Process Queries. Figure 3(a) illustrates how Syn-
opsisLake processes AQP queries. It begins by parsing the query
and selecting appropriate synopses. Users can specify the synopsis
type within query or allow SynopsisLake to automatically select
from the available synopses. SynopsisLake identifies the candidate
synopses based on the synopses index and query range. If merged
synopses are cached in memory, SynopsisLake uses them to compute
approximate answers. Otherwise, it accesses the unmerged synopses
from the metadata layer and combines them into merged synopses.
Along with approximate answers, SynopsisLake also provides the
quality for different estimation types. For samples-based synopses,
it returns a confidence interval. For sketches, it uses sketch-specific
quality metric. For partition-based synopses, it introduces a novel
statistics-based metric described in Section 3.

Synopses Combination Process. Figure 3(b) shows how Synop-
sisLake combines data synopses. It loads the unmerged synopses
from the metadata layer and computes the merged synopses through
the three-step synopses combination framework. The three steps are
Alignment, Reshaping, and Merging. This framework is called the
Align-Reshape-Merge framework.

In the Alignment step, the framework repartitions the entire data
range into a set of adjacent smaller ranges. In the Reshaping and
Merge steps, the framework computes merged synopses based on
each of these smaller ranges. The framework also provides different
strategies to combine count-type and ratio-type statistical summaries.
The final step involves merging the reshaped synopses within each
partition. Since the Alignment step divides the entire data range into
adjacent non-overlapping ranges, the reshaping and merging steps
can be executed in parallel across all ranges. The detailed descriptions
of the Align-Reshape-Merge framework are in Section 4.

3 SKEWNESS-ALIGN METRIC

SynopsisLake combines multiple partition-based synopses computed
from different partition functions. The key operation is to reshape
them into a common partitioning so they can be merged directly. We
call this operation Alignment. The main challenge lies in determining
the optimal new partitioning that maximizes the accuracy of the
merged synopses. In this section, we define a quality metric to
evaluate the accuracy of an alignment operation. To simplify the
discussion, we use one-dimensional count histograms to describe
the definitions and functions.

3.1 Preliminaries

DerINITION 3.1 (ONE-DIMENSIONAL DATA POINT AND DATASET).
In a one-dimensional data space, a data point p is represented by a
numerical value. A dataset P containing N data points is denoted as

P={p1,---.pN}.

DEFINITION 3.2 (ONE-DIMENSIONAL BUCKET AND ONE-DIMEN-
SIONAL RANGE). A one-dimensional bucket B is represented by an
interval 1, h), where | and h are the lower and upper bounds, and
its length is defined as leng=h — l. A one-dimensional range R is

SIGSPATIAL '25, November 3-6, 2025, Minneapolis, MN, USA

Xin Zhang and Ahmed Eldawy

O)

Parsing query

[Histogram Idx] [Sketches Idx]

[Wavelets Idx] [Samples Idx]
(2 Indexing Layer

s

@Access merged‘synopses?

7.1. Choose the merged synopses
7.2. Return query answer

Cache Layer

Synopses @
Combination

Metadata Layer

(a) Approximate Query Processing Flowchart

L1 1 [
‘-‘3. Merge 1.

I 2. Reshape source synopses]
[[
1 1 I
-—n -l ==1 9 1
besz Lot Lo-CZl
1. Compute new partitions and space bounds

ey
(b) Three-step Synopses Combination:
Align-Reshape-Merge Framework

-

L_ L {

Figure 3: The query process of SynopsisLake.

similarly defined. We use the term bucket when referring to histogram
units and range when referring to arbitrary intervals.

DEeriNiTION 3.3 (BUCKET VALUE). The bucket value vg is the
number of data points that fall within the interval [I, h).

DEerINITION 3.4 (BUCKET DENSITY). The bucket density dg is the
ratio of bucket value vp to its length. Given a one-dimensional
histogram bucket B = [I, h) with length leng=h — |, the density is

3.2 Histogram Querying Process

DEerintTION 3.5 (HisToGRAM). A histogram H summarizes a
dataset using a set of adjacent buckets B. It is defined as H=(B,V),
where V denotes the buckets values. Assuming H consists of n buckets,
B =1by, - ,bpl and V = [v1,--- ,vn]. We can also represent the
histogram using bucket densities [dy, - - - ,dp], where dj=v;[leny,.

Given a range query Q that overlaps with a bucket B, the approxi-

mate query answer from B is computed as vg - li:fBQ =lenpg - dp,
where vp, leng, and dg are the bucket value, length, and density,
respectively, and lenpg is the overlap length between Q and B.

We extract two observations from the histogram querying process:
(1) Equivalence of Buckets: Given two buckets, regardless of which
histogram they belong to, if they have the same density and the
same query overlap length, they produce the same approximate
range query answer. (2) Uniform Density Assumption: Histogram
estimation assumes that the proportion of the bucket’s value is equal
to the proportion of its length that overlaps with the query. In other
words, all sub-ranges within a bucket are assumed to have uniform
density. A concrete example illustrating this assumption is provided
in Appendix 8.1.1.

ExawmpLE 3.1. Figure 4 illustrates two 1D spatial regions with the
same data range (0, 45] but different data skewness. Each region is
summarized using two 1D count histograms: one with 9 equal-width
buckets 0,5, - - - , 45, and one with 3 equal-width buckets 0, 15, 30, 45.
For example, the first bucket by of Count Hist 1 contains 180 points:
by = [0,5), vp, = 180, and dp,, = 180/5 = 36. Following the color-
code in Figure 1, count histograms are shown in blue and density
histograms in orange, with darker shades indicating denser regions.

We evaluate three range queries Q1, Qq2, and Q3. Ground truth
answers are computed using the 9-bucket histograms, while estimates

are obtained from the 3-bucket histograms. In (b), for instance,
Q3 = [5,20] overlaps with by = [0,15) and by = [15,30) in Count
Merge A. The estimate answer ans3 = 140 X % + 550 X % ~ 277.

3.3 Histogram Query Accuracy Model

To address the limitations of histogram-based range query estimation,
we propose a statistical model that quantifies the expected error of
an approximate query answer. Based on motivation experiments (see
Figure 10in Appendix 8.1.2) demonstrate how accuracy is affected
by two key factors: (1) Data Skewness: Histograms yield accurate
estimates when summarizing uniformly distributed data, but their
accuracy deteriorates in the presence of skewed distributions. (2)
Overlap Ratio: The more a query overlaps with a bucket, the more
accurate the estimate. Even with extreme skewness, a query that
perfectly aligns with a bucket returns an exact answer. We defer a
detailed discussion and illustrative examples to Appendix 8.1.2.

DeriniTION 3.6 (DATA SKEWNESS ViA MEDIAN ABSOLUTE DE-
VIATION). Given a histogram H with bucket densities [d1,- - - ,dn],
let d be the median of the densities. We define the median absolute
deviation (MAD) as:

MADy = median(|d; - d)). (1
The data skewness DKy of the histogram is then defined as:
MAD
DKy = —1, @
d+e¢

where ¢ is a small positive constant to prevent division by zero.
Intuitively, a larger DKy indicates a more skewed data distribution,
while a value close to zero indicates uniformity.

ExampLE 3.2. Figure 4 illustrates how to compute data skewness
from histogram bucket densities.

For Merged A, the sorted densities are Hypy = {35, 35,35.67}
with median dygs = 35. The absolute deviations are {0,0,0.67}, so
MADpp = 0, yielding DKy = # =0, following Equation 1.

Using the same method: (1) Hist 1: d= 35, MAD =0, DK =0
(2) Merged B: d = 20, MAD = 14, DK ~ 0.70 (3) Hist 2: d = 23.33,
MAD =4, DK =~ 0.17

Both Hist 2 and Merged B summarize skewed regions, but Hist 2
better captures skewness due to its finer granularity.

SynopsisLake: Quality-aware Approximate Spatial Query Processing Using Data Synopses

SIGSPATIAL '25, November 3-6, 2025, Minneapolis, MN, USA

Count 780170 [175[180[175[170[175[180[180] €

ount [0 [30 [1002003007 50 [200] 1501 60 |

{1, = [0,15], GT, = 140, ans, = 140

Hist 1: Hist 2:
Count [NSOSNINS oS NN Count [140
Merge A:t L SR MergeB:: o}
0 5 110 {15 120 30 45 i i 15 30 45
1 : : 1 :
QL D i@, =[5,101,GT; = 175,ans, = 175 Q S | @, = [5,10], GT, = 30,ans, = 47
< S

1@, = [0,15], GT, = 525, ans, = 525

i|Q; = [5,20], GT; = 525, ans; = 525
« [

Density

0
Q2 | 140 :
:1Q; = [5,20],GT; = 330, ans; ~ 277

o [

Density
Hist1: 136 134 3536 [35[34 [351361361 mist2-: L 2 [6 12040160 10 401307 12]

Density | 35 | 35 | 3567

..

15 30 45
(a) Querying and combining a uniform region

| Density | 933 |

2333 | 2733 |

..

.15 o 30 i 45
(b) Querying and combining a skewed region

Figure 4: Examples of combining and querying uniform and skewed regions.

We aim to model the error of approximate query answers using
data skewness and the overlap ratio between the query and histogram
bucket. To capture this relationship, we adopt the beta distribution for
two reasons: (1) It naturally models proportions in the interval [0, 1],
aligning with the overlap ratio ZZZ%' (2) Its shape can be adjusted
using skewness, allowing us to express varying levels of estimation
uncertainty.

We assume a = f due to lack of prior knowledge of the intra-
bucket distribution. A full discussion of this modeling choice is
provided in Appendix 8.1.3.

DEeFINITION 3.7 (BETA DISTRIBUTION MODEL OF A HISTOGRAM).
Given a histogram H, we define its beta distribution shape parameters:

k

=f=— 41,
*=F= prve

3

where DKy is the data skewness, k > 0 is a scaling parameter, and
¢ is a small constant for numerical stability. A detailed discussion
of the mapping function’s behavior in Equation 3 is available in
Appendix 8.1.4.

Since a = p, the distribution is symmetric with a peak at:

a-—1

p:

The peak p in PDFy [72] is p = #;12. Since we let a=f in our

model, the peak value is always 0.5.

‘We now define how this distribution is used to estimate the quality
of a histogram-based query answer.

DEeFINITION 3.8 (QUALITY OF THE APPROXIMATE QUERY ANSWER).
Let a histogram H have beta distribution PDFy = f(x;a, f) and
peak p = 0.5. For a range query Q = [lg, hg| overlapping a bucket
B; = [Ig,, hg,] with value vg, and length lenp,, the approximate
answer is:

lenoQ

ansg = vg, - =dp, - lenpg, %)

leng

where lengg is the overlap between Q and B;, and dg, is the bucket
density. The estimated error ratio between ansg and v, as:

CPla<x<b) _ Jfifxapds
P(0<X<1) /Olf(x;a,ﬁ)dx

b
=1—/ frafdx=1-I(@p) +la(@p) (©

'Bi—Q =

where I (a, p) is the beta CDF. The overlap interval [a,b] is com-
puted as:

lenog

lenOQ _ +1
B 2 lenp,

)

>

1
a= —_—.
P 2 lenp,

If query Q overlaps m buckets {b1, ..., b}, the overall estimated

error is a weighted sum:

leny;

m
Flbpo b} 0 = 0,00 * TosQs O ®)

i=1

- leng’
where leny; is the overlap between Q and bucket b;.

ExampLE 3.3. We evaluate queries Q1 = [5,10], Q2 = [0, 15],
and Q3 = [5,20] on Merge A and Merge B (3-bucket histograms in
Figure 4).

From Example 3.2, Merge A has skewness DK = 0, yielding
a = f§ =52.23. Merge B has DK ~ 0.17, so a = f§ = 6.51 (assuming
k=1¢e=1072)

Using Equation 5, Merge B returns estimated answers: - ansy = 47,
ansy = 140, ansz = 277.

For Q1, the overlap is %, so by Equation7, a = 0.5-0.5- % ~ 0.33,

b ~ 0.67. Using Equation 6, error ratio ~ 1 — 0(_)3'27 f(x;a,p)dx ~

0.22.
For Qg, the overlap equals the full bucket — error ratio = 0. For
Qs, overlapping two buckets, we apply Equation 8:

10

5
rQs ® I by —Q; + I b,—Q; ~ 0.08.

Merge A’s high a = 52.23 yields near-zero errors for all three
queries: ro, = 0.0005, rg, =0, ro, = 0.0002.

SIGSPATIAL '25, November 3-6, 2025, Minneapolis, MN, USA

4 ALIGN-RESHAPE-MERGE FRAMEWORK

This section introduces how each step of the Align-Reshape-Merge
framework works in detail.

4.1 Alignment Step

The alignment step splits the one-dimensional data domain into
a set of adjacent intervals. Existing methods determine interval
boundaries based on either the underlying data distribution (data-
driven) or expected query workload (query-driven). Data-driven
approaches [2, 27, 44, 45], such as V-optimal histograms, aim
to preserve statistical accuracy within each bucket. Query-driven
approaches [6, 24, 69] instead optimize boundaries to improve the
accuracy of query results. However, neither approach supports the
problem of combining precomputed, possibly overlapping synopses
into a unified representation.

We consider a generalized setting where the input is a collection
of overlapping histograms H defined on n source ranges {si, ..., S }-
Given a space constraint m, the goal is to reshape the histograms
into m non-overlapping, adjacent buckets. We extend data-driven
and query-driven techniques to this merging setting and define new
optimization formulations accordingly.

The data domain can be partitioned in infinitely many ways under
a space constraint. To bound the search space, we define canonical
ranges, which are the minimal disjoint intervals formed by source
range boundaries. The alignment problem then reduces to optimally
grouping these canonical ranges within the space limit.

DEeriniTION 4.1 (CANONICAL RANGES U). Given overlapping
source ranges, the canonical ranges U = uy, . .., us are the minimal
set of adjacent, non-overlapping intervals that partition the union of
all source boundaries.

To construct U, we union and sort all boundaries from source
ranges sy, . . ., Sp; each adjacent pair defines a canonical range. These
ranges subdivide the domain into atomic units that fully preserve
boundary transitions. Since each u; C s; for some s;, the alignment
eITor I, is zero, ensuring a lossless initialization for the alignment
process.

4.1.1 Data-driven Histogram Optimal Reshaping. Definition 3.8
shows how data skew and overlap affect histogram-based query accu-
racy. The data-driven reshaping problem considers two objectives: (1)
Statistical accuracy: preserving values from the original histograms;
and (2) Density preservation: avoiding the merging of ranges with
differing densities.

DEFINTTION 4.2 (DATA-DRIVEN HISTOGRAM OPTIMAL RESHAPING
PROBLEM). Given unmerged source ranges {s1, ..., Sn }, space budget
m, skewness scale k > 0, and error smoothing ¢ > 0, the goal is to
generate m non-overlapping buckets {by, - - - , by} that minimize the
total alignment cost:

min Z(a-xi+(1—a)-yi)
i=1

s.t. x; = Z rsj_)bl., (9)

b,f\Sji@

yi = Z

siNbi#0 A sy Nbi#0

Diff(dj, djr)];

Xin Zhang and Ahmed Eldawy

Algorithm 1: Optimal Alignment

Input: Source ranges {si, ..., sp}, target size m, objective
function F
Output: Reshaped buckets {b1, ..., b}
1 Compute canonical ranges {uj, ..., u;} from source range
boundaries;

[

Initialize priority queue Q with merge positions (u;, #j+1)
scored by F;

3 numBuckets < |ul;

4 while numBuckets > m do

5 Pop position p with minimal score increase;

6 if p is still valid then

7 Merge left u; and right uy into Uperged;

8 Update Q: re-score p’s left neighbor by e geq’s left
range and Uperged;

9 Update Q: re-score p’s right neighbor by ¢y geq and

Umerged S Tight range;

10 numBuckets « numBuckets — 1;

11 end

12 end

Construct {by, ..., by, } from remaining ranges;
14 return {by,...,bm};

—
w

where rg,_,p, is the alignment error between source range s; and
reshaped bucket b;, computed using Definition 6. x; captures statisti-
cal accuracy; y; measures the density mismatch among overlapping
ranges in bj. The weight a € |0, 1] balances the two terms.

4.1.2 Query-driven Histogram Optimal Reshaping. The query-
driven reshaping problem incorporates workload information into the
alignment process. Given a set of z range queries Q = {Q1, ..., Oz},
we treat the approximate answers ansg computed from the source
histograms H as ground truth. The objective is to reshape the
histograms into m buckets that minimize the error in query answers.

DEeFINITION 4.3 (QUERY-DRIVEN HISTOGRAM OPTIMAL RESHAPING
PROBLEM). Given a set of unmerged source histograms H, a query
workload Q = {Q;, ..., Oz} with corresponding ground-truth answers
ansq = {ansq,, ..., ansqQ_ }, and a space budget m, the goal is to find
m adjacent, non-overlapping buckets {b1, ...,by, } that minimize:

z
min Z

i=1

Dif f(ansg;, ansg,)|, (10)

where ansg, = Xp,nQ,#0 (dp; - lenog), computed as in Defini-
tion 3.8.

4.2 Merging Algorithm

To solve both data-driven and query-driven reshaping problems,
Algorithm 1 uses a greedy bottom-up strategy that merges canonical
ranges into m buckets minimizing a user-defined objective function
F (see Equations 9 and 10).

The algorithm begins by computing the set of canonical ranges
u1,...,u, which are non-overlapping intervals derived from the
boundaries of the source ranges. This transformation ensures a finite
and structured search space for merging.

SynopsisLake: Quality-aware Approximate Spatial Query Processing Using Data Synopses

Each adjacent pair (u;, uj+1) defines a candidate merge position.
These are stored in a priority queue Q ordered by the marginal increase
in F if merged. Since standard priority queues do not support in-place
priority updates, we implement a custom binary-heap-based queue
with a hash map for position tracking (details in Appendix 8.2.1).
This design enables efficient re-scoring of neighboring positions
after each merge step.

At each step, the algorithm pops the merge with the smallest
score increase. If the corresponding pair remains unmodified in Q,
they are merged, and neighboring positions are re-scored based on
the new range. This ensures consistency between Q and the current
partitioning state.

The merging process repeats until only m buckets remain. The
final output is constructed from the remaining ranges.

Time complexity. Let n be the number of source endpoints.
Canonical range construction takes O(nlogn) due to sorting. The
queue contains O(n) entries, and each merge and update step runs in
O(log n), giving an overall time complexity of O(nlogn). Updating
left/right neighbors incurs constant time per update, amortized over
all merge steps.

4.2.1 Multi-dimensional Alignment. In multi-dimensional settings,
maintaining neighbor relationships during merging or splitting is
more complex, and the extensions are discussed in Appendix 8.2.3.
To simplify the process, we partition each dimension independently
and construct the final multi-dimensional partitions as the Cartesian
product of the one-dimensional partitions. This design enables the
direct application of our data-driven and query-driven reshaping
formulations to each dimension. We leave the development of a fully
multi-dimensional merging algorithm for future work.

4.3 Reshaping and Merging Steps.

To compute reshaped histograms, we extend the transformation
function proposed by Singla et al. [61], originally designed for count-
based summaries. It computes the reshaped value vyeshaped by scaling
the source value vgoyrce Using the ratio of the overlapping length to
the source range: vreshaped = Usource X (0verlap/source range).

However, certain histograms, such as the Geometric Histogram [§]
used in spatial join estimation, store ratio-based summaries. For
these, we introduce a transformation that scales by the inverse ratio:
Ureshaped = Usource X (source range/reshaped range).

Aligning non-uniform Geometric Histograms is expensive. To
address this, we reshape them into adjacent, non-overlapping his-
tograms using uniform grids. Rather than preserving original bucket
boundaries, we derive canonical ranges from their covered data
domains and apply the same alignment strategy used for count-based
histograms. Space budgets are allocated proportionally to data cov-
erage, and each merged histogram is rebuilt using a uniform grid.
Additional reshaping strategies for Spatial Sketches and samples are
described in Appendix 8.2.2.

5 EXPERIMENT
5.1 Experiment Setting

We compare SynopsisLake with two baselines: EagerCalc and Lazy-
Calc. Experiments run on a cluster with 1 head node: Xeon E5-2609
v4 @ 1.70GHz and 12 workers nodes: Xeon E5-2603 v4 @ 1.70GHz,

SIGSPATIAL '25, November 3-6, 2025, Minneapolis, MN, USA

Table 2: Scalability: loading thousands of datasets.

#OfDatasets | #OfPoints | NoSynopsis | WithSynopsis | Overhead
1089 1.6 B 0.484 h 0.510h 6.372 %
2182 33B 0917 h 0.956 h 4.25 %
3253 49B 1.374 h 1.425h 3.371 %
4385 6.6B 1.761 h 1.912h 8.364 %

Table 3: Overhead: creating different synopses files.

Synopsis Type Space Overhead
0.131 MB | 0.524 MB | 2.097 MB
2D Count Histogram 5.150 % 6.122 % 12.880 %
2D Wavelets 5.798 % 14.609 % | 14.858 %
Geometric Histogram | 7.281 % 12.927 % | 12.927 %
Spatial Sketches 20.054 % | 25.149 % | 27.751 %
Uniform Samples 2.825 % 3.111 % 8.883 %

12 cores each; 144 cores total) using HDFS. SynopsisLake is imple-
mented in Java on Spark 3.0.1, and the source code is available at:
https://github.com/xin-aurora/SynopsisLake.

Datasets. We use four real-world spatial datasets, grouped into
two categories: (1) Point datasets: OSM21/pois [75] with 147 million
2D records and OSM15/All [31] with 2.6 billion 2D records; (2)
Polygon datasets: OSM15/lakes [32] with 7.5 million records and
OSM15/parks [33] with approximately 10 million records. Points test
histograms, wavelets, samples, and sketches; polygons test Geometric
Histograms and spatial sketches. We simulate data lake ingestion
workloads by splitting each dataset into thousands of files; for
reading, we split the tested datasets into 20—100 parts, following
prior benchmarks [28, 30, 56, 62, 74].

Evaluation metric. We report the latency as the query efficiency
measurements, which is the average time to answer the AQP queries.
We also report the total processing time to process read&write mixed
workloads.

Query accuracy is measured by average relative error (ARE),
which is also considered as the quality metric in other AQP works [21].
We also report average absolute error (ABS) to measure the accuracy
of the merged synopses.

Experiment Plan. In the following experiments, we compute 2D
data synopses to evaluate the performance of SynopsisLake.

In Section 5.2, we evaluate the performance of SynopsisLake
through three experiments: (1) scalability in loading thousands of
datasets and the overhead of writing synopses; (2) synopsis construc-
tion time under a fixed space budget; and (3) performance under
mixed read&write workloads, compared to EagerCalc and LazyCalc.
In Section 5.3, we measure the AQP performance of SynopsisLake
using merged histograms, focusing on query accuracy, latency, and
the impact of different alignment strategies. In Section 5.4, we com-
pare query-driven and data-driven alignment solutions under varying
parameters, analyzing their effects on synopsis accuracy and query
results.

5.2 Performance of Data Ingestion

Scalability. SynopsisLake stores raw data in binary format and
synopses in Parquet, both on HDFS. We test scalability by loading
1,089, 2,182, 3,253, and 4,385 datasets (1.6B—6.6B records). Each
setting is tested with and without synopsis generation using 1282
2D count histograms. We generate 2D count histograms with 1282

https://github.com/xin-aurora/SynopsisLake

SIGSPATIAL '25, November 3-6, 2025, Minneapolis, MN, USA

‘EFSynopsisLake+LazyCalc%EagerCulc ‘
20 -

151

Time (mins)

10 20 30 40 50 60 70 80 90100
% of ingestion

Figure 5: Total time (mins): processing the mixed workload.

‘ - SynopsisLake < LazyCalc -&- EagerCalc ‘ ‘ - SynopsisLake -« LazyCalc -&- EagerCalc ‘

20

15F

10 -

Time (mins)
Time (mins)

10 20 30 40 50 60 70 80 90100
% of ingestion

% of ingestion

(a) Total ingestion time (mins) (b) Total query response time (mins)

Figure 6: Total time breakdown: ingestion vs. query.

buckets as the data synopses. Table 2 reports the total ingestion
times and the overhead from synopsis creation. SynopsisLake only
3.4%-8.4% overhead, demonstrating good scalability with minimal
synopsis creation cost.

Overhead to compute and write synopsis files. As described
in Section 2, each Parquet file contains shared metadata columns
and type-specific content columns. Table 3 shows the overhead of
creating 50 synopsis files under different space budgets.

Uniform samples have the lowest overhead due to the efficient ran-
dom sampling process. Count histograms only store bucket counts,
resulting in lower overhead compared to other histogram types.
Wavelets add transformation overhead on top of histograms. Geomet-
ric histograms operate on polygon datasets, where each polygon may
overlap with multiple cells. They collect four types of cell-level sta-
tistics, increasing processing time. Spatial sketches have the highest
overhead: (1) They maintain multi-level counters (point and interval
covers), which increases computation during ingestion; (2) They
also process polygon datasets, which require expensive geometric
processing.

Overall performance on mixed workloads. SynopsisLake slightly
increases ingestion time but greatly improves query efficiency. Fig-
ure 5 and Figure 6 compare SynopsisLake with LazyCalc and
EagerCalc on a mixed workload consisting of batched insertions
followed by query rounds.

We create 2D count histograms as the data synopses. We ingest
20M records in 10 files with 20,000 queries per round. LazyCalc
ingests raw data and constructs synopses at query time. EagerCalc
recomputes synopses for the entire data lake after each insertion.
SynopsisLake builds partial synopses per dataset during ingestion
and merges them at query time. All systems store the synopses in
memory during query execution. After new datasets are inserted, the
three systems will recompute the new synopses for querying.

Figure 5 shows the total time of three systems to process the mixed
workload. SynopsisLake is 3x faster than LazyCalc and EagerCalc
systems. Figure 6(a) shows the total ingestion times. Compared with

Xin Zhang and Ahmed Eldawy

Table 4: Latency (ms): spatial join selectivity estimation.

Resolution 642 | 128% | 256°
Query Latency | 0.322 | 1.281 | 6.527

LazyCalc, the overhead of SynopsisLake to create partial synopses
for each dataset is very small. Since EagerCalc creates the synopsis
for all the datasets in the data lake, its ingestion performance is the
worst. Figure 6(b) reports the total querying processing time of the
three systems. The synopses combination process of SynopsisLake
is lightweight. Therefore, the query performance of SynopsisLake
is close to EagerCalc. LazyCalc accesses all the datasets to create
the synopsis during the query time and its query performance is the
worst among the three systems.

Summary. SynopsisLake achieves strong scalability and outper-
forms baseline systems on mixed workloads. It incurs less than 10%
ingestion overhead while delivering up to 3x speedup over LazyCalc
and EagerCalc.

5.3 Performance of Query Processing

Precision. We evaluate the accuracy of SynopsisLake using merged
synopses and report the average relative error (ARE) against exact
results. We compare with QueryOpt, which performs partial search
over unmerged synopses built from original data. Note that QueryOpt
only applies to range scan estimation and not to tasks like spatial join
selectivity. To study the impact of merging, we vary the merging rate,
defined as the ratio of merged resolution to the maximum resolution
(the canonical ranges). A 100% merging rate retains full detail (same
as QueryOpt), while lower rates reduce space via bucket compaction
(e.g., 5% uses only 5% of the original buckets). For all data-driven
alignment results, we set the weighting factor & = 0.5, ¢ = 1079, and
k =0.5.

We also compare different alignment strategies for merging: (1)
Uniform (equal-sized grid cells), (2) Random (random-sized cells,
averaged over 10 runs), and (3) vMeasure (based on V-Optimal
histograms [2], applied to canonical ranges). Implementation details
for baselines are in Appendix 8.3.

Figure 7 shows the ARE over 32,000 uniformly distributed range
queries on the OSM21/pois dataset. The y-axis shows ARE, where
shorter bars indicate higher accuracy. Note that the y-axis does not
start at zero or extend to the maximum error—this intentional scaling
highlights the gap between SynopsisLake (or baseline methods) and
QueryOpt, making differences more visually discernible. The x-axis
shows 12 merging rates, each represented as a group of bars. In each
group, the first bar corresponds to the QueryOpt solution (unmerged
synopses), while the red bar shows SynopsisLake with data-driven
alignment. Across all merging rates, SynopsisLake consistently
achieves lower error than the three baseline strategies: Uniform,
Random, and vMeasure.

We also evaluate SynopsisLake’s query-driven alignment by
comparing it to QueryOpt and the three baselines. Based on prior
access patterns, we extract a hot region and 13,000 range queries
confined to this area. The alignment is computed using 300 training
queries (= 2% of the test set). Figure 8 shows the ARE results. Black
bars represent SynopsisLake with query-driven alignment, which
consistently achieves lower error than all three baselines.

Efficiency. Table 4 presents the latency of spatial join selectivity
estimation using merged Geometric Histograms at resolutions 642,

SynopsisLake: Quality-aware Approximate Spatial Query Processing Using Data Synopses

SIGSPATIAL '25, November 3-6, 2025, Minneapolis, MN, USA

>1
5 QueryOpt Il SynopsisLake-DataDriven N
5 o8l Uniform [Random ‘ :
2 £ vMeasure : . N .
S 0.6 : : : :
~ : . : X : .
% .]] : y - y . : .
5 04 H E y : . : : : : : : .
z : E H s ; : | I : : : :
O 11 1 T allld bl el ol ol oMiE el
100.0 90.7 82.4 74.4 59.8 40.8 353 30.1 21.1 13.7 10.6 5.5
Merging Rate
Figure 7: Range selectivity estimation: Compare QueryOpt with data-driven alignment and baseline alignment solutions.
>1 -
5 QueryOpt I SynopsisLake-QueryDriven - M
5 o0s| |5 Uniform O3 Random]
E E vMeasure
5 06
& § . : X
&]] N]] .
5 041 : s : ; : : : : : ;
SN 1010 O GO 1 O O O L
0.2 J N J N N N N N N N N
100.0% 90.7% 82.4% 74.4% 59.8% 53.0% 40.8% 35.3% 30.1% 21.1% 13.7% 10.6% 5.5%
Merging Rate

Figure 8: Range selectivity estimation: Compare QueryOpt with query-driven alignment and baseline alignment solutions..

1282, and 2562. Each experiment computes five merged histograms
generated via data-driven alignment. On average, each query joins 25
histogram pairs. Latency increases with resolution due to the cost of
evaluating all cross-bucket pairs. For instance, 128 resolution with
five histograms requires aggregating 128% x 5 bucket pairs. Higher
space budgets result in significantly longer query times.

Summary. SynopsisLake delivers high query accuracy with much
lower storage cost than QueryOpt. Both data-driven and query-driven
alignment strategies consistently outperform baseline methods in
accuracy and maintain reasonable query latency.

5.4 Comparing Different Alignment Strategies

We have demonstrated that both the query-driven and data-driven
alignment strategies enable SynopsisLake to produce merged his-
tograms with higher query accuracy than baseline methods. Section 4
introduced the data-driven strategy, which optimizes a weighted objec-
tive function balancing statistical accuracy and density preservation,
controlled by the parameter «a.

Here, we analyze how varying « affects performance and compare
results against the query-driven strategy and two baselines: Uniform
alignment and QueryOpt. The following data-driven variants are
evaluated: (1) alignOnly (red bars with crosshatch): data-driven
solution optimizing only statistical accuracy; (2) densityOnly (black
bars with horizontal lines): data-driven solution optimizing only
density similarity; (3) Data-driven (combine25, combine50, com-
bine75): data-driven solution with & values of 0.25, 0.5, and 0.75;
(4) queryDriven (black bars): query-driven solution; (5) Uniform;
(6) QueryOpt.

All methods are evaluated on the same query workload. Figure 9(a)
shows the merged histograms accuracy, while Figure 9(b) reports
query accuracy. The data-driven alignOnly strategy achieves the
most accurate histograms due to its explicit optimization of the

statistical accuracy of merging. However, it performs poorly on
queries, as the merged buckets layout does not align well with query
ranges. Among the data-driven strategies, &« = 0.25 (combine25)
and a = 0.50 (combine50) achieve a strong balance, delivering
competitive query accuracy while maintaining reasonable histogram
accuracy. Overall, the data-driven solutions generally outperform
Uniform alignment, confirming the benefits of balancing histogram
shape with data distribution. The query-driven approach achieves
the best query accuracy (second only to QUERYOPT), demonstrating
the effectiveness of leveraging workload information.

Summary. Optimizing for histogram accuracy reduces merge
error but may hurt query accuracy. A balanced data-driven strategy
offers better trade-offs, while query-driven alignment yields the best
results when workload knowledge is available.

6 RELATED WORK

This section highlights the contributions of SynopsisLake from three
perspectives: (1) the quality metric for partition-based synopses
and queries, (2) the synopses management, (3) the contribution of
SynopsisLake from a system perspective.

6.1 AQP by using data synopses

Data synopses. A data synopsis extracts statistical information
from large data and compactly stores it. Overall, there are four
categories: histograms [6, 8, 18, 59, 63] and wavelets [20, 52, 67,
68, 71],samples [4, 70, 78], and sketches [26, 50, 57, 65]. Data
synopsese are widely used to range query selectivity estimation [1],
join query selectivity estimation [8], detect the heavy hitters [3],
compute quantiles [5S0], and provide approximate query answers for
aggregate queries [4] and even more complex queries (e.g., join,
clustering, etc.) [20, 60]. There are also non-synopses-based AQP
methods, such as Bayesian networks [66] and learning models [39].

SIGSPATIAL '25, November 3-6, 2025, Minneapolis, MN, USA

Xin Zhang and Ahmed Eldawy

QueryOpt I B queryDriven U ¥ alignOnly B 8 combine25 I combine50 B 8 combine75 [U densityOnly [0 Uniform

>600 — - M >U.6 - T
— — K
£ g
M M 05| |
5 400 |- H2 ;
=] = N N
2 5 : z
< K g4l . : ; H
:%D El" :?D H H | El |

200 - H I | :
el Ll | R 1 L e B 2 L
90% 80% 70% 60% 50% 90% 80% 70% 60% 50%
Merging Rate Merging Rate

Figure 9: Histograms combination accuracy (left) and query accuracy (right): Query-Driven vs. Read-Opt and Baselines.

SynopsisLake manages and processes the data synopses stored as
metadata in Lakehouse. The learning and purely statistical solutions
are not considered in our scenario.

Statistical-based quality control. Researchers [16, 21, 37, 40,
47, 54] consider statistical methods to evaluate the quality of range
cardinality estimation, join selectivity estimation, and approximate
query processing. Most works [16, 21, 40, 47] use conditional
probability to define the selectivity of the query over the whole
dataset under the selectivity of the samples. The statistical models
are mostly in the form of binomial distribution and beta distribution.
Ripple join algorithm [37] adaptively adjusts its behavior by using
the statistical properties of the input data. The goal is to minimize
the time until an acceptably precise estimation which is measured
by the length of a confidence interval. They compute the confidence
interval following the central limit theorem(CLT). INCVISAGE [54]
applies Hoeffding’s inequality [42] to compute the sample size. The
approximate aggregation is computed based on samples. In these
sampling-based methods, the quality of the result is computed based
on the confidence threshold of the statistical model. However, there is
no solution to evaluate the quality of approximate answers returned by
histograms. In SynopsisLake, we fill this gap by defining a statistical
model for histogram-based AQP.

Synopses mergeability and management. In Lakehouse, syn-
opses management is related to managing the overlapping synopses
and using them to finish AQP tasks efficiently. These goals can be
achieved by merging the overlapping synopses. Agarwal et al. [3]
define that mergeability requires the target merged data synopsis to
preserve the error and size guarantees of the source data synopses.
They claim that all sketches sample synopses are mergeable. The
partition-based data synopsis families contain equi-width histograms,
equi-height histograms, V-optimal histograms, and wavelets. Exist-
ing works [1, 53] discussed why equi-height histograms, V-optimal
histograms, and wavelets are not mergeable.

The reason is that overlapping partition-based data synopses have
varying bucket boundaries. SynopsisLake merges the overlapping
data synopses based on a three-step framework that consists of align-
ment, reshaping, and merging. Researchers propose query-driven
partitioning strategies [24], greedy solution [27], and V-optimal
solutions [2, 44, 45] to partitions the data space or compute partition-
based synopses. These solutions work for single-type synopsis and are
not general to manage different types of data synopses in Lakehouse.
Additionally, they [2, 27, 44, 45] returned non-uniform histograms
which are inefficient for AQP. SynopsisLake partitions the data space

following the quality metrics (data-driven and query-driven) for
histograms and provides the approximate answers with good quality.

6.2 Data lakes and Lakehouse

The concept of the data lake was first proposed in 2010 by James
Dixon [29]. It receives significant attention from both academia
and industry. Researchers are still working on proposing new archi-
tectures and definitions for data lake [22, 38, 46, 58]. Researchers
in the industry [7, 14, 43, 55] develop their own data lakes. Since
data lakes store heterogeneous resources, finding useful information
among the large amount the datasets is very important. Lots of
works focus on query-driven dataset discovery and dataset genera-
tion [19, 30, 48, 62, 64, 76, 79]. Researchers are also working on
enhancing the capabilities of data lakes by incorporating features
traditionally associated with data warehouses. They focus on the
metadata management in data lakes [36, 58] and designing data
Lakehouse [9, 10, 14, 17, 43]. Delta Lake is one of the popular
open-source data Lakehouse. It compacts data logs of data lakes
into Apache Parquet format [12] to provide ACID properties for data
lakes. The Parquet files are stored in Lakehouse. With this design,
data scientists can use SQL queries to process the data stored in
data lakes. In this work, we propose SynopsisLake by extending
the architecture of Delta Lake. We compact the data synopses into
Parquet files to support AQP for data lakes.

7 CONCLUSION AND FUTURE WORK

We present SynopsisLake, a new Lakehouse system that compacts
spatial data synopses and leverages them for approximate query
processing (AQP) in data lakes. SynopsisLake introduces a unified
framework for combining diverse spatial synopses and defines a
quality metric to guide the merging process. Experiments show
that SynopsisLake can efficiently merge hundreds of synopses and
deliver high query accuracy. Several improvements will be explored
in future work. First, we plan to design more effective methods for
combining non-count-based histograms to better support accurate
query cost estimation. Second, we will extend our framework to
define quality-aware combination strategies for spatial sketches and
samples, enabling robust support for more complex AQP workloads.

ACKNOWLEDGMENTS

This work is supported in part by the National Science Foundation
(NSF) under grants 1IS-1954644 and I1S-2046236.

SynopsisLake: Quality-aware Approximate Spatial Query Processing Using Data Synopses

REFERENCES

[1]

[2

[3

[4

[5

[6

[7

[8

[9]
[10]
[11]
[12]
[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

Ildar Absalyamov, Michael J Carey, and Vassilis J Tsotras. 2018. Lightweight cardi-
nality estimation in LSM-based systems. In Proceedings of the 2018 International
Conference on Management of Data. 841-855.

Jayadev Acharya, Ilias Diakonikolas, Chinmay Hegde, Jerry Zheng Li, and Ludwig
Schmidt. 2015. Fast and near-optimal algorithms for approximating distributions by
histograms. In Proceedings of the 34th ACM SIGMOD-SIGACT-SIGAI Symposium
on Principles of Database Systems. 249-263.

Pankaj K Agarwal, Graham Cormode, Zengfeng Huang, Jeff M Phillips, Zhewei
Wei, and Ke Yi. 2013. Mergeable summaries. ACM Transactions on Database
Systems (TODS) 38, 4 (2013), 1-28.

Sameer Agarwal, Barzan Mozafari, Aurojit Panda, Henry Milner, Samuel Madden,
and Ion Stoica. 2013. BlinkDB: queries with bounded errors and bounded response
times on very large data. In Proceedings of the 8th ACM European Conference on
Computer Systems. 29-42.

Sattam Alsubaiee et al. 2014. AsterixDB: a scalable, open source BDMS. Pro-
ceedings of the VLDB Endowment 7, 14 (2014), 1905-1916.

Ahmed M Aly, Ahmed R Mahmood, Mohamed S Hassan, Walid G Aref, Mourad
Ouzzani, Hazem Elmeleegy, and Thamir Qadah. 2015. Aqwa: adaptive query
workload aware partitioning of big spatial data. Proceedings of the VLDB
Endowment 8, 13 (2015), 2062-2073.

Amazon. [n.d.]. Amazon AWS Data Lake. https://aws.amazon.com/big-data/
datalakes-and-analytics/

Ning An, Zhen-Yu Yang, and Anand Sivasubramaniam. 2001. Selectivity esti-
mation for spatial joins. In Proceedings 17th International Conference on Data
Engineering. IEEE, 368-375.

Apache Hudi. 2021. Apache Hudi. https://hudi.apache.org

Apache Iceberg. 2017. Apache Iceberg. https://iceberg.apache.org

Apache ORC. 2013. Apache ORC. https://orc.apache.org

Apache Parquet. 2013. Apache Parquet. https://parquet.apache.org

Apache Puffin. 2022. Apache Puffin. https://iceberg.apache.org/puffin-spec/
#blobmetadata

Michael Armbrust, Tathagata Das, Liwen Sun, Burak Yavuz, Shixiong Zhu, Mukul
Murthy, Joseph Torres, Herman van Hovell, Adrian Ionescu, Alicja Luszczak, et al.
2020. Delta lake: high-performance ACID table storage over cloud object stores.
Proceedings of the VLDB Endowment 13, 12 (2020), 3411-3424.

Michael Armbrust, Ali Ghodsi, Reynold Xin, and Matei Zaharia. 2021. Lakehouse:
a new generation of open platforms that unify data warehousing and advanced
analytics. In Proceedings of CIDR, Vol. 8.

Brian Babcock and Surajit Chaudhuri. 2005. Towards a robust query optimizer:
a principled and practical approach. In Proceedings of the 2005 ACM SIGMOD
international conference on Management of data. 119-130.

Alexander Behm, Shoumik Palkar, Utkarsh Agarwal, Timothy Armstrong, David
Cashman, Ankur Dave, Todd Greenstein, Shant Hovsepian, Ryan Johnson, Arvind
Sai Krishnan, et al. 2022. Photon: A fast query engine for lakehouse systems.
In Proceedings of the 2022 International Conference on Management of Data.
2326-2339.

Richard Beigel and Egemen Tanin. 1998. The geometry of browsing. In Latin
American Symposium on Theoretical Informatics. Springer, 331-340.

Alex Bogatu, Alvaro AA Fernandes, Norman W Paton, and Nikolaos Konstantinou.
2020. Dataset discovery in data lakes. In 2020 IEEE 36th International Conference
on Data Engineering (ICDE). IEEE, 709-720.

Kaushik Chakrabarti, Minos Garofalakis, Rajeev Rastogi, and Kyuseok Shim.
2001. Approximate query processing using wavelets. The VLDB Journal 10, 2
(2001), 199-223.

Surajit Chaudhuri, Gautam Das, and Vivek Narasayya. 2007. Optimized stratified
sampling for approximate query processing. ACM Transactions on Database
Systems (TODS) 32, 2 (2007), 9—es.

Mohamed Cherradi and Anass EL Haddadi. 2022. Data Lakes: A Survey Paper. In
Innovations in Smart Cities Applications Volume 5: The Proceedings of the 6th
International Conference on Smart City Applications. Springer, 823-835.
Graham Cormode, Minos Garofalakis, Peter J Haas, Chris Jermaine, et al. 2011.
Synopses for massive data: Samples, histograms, wavelets, sketches. Foundations
and Trends® in Databases 4, 1-3 (2011), 1-294.

Graham Cormode, Minos Garofalakis, and Michael Shekelyan. 2021. Data-
Independent Space Partitionings for Summaries. In Proceedings of the 40th
ACM SIGMOD-SIGACT-SIGAI Symposium on Principles of Database Systems.
285-298.

Graham Cormode and Shan Muthukrishnan. 2005. An improved data stream
summary: the count-min sketch and its applications. Journal of Algorithms 55, 1
(2005), 58-75.

Abhinandan Das, Johannes Gehrke, and Mirek Riedewald. 2004. Approximation
techniques for spatial data. In Proceedings of the 2004 ACM SIGMOD international
conference on Management of data. 695-706.

Ilias Diakonikolas, Jerry Li, and Ludwig Schmidt. 2018. Fast and sample near-
optimal algorithms for learning multidimensional histograms. In Conference On
Learning Theory. PMLR, 819-842.

[28]

[29]

[30]

[31]

[32]

[33]

[34]

[35]

[36]

[37]

[38]

[39]

[40]

[41]

[42]

[43]

[44]

[45]

[46]

[47]

[48]

[49]

[50]

[51]

[52]

[53]

SIGSPATIAL '25, November 3-6, 2025, Minneapolis, MN, USA

Claudia Diamantini, Domenico Potena, and Emanuele Storti. 2021. A semantic
data lake model for analytic query-driven discovery. In The 23rd International
Conference on Information Integration and Web Intelligence. 183—186.

James Dixon. 2010. Pentaho, Hadoop, and Data Lakes. https://jamesdixon.
wordpress.com/2010/10/14/pentaho-hadoop-and-data-lakes

Yuyang Dong, Kunihiro Takeoka, Chuan Xiao, and Masafumi Oyamada. 2021.
Efficient joinable table discovery in data lakes: A high-dimensional similarity-
based approach. In 2021 IEEE 37th International Conference on Data Engineering
(ICDE). IEEE, 456-467.

Ahmed Eldawy and Mohamed F. Mokbel. 2019. All points on the map as extracted
from OpenStreetMap. doi:10.6086/N100004J

Ahmed Eldawy and Mohamed F. Mokbel. 2019. All water areas in the world
from OpenStreetMap. This includes coastal lines, lakes, rivers, pools, and others.
doi:10.6086/N1668B70

Ahmed Eldawy and Mohamed F. Mokbel. 2019. Boundaries of parks and green
areas from all over the world as extracted from OpenStreetMap. doi:10.6086/
NIRX994T

Philippe Flajolet, Eric Fusy, Olivier Gandouet, and Frédéric Meunier. 2007.
Hyperloglog: the analysis of a near-optimal cardinality estimation algorithm.
Discrete mathematics & theoretical computer science Proceedings (2007).
Edward Gan, Peter Bailis, and Moses Charikar. 2020. Coopstore: Optimizing
precomputed summaries for aggregation. Proceedings of the VLDB Endowment
13, 12 (2020), 2174-2187.

Yihan Gao, Silu Huang, and Aditya Parameswaran. 2018. Navigating the data
lake with datamaran: Automatically extracting structure from log datasets. In
Proceedings of the 2018 International Conference on Management of Data.
943-958.

Peter J Haas and Joseph M Hellerstein. 1999. Ripple joins for online aggregation.
ACM SIGMOD Record 28, 2 (1999), 287-298.

Rihan Hai, Christos Koutras, Christoph Quix, and Matthias Jarke. 2023. Data
Lakes: A Survey of Functions and Systems. /EEE Transactions on Knowledge and
Data Engineering (2023).

Shohedul Hasan, Saravanan Thirumuruganathan, Jees Augustine, Nick Koudas,
and Gautam Das. 2020. Deep learning models for selectivity estimation of
multi-attribute queries. In Proceedings of the 2020 ACM SIGMOD International
Conference on Management of Data. 1035-1050.

Axel Hertzschuch, Guido Moerkotte, Wolfgang Lehner, Norman May, Florian
Wolf, and Lars Fricke. 2021. Small selectivities matter: Lifting the burden of empty
samples. In Proceedings of the 2021 International Conference on Management of
Data. 697-709.

Stefan Heule, Marc Nunkesser, and Alexander Hall. 2013. Hyperloglog in practice:
Algorithmic engineering of a state of the art cardinality estimation algorithm.
In Proceedings of the 16th International Conference on Extending Database
Technology. 683-692.

Wassily Hoeffding. 1994. Probability inequalities for sums of bounded random
variables. The collected works of Wassily Hoeffding (1994), 409-426.

IBM. [n.d.]. IBM Data Lake and Lakehouse. https://www.ibm.com/data-lake
Yannis E Ioannidis and Viswanath Poosala. 1995. Balancing histogram optimality
and practicality for query result size estimation. Acm Sigmod Record 24, 2 (1995),
233-244.

Hosagrahar Visvesvaraya Jagadish, Nick Koudas, S Muthukrishnan, Viswanath
Poosala, Kenneth C Sevcik, and Torsten Suel. 1998. Optimal histograms with
quality guarantees. In VLDB, Vol. 98. 24-27.

Pwint Phyu Khine and Zhao Shun Wang. 2018. Data lake: a new ideology in big
data era. In ITM web of conferences, Vol. 17. EDP Sciences, 03025.

Per-Ake Larson, Wolfgang Lehner, Jingren Zhou, and Peter Zabback. 2007.
Cardinality estimation using sample views with quality assurance. In Proceedings
of the 2007 ACM SIGMOD international conference on Management of data.
175-186.

Aristotelis Leventidis, Laura Di Rocco, Wolfgang Gatterbauer, Renée J Miller,
and Mirek Riedewald. 2021. DomainNet: Homograph Detection for Data Lake
Disambiguation. arXiv preprint arXiv:2103.09940 (2021).

Xi Liang, Stavros Sintos, and Sanjay Krishnan. 2023. JanusAQP: Efficient partition
tree maintenance for dynamic approximate query processing. In 2023 IEEE 39th
International Conference on Data Engineering (ICDE). IEEE, 572-584.

Ge Luo, Lu Wang, Ke Yi, and Graham Cormode. 2016. Quantiles over data
streams: experimental comparisons, new analyses, and further improvements. The
VLDB Journal 25, 4 (2016), 449-472.

Charles Masson, Jee E Rim, and Homin K Lee. 2019. DDSketch: a fast and
fully-mergeable quantile sketch with relative-error guarantees. Proceedings of the
VLDB Endowment 12, 12 (2019), 2195-2205.

Yossi Matias, Jeffrey Scott Vitter, and Min Wang. 1998. Wavelet-based histograms
for selectivity estimation. In Proceedings of the 1998 ACM SIGMOD international
conference on Management of data. 448—459.

Rudi Poepsel-Lemaitre, Martin Kiefer, Joscha Von Hein, Jorge-Arnulfo Quiané-
Ruiz, and Volker Markl. 2021. In the land of data streams where synopses are
missing, one framework to bring them all. Proceedings of the VLDB Endowment
14, 10 (2021), 1818-1831.

https://aws.amazon.com/big-data/datalakes-and-analytics/
https://aws.amazon.com/big-data/datalakes-and-analytics/
https://hudi.apache.org
https://iceberg.apache.org
https://orc.apache.org
https://parquet.apache.org
https://iceberg.apache.org/puffin-spec/#blobmetadata
https://iceberg.apache.org/puffin-spec/#blobmetadata
https://jamesdixon.wordpress.com/2010/10/14/pentaho-hadoop-and-data-lakes
https://jamesdixon.wordpress.com/2010/10/14/pentaho-hadoop-and-data-lakes
https://doi.org/10.6086/N100004J
https://doi.org/10.6086/N1668B70
https://doi.org/10.6086/N1RX994T
https://doi.org/10.6086/N1RX994T
https://www.ibm.com/data-lake

SIGSPATIAL '25, November 3-6, 2025, Minneapolis, MN, USA

[54] Sajjadur Rahman, Maryam Aliakbarpour, Ha Kyung Kong, Eric Blais, Karrie
Karahalios, Aditya Parameswaran, and Ronitt Rubinfield. 2017. I've seen" enough”
incrementally improving visualizations to support rapid decision making. Pro-
ceedings of the VLDB Endowment 10, 11 (2017), 1262-1273.

[55] Raghu Ramakrishnan, Baskar Sridharan, John R Douceur, Pavan Kasturi, Balaji
Krishnamachari-Sampath, Karthick Krishnamoorthy, Peng Li, Mitica Manu, Spiro
Michaylov, Rogério Ramos, et al. 2017. Azure data lake store: a hyperscale
distributed file service for big data analytics. In Proceedings of the 2017 ACM
International Conference on Management of Data. 51-63.

[56] ElKindi Rezig, Anshul Bhandari, Anna Fariha, Benjamin Price, Allan Vanterpool,
Vijay Gadepally, and Michael Stonebraker. 2021. DICE: data discovery by example.
Proceedings of the VLDB Endowment 14, 12 (2021), 2819-2822.

[57] Florin Rusu and Alin Dobra. 2008. Sketches for size of join estimation. ACM
Transactions on Database Systems (TODS) 33, 3 (2008), 1-46.

[58] Pegdwendé Sawadogo and Jérdme Darmont. 2021. On data lake architectures
and metadata management. Journal of Intelligent Information Systems 56 (2021),
97-120.

[59] AB Siddique, Ahmed Eldawy, and Vagelis Hristidis. 2019. Euler++: Improved
Selectivity Estimation for Rectangular Spatial Records. In 2019 IEEE International
Conference on Big Data (Big Data). IEEE, 41294133,

[60] Abu Bakar Siddique, Ahmed Eldawy, and Vagelis Hristidis. 2019. Comparing
synopsis techniques for approximate spatial data analysis. Proceedings of the
VLDB Endowment 12, 11 (2019).

[61] Samriddhi Singla and Ahmed Eldawy. 2020. Flexible computation of multidimen-
sional histograms. In Proceedings of the 2nd ACM SIGSPATIAL International
Workshop on Spatial Gems (SpatialGems 2020)(Seattle, Washington, USA). ACM.

[62] Jie Song and Yeye He. 2021. Auto-Validate: Unsupervised Data Validation Using
Data-Domain Patterns Inferred from Data Lakes. In Proceedings of the 2021
International Conference on Management of Data. 1678-1691.

[63] Chengyu Sun, Divyakant Agrawal, and Amr El Abbadi. 2002. Selectivity estima-
tion for spatial joins with geometric selections. In International Conference on
Extending Database Technology. Springer, 609-626.

[64] Wenbo Tao, Adam Sah, Leilani Battle, Remco Chang, and Michael Stonebraker.
2021. Kyrix-J: Visual Discovery of Connected Datasets in a Data Lake. (2021).

[65] Yufei Tao, George Kollios, Jeffrey Considine, Feifei Li, and Dimitris Papadias. 2004.
Spatio-temporal aggregation using sketches. In Proceedings. 20th International
Conference on Data Engineering. IEEE, 214-225.

[66] Kostas Tzoumas, Amol Deshpande, and Christian S Jensen. 2013. Efficiently
adapting graphical models for selectivity estimation. The VLDB Journal 22 (2013),
3-27.

[67] Jeffrey Scott Vitter and Min Wang. 1999. Approximate computation of multidi-
mensional aggregates of sparse data using wavelets. Acm Sigmod Record 28, 2
(1999), 193-204.

[68] Jeffrey Scott Vitter, Min Wang, and Bala Iyer. 1998. Data cube approximation and
histograms via wavelets. In Proceedings of the seventh international conference
on Information and knowledge management. 96—104.

[69] Tin Vu, Ahmed Eldawy, Vagelis Hristidis, and Vassilis Tsotras. 2021. Incremental
partitioning for efficient spatial data analytics. Proceedings of the VLDB Endowment
15, 3 (2021), 713-726.

[70] Jin-Feng Wang, A Stein, Bin-Bo Gao, and Yong Ge. 2012. A review of spatial
sampling. Spatial Statistics 2 (2012), 1-14.

[71] Min Wang, Jeffrey Scott Vitter, Lipyeow Lim, and Sriram Padmanabhan. 2001.
Wavelet-based cost estimation for spatial queries. In International Symposium on
Spatial and Temporal Databases. Springer, 175-193.

[72] Wikipedia contributors. 2024. Beta distribution, Practical Implementations: Alpha
and Beta Calculations Summary— Wikipedia, The Free Encyclopedia. https:/en.
wikipedia.org/w/index.php?title=Beta_distribution&oldid=1210316554. [Online;
accessed 28-February-2024].

[73] Wikipedia contributors. 2025. Skewness — Wikipedia, The Free Encyclope-
dia. https://en.wikipedia.org/w/index.php?title=Skewness&oldid=1272988155
[Online; accessed 24-February-2025].

[74] Qin Yuan, Ye Yuan, Zhenyu Wen, He Wang, Chen Chen, and Guoren Wang.
2022. Exploring Heterogeneous Data Lake based on Unified Canonical Graphs. In
Proceedings of the 45th International ACM SIGIR Conference on Research and
Development in Information Retrieval. 1834—1838.

[75] Yaming Zhang and Ahmed Eldawy. [n. d.]. OpenStreetMap Points of Interest.

[76] Yi Zhang and Zachary G Ives. 2020. Finding related tables in data lakes for
interactive data science. In Proceedings of the 2020 ACM SIGMOD International
Conference on Management of Data. 1951-1966.

[77] Fuheng Zhao, Sujaya Maiyya, Ryan Wiener, Divyakant Agrawal, and Amr El Ab-
badi. 2021. Kll+approximate quantile sketches over dynamic datasets. Proceedings
of the VLDB Endowment 14,7 (2021), 1215-1227.

[78] Zhuoyue Zhao, Feifei Li, and Yuxi Liu. 2020. Efficient join synopsis maintenance
for data warehouse. In Proceedings of the 2020 ACM SIGMOD International
Conference on Management of Data. 2027-2042.

[79] Erkang Zhu, Dong Deng, Fatemeh Nargesian, and Renée J Miller. 2019. Josie:
Overlap set similarity search for finding joinable tables in data lakes. In Proceedings
of the 2019 International Conference on Management of Data. 847-864.

Xin Zhang and Ahmed Eldawy

8 APPENDIX

8.1 Additional Discussion for Section 3

8.1.1 Example: Histogram Estimation Under Uniform Density
Assumption. Consider a range query Q that overlaps with 10% of a
histogram bucket. The estimated query answer in this case is 0.1 X vg,
where vg is the bucket’s total count. This estimation assumes that
10% of the data points are uniformly distributed within the first 10%
of the bucket’s range, regardless of where Q begins.

Such an assumption is valid only if data points are uniformly
distributed within the bucket. However, this uniformity rarely holds
in real-world datasets, potentially introducing estimation error.

(a) A reshape example: reshaping a source histogram
with 2 buckets into a target histogram with 3 buckets. (C) Reshaped histograms data accuracy, varying
data skewness and histogram resolution

H i H 507
' llnn;lw‘ml; lmy ! 06 %
100 [80 [o0] y
(b) Table 1: Query accuracy, varying data skewness. _é 03 Z Z
mm 202 >
Unif 0.001 0.036 gf“ % I% I%
niform X X o Y/ % %
0.172 0.426
0290 1.780 Uniform 83 Buckets %8 Buckets Skew
Skew 0.332 3.937

Figure 10: Impact of data skewness and overlap ratio on
histogram estimation error.

8.1.2 lllustration of Skewness and Overlap Effects. Figure 10
demonstrates how two key factors—data skewness and overlap
ratio—affect histogram-based query estimation:

(1) Data Skewness: Histograms are more accurate when summa-
rizing uniform data. As skewness increases, estimation error
rises. Note that our skewness metric (DKpy) differs from tradi-
tional statistical skewness [73]; it captures density variability
across buckets using median absolute deviation.

(2) Overlap Ratio: Estimation improves with larger overlap
between the query range and the bucket. Even under extreme
skew, full overlap yields an exact answer.

Example 3.2 and Figure 4 illustrate how to compute DK using
bucket densities and how it impacts accuracy.

8.1.3 Justification for Using the Beta Distribution. Our model
estimates histogram query accuracy by modeling the random behavior

of the overlap ratio, leﬂ, as a probability distribution. The beta
enp

distribution is a natural fit because:
e It models continuous proportions over the interval [0, 1],
matching the range of overlap ratios [72].
o Its shape is flexible and can express uncertainty by adjusting
two parameters (a, §). We set a = f for symmetry, simplifying
the model while capturing skewness effects.

The beta distribution’s probability density function (PDF) is:
x@71(1 = x)f1
B(a,p)
where x € [0, 1] and B(a, f) is the beta function.
As skewness increases, we lower « and flatten the distribution.

For uniform data, a higher « yields a sharper peak, indicating higher
confidence in query accuracy.

PDFy = f(x;a, f) = (1)

https://en.wikipedia.org/w/index.php?title=Beta_distribution&oldid=1210316554
https://en.wikipedia.org/w/index.php?title=Beta_distribution&oldid=1210316554
https://en.wikipedia.org/w/index.php?title=Skewness&oldid=1272988155

SynopsisLake: Quality-aware Approximate Spatial Query Processing Using Data Synopses

8.1.4 Mapping Function 3 Properties. The mapping function Equa-
tion 3 has following properties:

o As DKy — oo, the underlying data is very skewed so that a
(and B) — 1.
e As DKy — 0, the underlying data is uniformly distributed so
that « (and B) — % + 1, which is the maximum value of «
and f.
This relationship allows the model to adapt its confidence based on
the skewness of the underlying data, linking statistical properties of
the histogram to expected estimation quality.

8.1.5 Derivation of Error Ratio Metric. This subsection provides
the step-by-step derivation of the estimated error ratio defined in
Equation 6, which quantifies the uncertainty of a histogram bucket
B; when answering a range query Q.

The error ratio rp, ¢ is the probability mass outside the aligned
overlap interval [a, b] under the beta distribution PDFy = f(x; a, f):

CPla<x<b) _ fifxapds
P0<X<1) folf(x;a,ﬂ)dx

b
=1—f friafdx=1-Iy(@p)+la(@p) (12)

'B,—Q = 1

where I (a, f) is the cumulative distribution function of the beta
distribution, and [a, b] is the overlap-centered interval defined in
Equation 7:

1 lenoQ 1 lenoQ

a=05-—-"- , b=05+- .
2 leng, 2 lenp,

This formulation captures how the overlap ratio contributes to
uncertainty, with higher density concentration within [a, b] corre-
sponding to more accurate query estimates.

8.1.6 The Quality of Multi-dimensional Approximate Query An-
swer. Equation 6/12 can be naturally extended to estimate the quality
of approximate answers returned by multi-dimensional buckets. The
only difference lies in how the aligned overlap interval [q, b] is
lenoQ
len B;
as shown above. In the multi-dimensional setting, the overall overlap
ratio is obtained as the product of the overlap ratios along each dimen-
sion. For example, in two dimensions the overlap ratio corresponds
to the ‘area’, while in three dimensions it corresponds to the ‘volume’.
The aligned overlap interval [a, b] is then computed as follows:

D D
lenpo,; lenpo,.
a=05-1- [] —0Qdim 54 1. [—O0Qdim
1 leng. 1 leng
dim=1 idim dim=1

computed. In the one-dimensional case, the value is given by

dim

8.2 Additional Discussion for Section 4

8.2.1 Priority Queue with Updatable Priorities. To support efficient
priority updates during merging, we implement a custom priority
queue based on a binary min-heap. Standard priority queues do not
support in-place updates, which are necessary for adjusting merge
scores after each operation.

Our implementation combines an array-based heap with a hash
map that tracks each element’s index in the heap. When a merge score
changes, the hash map allows constant-time lookup of its position,
followed by a heapify operation to restore heap order. If the score

SIGSPATIAL '25, November 3-6, 2025, Minneapolis, MN, USA

increases, the element is pushed down; if it decreases, it is bubbled
up.

This design ensures O(log n) time for both extraction and update,
allowing fast re-scoring of neighboring merge positions throughout
the algorithm.

8.2.2 Merging Sketches and Samples. We extend the Align-
Reshape-Merge framework to support Spatial Sketches and sample-
based synopses.

SynopsisLake employs Spatial Sketches [26] for approximate
spatial join selectivity estimation. Each sketch maintains multi-level
counters over dyadic intervals and their endpoints, hierarchically
partitioning the data space. To merge sketches defined over different
ranges, we align them to a common set of dyadic intervals. Counter
values are reshaped using a weighted scheme based on overlap ratios
between source and merged intervals. While effective, this method
currently lacks a formal quality metric to assess merge accuracy.

To merge samples, SynopsisLake supports both uniform and
stratified samples. We first unify all input samples, then resample
under a global space budget. The unified range is partitioned using
either uniform splitting or k-means clustering. Within each partition,
we perform uniform sampling without replacement. Sample counts
are proportionally allocated as nj, = n - Ny, /N, where n is the total
sample budget, N}, the size of partition h, and N the total input size.

8.2.3 Multi-dimensional Alignment. Definition 4.2 and Defini-
tion 10 and easily be extended to multiple settings. For data-driven
reshaping, we should replace the alignment error ‘x’ by multi-
dimensional equations shown in Appendix 8.1.6. For query-driven re-
shaping, the query answers should be computed by multi-dimensional
buckets.

8.3 Additional Discussion for Section 5

We provide details on the baseline alignment methods:

(1) The Uniform alignment splits the entire data range into
equal-sized grid cells.

(2) The Random solution generates grid cells with random sizes.
We run this method for 10 rounds and report the average results.

(3) The vMeasure solution extends the V-Optimal histogram
method [2], which groups data items with similar frequencies. The
original algorithm takes a sorted tuple list (i, y;), where i is a data
value and y; its frequency. It partitions adjacent values into buckets,
assigning each bucket a mean value 9, and minimizes the Ly error
Y.(y; — 9;)? using a greedy merging strategy. To apply this in our
setting, we treat each canonical range as a bucket and use its value
as the frequency, forming an item frequency vector. We then apply
the original greedy algorithm to compute merged partitions.

	Abstract
	1 Introduction
	2 SynopsisLake
	2.1 SynopsisLake Architecture
	2.2 Query Engine

	3 Skewness-Align Metric
	3.1 Preliminaries
	3.2 Histogram Querying Process
	3.3 Histogram Query Accuracy Model

	4 Align-Reshape-Merge Framework
	4.1 Alignment Step
	4.2 Merging Algorithm
	4.3 Reshaping and Merging Steps.

	5 Experiment
	5.1 Experiment Setting
	5.2 Performance of Data Ingestion
	5.3 Performance of Query Processing
	5.4 Comparing Different Alignment Strategies

	6 Related Work
	6.1 AQP by using data synopses
	6.2 Data lakes and Lakehouse

	7 Conclusion and Future Work
	Acknowledgments
	References
	8 Appendix
	8.1 Additional Discussion for Section 3
	8.2 Additional Discussion for Section 4
	8.3 Additional Discussion for Section 5

