skip to main content

Title: Classifying quantum phases using matrix product states and projected entangled pair states
Author(s) / Creator(s):
; ;
Publisher / Repository:
American Physical Society
Date Published:
Journal Name:
Physical Review B
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Lin, Chung-Ying (Ed.)
    Background University students are increasingly recognized as a vulnerable population, suffering from higher levels of anxiety, depression, substance abuse, and disordered eating compared to the general population. Therefore, when the nature of their educational experience radically changes—such as sheltering in place during the COVID-19 pandemic—the burden on the mental health of this vulnerable population is amplified. The objectives of this study are to 1) identify the array of psychological impacts COVID-19 has on students, 2) develop profiles to characterize students' anticipated levels of psychological impact during the pandemic, and 3) evaluate potential sociodemographic, lifestyle-related, and awareness of people infected with COVID-19 risk factors that could make students more likely to experience these impacts. Methods Cross-sectional data were collected through web-based questionnaires from seven U.S. universities. Representative and convenience sampling was used to invite students to complete the questionnaires in mid-March to early-May 2020, when most coronavirus-related sheltering in place orders were in effect. We received 2,534 completed responses, of which 61% were from women, 79% from non-Hispanic Whites, and 20% from graduate students. Results Exploratory factor analysis on close-ended responses resulted in two latent constructs, which we used to identify profiles of students with latent profile analysis, including high (45% of sample), moderate (40%), and low (14%) levels of psychological impact. Bivariate associations showed students who were women, were non-Hispanic Asian, in fair/poor health, of below-average relative family income, or who knew someone infected with COVID-19 experienced higher levels of psychological impact. Students who were non-Hispanic White, above-average social class, spent at least two hours outside, or less than eight hours on electronic screens were likely to experience lower levels of psychological impact. Multivariate modeling (mixed-effects logistic regression) showed that being a woman, having fair/poor general health status, being 18 to 24 years old, spending 8 or more hours on screens daily, and knowing someone infected predicted higher levels of psychological impact when risk factors were considered simultaneously. Conclusion Inadequate efforts to recognize and address college students’ mental health challenges, especially during a pandemic, could have long-term consequences on their health and education. 
    more » « less
  2. Tea is a steeped beverage made from the leaves of Camellia sinensis . Globally, this healthy, caffeine-containing drink is one of the most widely consumed beverages. At least 50 countries produce tea and most of the production information and tea research is derived from international sources. Here, we discuss information related to tea production, genetics, and chemistry as well as production issues that affect or are likely to affect emerging tea production and research in the United States. With this review, we relay current knowledge on tea production, threats to tea production, and solutions to production problems to inform this emerging market in the United States. 
    more » « less
  3. null (Ed.)
    Finite-temperature phases of many-body quantum systems are fundamental to phenomena ranging from condensed-matter physics to cosmology, yet they are generally difficult to simulate. Using an ion trap quantum computer and protocols motivated by the quantum approximate optimization algorithm (QAOA), we generate nontrivial thermal quantum states of the transverse-field Ising model (TFIM) by preparing thermofield double states at a variety of temperatures. We also prepare the critical state of the TFIM at zero temperature using quantum–classical hybrid optimization. The entanglement structure of thermofield double and critical states plays a key role in the study of black holes, and our work simulates such nontrivial structures on a quantum computer. Moreover, we find that the variational quantum circuits exhibit noise thresholds above which the lowest-depth QAOA circuits provide the best results. 
    more » « less
  4. Increased wildfire events constitute a significant threat to life and property in the United States. Wildfire impact on severe storms and weather hazards is another pathway that threatens society, and our understanding of which is very limited. Here, we use unique modeling developments to explore the effects of wildfires in the western US (mainly California and Oregon) on precipitation and hail in the central US. We find that the western US wildfires notably increase the occurrences of heavy precipitation rates by 38% and significant severe hail (≥2 in.) by 34% in the central United States. Both heat and aerosols from wildfires play an important role. By enhancing surface high pressure and increasing westerly and southwesterly winds, wildfires in the western United States produce ( 1 ) stronger moisture and aerosol transport to the central United States and ( 2 ) larger wind shear and storm-relative helicity in the central United States. Both the meteorological environment more conducive to severe convective storms and increased aerosols contribute to the enhancements of heavy precipitation rates and large hail. Moreover, the local wildfires in the central US also enhance the severity of storms, but their impact is notably smaller than the impact of remote wildfires in California and Oregon because of the lessened severity of the local wildfires. As wildfires are projected to be more frequent and severe in a warmer climate, the influence of wildfires on severe weather in downwind regions may become increasingly important. 
    more » « less