skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Generation of thermofield double states and critical ground states with a quantum computer
Finite-temperature phases of many-body quantum systems are fundamental to phenomena ranging from condensed-matter physics to cosmology, yet they are generally difficult to simulate. Using an ion trap quantum computer and protocols motivated by the quantum approximate optimization algorithm (QAOA), we generate nontrivial thermal quantum states of the transverse-field Ising model (TFIM) by preparing thermofield double states at a variety of temperatures. We also prepare the critical state of the TFIM at zero temperature using quantum–classical hybrid optimization. The entanglement structure of thermofield double and critical states plays a key role in the study of black holes, and our work simulates such nontrivial structures on a quantum computer. Moreover, we find that the variational quantum circuits exhibit noise thresholds above which the lowest-depth QAOA circuits provide the best results.  more » « less
Award ID(s):
1818914
PAR ID:
10273623
Author(s) / Creator(s):
; ; ; ; ; ; ; ;
Date Published:
Journal Name:
Proceedings of the National Academy of Sciences
Volume:
117
Issue:
41
ISSN:
0027-8424
Page Range / eLocation ID:
25402 to 25406
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Combinatorial optimization problems on graphs have broad applications in science and engineering. The quantum approximate optimization algorithm (QAOA) is a method to solve these problems on a quantum computer by applying multiple rounds of variational circuits. However, there exist several challenges limiting the application of QAOA to real-world problems. In this paper, we demonstrate on a trapped-ion quantum computer that QAOA results improve with the number of rounds for multiple problems on several arbitrary graphs. We also demonstrate an advanced mixing Hamiltonian that allows sampling of all optimal solutions with predetermined weights. Our results are a step toward applying quantum algorithms to real-world problems. 
    more » « less
  2. Abstract Quantum Approximate Optimization algorithm (QAOA) aims to search for approximate solutions to discrete optimization problems with near-term quantum computers. As there are no algorithmic guarantee possible for QAOA to outperform classical computers, without a proof that bounded-error quantum polynomial time (BQP) ≠ nondeterministic polynomial time (NP), it is necessary to investigate the empirical advantages of QAOA. We identify a computational phase transition of QAOA when solving hard problems such as SAT—random instances are most difficult to train at a critical problem density. We connect the transition to the controllability and the complexity of QAOA circuits. Moreover, we find that the critical problem density in general deviates from the SAT-UNSAT phase transition, where the hardest instances for classical algorithms lies. Then, we show that the high problem density region, which limits QAOA’s performance in hard optimization problems (reachability deficits), is actually a good place to utilize QAOA: its approximation ratio has a much slower decay with the problem density, compared to classical approximate algorithms. Indeed, it is exactly in this region that quantum advantages of QAOA over classical approximate algorithms can be identified. 
    more » « less
  3. We prove concentration bounds for the following classes of quantum states: (i) output states of shallow quantum circuits, answering an open question from \cite{DMRF22}; (ii) injective matrix product states; (iii) output states of dense Hamiltonian evolution, i.e. states of the form e ι H ( p ) ⋯ e ι H ( 1 ) | ψ 0 ⟩ for any n -qubit product state | ψ 0 ⟩ , where each H ( i ) can be any local commuting Hamiltonian satisfying a norm constraint, including dense Hamiltonians with interactions between any qubits. Our proofs use polynomial approximations to show that these states are close to local operators. This implies that the distribution of the Hamming weight of a computational basis measurement (and of other related observables) concentrates.An example of (iii) are the states produced by the quantum approximate optimisation algorithm (QAOA). Using our concentration results for these states, we show that for a random spin model, the QAOA can only succeed with negligible probability even at super-constant level p = o ( log ⁡ log ⁡ n ) , assuming a strengthened version of the so-called overlap gap property. This gives the first limitations on the QAOA on dense instances at super-constant level, improving upon the recent result [BGMZ22]. 
    more » « less
  4. Abstract Realizing the potential of near-term quantum computers to solve industry-relevant constrained-optimization problems is a promising path to quantum advantage. In this work, we consider the extractive summarization constrained-optimization problem and demonstrate the largest-to-date execution of a quantum optimization algorithm that natively preserves constraints on quantum hardware. We report results with the Quantum Alternating Operator Ansatz algorithm with a Hamming-weight-preserving XY mixer (XY-QAOA) on trapped-ion quantum computer. We successfully execute XY-QAOA circuits that restrict the quantum evolution to the in-constraint subspace, using up to 20 qubits and a two-qubit gate depth of up to 159. We demonstrate the necessity of directly encoding the constraints into the quantum circuit by showing the trade-off between the in-constraint probability and the quality of the solution that is implicit if unconstrained quantum optimization methods are used. We show that this trade-off makes choosing good parameters difficult in general. We compare XY-QAOA to the Layer Variational Quantum Eigensolver algorithm, which has a highly expressive constant-depth circuit, and the Quantum Approximate Optimization Algorithm. We discuss the respective trade-offs of the algorithms and implications for their execution on near-term quantum hardware. 
    more » « less
  5. The quantum approximate optimization algorithm (QAOA) has enjoyed increasing attention in noisy, intermediate-scale quantum computing with its application to combinatorial optimization problems. QAOA has the potential to demonstrate a quantum advantage for NP-hard combinatorial optimization problems. As a hybrid quantum-classical algorithm, the classical component of QAOA resembles a simulation optimization problem in which the simulation outcomes are attainable only through a quantum computer. The simulation that derives from QAOA exhibits two unique features that can have a substantial impact on the optimization process: (i) the variance of the stochastic objective values typically decreases in proportion to the optimality gap, and (ii) querying samples from a quantum computer introduces an additional latency overhead. In this paper, we introduce a novel stochastic trust-region method derived from a derivative-free, adaptive sampling trust-region optimization method intended to efficiently solve the classical optimization problem in QAOA by explicitly taking into account the two mentioned characteristics. The key idea behind the proposed algorithm involves constructing two separate local models in each iteration: a model of the objective function and a model of the variance of the objective function. Exploiting the variance model allows us to restrict the number of communications with the quantum computer and also helps navigate the nonconvex objective landscapes typical in QAOA optimization problems. We numerically demonstrate the superiority of our proposed algorithm using the SimOpt library and Qiskit when we consider a metric of computational burden that explicitly accounts for communication costs. History: Accepted by Giacomo Nannicini, Area Editor for Quantum Computing and Operations Research. Accepted for Special Issue. Funding: This material is based upon work supported by the U.S. Department of Energy, Office of Science, National Quantum Information Science Research Centers and the Office of Advanced Scientific Computing Research, Accelerated Research for Quantum Computing program under contract number DE-AC02-06CH11357. Y. Ha and S. Shashaani also gratefully acknowledge the U.S. National Science Foundation Division of Civil, Mechanical and Manufacturing Innovation Grant CMMI-2226347 and the U.S. Office of Naval Research [Grant N000142412398]. Supplemental Material: The software that supports the findings of this study is available within the paper and its Supplemental Information ( https://pubsonline.informs.org/doi/suppl/10.1287/ijoc.2024.0575 ) as well as from the IJOC GitHub software repository ( https://github.com/INFORMSJoC/2024.0575 ). The complete IJOC Software and Data Repository is available at https://informsjoc.github.io/ . 
    more » « less