skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: A developmental and energetic basis linking larval oyster shell formation to acidification sensitivity: LARVAL SHELL AND ACIDIFICATION
Award ID(s):
1041267
PAR ID:
10012685
Author(s) / Creator(s):
; ; ; ; ;
Date Published:
Journal Name:
Geophysical Research Letters
Volume:
40
Issue:
10
ISSN:
0094-8276
Page Range / eLocation ID:
2171 to 2176
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    ABSTRACT Using image analysis of scanning electron micrographs (SEMs), we compared differences in growth of D-stage veligers [i.e. prodissoconch I and II (PI and PII) larvae] of eastern oysters Crassostrea virginica grown in mesohaline water under high- and low-CO2 conditions. We found SEMs to reveal no evidence of dissolution or shell structure deformity for larval shells in either of the CO2 treatments but detected prominent growth lines in the PII regions of larval shells. The number of growth lines closely approximated the duration of the experiment, suggesting that growth lines are generated daily. Mean growth line interval widths were 20% greater for larval shells cultured in low- vs high-CO2 conditions. Crassostrea virginica veliger larvae were shown to tolerate high CO2 levels and aragonite saturation states (Ωarag) < 1.0, but larval growth was slowed substantially under these conditions. Differences in growth line interval width translate into substantial changes in shell area and account for previously observed differences in total shell area between the treatments, as determined by light microscopy and image analysis. Other studies have documented high mortality and malformation of D-stage larvae in bivalves when pre-veliger life stages (i.e. eggs, gastrula and trochophores) were exposed to elevated CO2. Our experiments revealed statistical differences in rates of larval survival, settlement and subsequent early-stage spat mortality for veligers reared in high- and low-CO2 conditions. Although each of these rates was measurably affected by high CO2, the magnitude of these differences was small (range across categories = 0.7–6.3%) suggesting that the impacts may not be catastrophic, as implied by several previous studies. We believe the apparent disparity among experimental results may be best explained by differential vulnerability of pre-veliger stage larvae and veligers, whereby PI and PII larvae have greater physiological capacity to withstand environmental conditions that may be thermodynamically unfavourable to calcification (i.e. Ωarag < 1.0). 
    more » « less
  2. Bivalves frequently withstand shell damage that must be quickly repaired to ensure survival. While the processes that underlie larval shell development have been extensively studied within the context of ocean acidification (OA), it remains unclear whether shell repair is impacted by elevated pCO2. To better understand the stereotypical shell repair process, we monitored mussels (Mytilus edulis) with sublethal shell damage that breached the mantle cavity within both field and laboratory conditions to characterize the deposition rate, composition, and integrity of repaired shell. Results were then compared with a laboratory experiment wherein mussels (Mytilus trossulus) repaired shell damage in one of seven pCO2 treatments (400–2500 µatm). Shell repair proceeded through distinct stages; an organic membrane first covered the damaged area (days 1–15), followed by the deposition of calcite crystals (days 22–43) and aragonite tablets (days 51–69). OA did not impact the ability of mussels to close drill holes, nor the microstructure, composition, or integrity of end-point repaired shell after 10 weeks, as measured by µCT and SEM imaging, energy-dispersive X-ray (EDX) analysis, and mechanical testing. However, significant interactions between pCO2, the length of exposure to treatment conditions, the strength and inorganic content of shell, and the physiological condition of mussels within OA treatments were observed. These results suggest that while OA does not prevent adult mussels from repairing or mineralizing shell, both OA and shell damage may elicit stress responses that impose energetic constraints on mussel physiology. 
    more » « less