- Award ID(s):
- 1659668
- Publication Date:
- NSF-PAR ID:
- 10248873
- Journal Name:
- Journal of Molluscan Studies
- Volume:
- 86
- Issue:
- 4
- Page Range or eLocation-ID:
- 342 to 351
- ISSN:
- 0260-1230
- Sponsoring Org:
- National Science Foundation
More Like this
-
Synopsis The presence of standing genetic variation will play a role in determining a population's capacity to adapt to environmentally relevant stressors. In the Gulf of Mexico, extreme climatic events and anthropogenic changes to local hydrology will expose productive oyster breeding grounds to stressful low salinity conditions. We identified genetic variation for performance under low salinity (due to the combined effects of low salinity and genetic load) using a single-generation selection experiment on larvae from two populations of the eastern oyster, Crassostrea virginica. We used pool-sequencing to test for allele frequency differences at 152 salinity-associated genes for larval families pre-more »
-
Rising atmospheric CO 2 reduces seawater pH causing ocean acidification (OA). Understanding how resilient marine organisms respond to OA may help predict how community dynamics will shift as CO 2 continues rising. The common slipper shell snail Crepidula fornicata is a marine gastropod native to eastern North America that has been a successful invader along the western European coastline and elsewhere. It has also been previously shown to be resilient to global change stressors. To examine the mechanisms underlying C. fornicata’s resilience to OA, we conducted two controlled laboratory experiments. First, we examined several phenotypes and genome-wide gene expression ofmore »
-
Abstract The eastern oyster, Crassostrea virginica, forms reefs that provide critical services to the surrounding ecosystem. These reefs are at risk from climate change, in part because altered rainfall patterns may amplify local fluctuations in salinity, impacting oyster recruitment, survival, and growth. As in other marine organisms, warming water temperatures might interact with these changes in salinity to synergistically influence oyster physiology. In this study, we used comparative transcriptomics, measurements of physiology, and a field assessment to investigate what phenotypic changes C. virginica uses to cope with combined temperature and salinity stress in the Gulf of Mexico. Oysters from amore »
-
Browman, Howard (Ed.)Ocean acidification may impact the fitness of marine fish, however, studies reporting neutral to moderate effects have mostly performed short-term exposures to elevated CO2, whereas longer-term studies across life stages are still scarce. We performed a CO2 exposure experiment, in which a large number (n > 2200) of Atlantic silverside Menidia menidia offspring from wild spawners were reared for 135 days through their embryonic, larval, and juvenile stages under control (500 µatm) and high CO2 conditions (2300 µatm). Although survival was high across treatments, subtle but significant differences in length, weight, condition factor and fatty acid (FA) composition were observed. On average,more »
-
Abstract Black soldier flies, Hermetia illucens (L.), consume decaying organic materials at the larval stage and can be used for recycling a variety of biogenic wastes into value-added products. Black soldier flies are normally found in subtropical and warm temperate regions. Cold temperatures may prevent their establishment in colder areas, thus alleviating a concern of their becoming an invasive species. Potentially, cold temperatures can also be used to manipulate the rate of black soldier fly development, which may be needed for timing certain life stages for mass-production needs. In the present study, immature black soldier flies were highly susceptible tomore »