We develop a sparse image reconstruction method for Poisson-distributed polychromatic X-ray computed tomography (CT) measurements under the blind scenario where the material of the inspected object and the incident energy spectrum are unknown. We employ our mass-attenuation spectrum parameterization of the noiseless measurements for single-material objects and express the mass-attenuation spectrum as a linear combination of B-spline basis functions of order one. A block coordinate-descent algorithm is developed for constrained minimization of a penalized Poisson negative log-likelihood (NLL) cost function, where constraints and penalty terms ensure nonnegativity of the spline coefficients and nonnegativity and sparsity of the density-map image; the image sparsity is imposed using a convex total-variation (TV) norm penalty term. This algorithm alternates between a Nesterov’s proximal-gradient (NPG) step for estimating the density-map image and a limited-memory Broyden-Fletcher-Goldfarb-Shanno with box constraints (L-BFGS-B) step for estimating the incident-spectrum parameters. We establish conditions for biconvexity of the penalized NLL objective function, which, if satisfied, ensures monotonicity of the NPG-BFGS iteration. We also show that the penalized NLL objective satisfies the Kurdyka-Łojasiewicz property, which is important for establishing local convergence of block-coordinate descent schemes in biconvex optimization problems. Simulation examples demonstrate the performance of the proposed scheme.
more »
« less
Polychromatic sparse image reconstruction and mass attenuation spectrum estimation via B-spline basis function expansion
We develop a sparse image reconstruction method for polychromatic tomography (CT) measurements under the blind scenario where the material of the inspected object and the incident energy spectrum are unknown. To obtain a parsimonious measurement model parameterization, we first rewrite the measurement equation using our mass attenuation parameterization, which has the Laplace integral form. The unknown mass-attenuation spectrum is expanded into basis functions using a B-spline basis of order one. We develop a block coordinate-descent algorithm for constrained minimization of a penalized negative log-likelihood function, where constraints and penalty terms ensure nonnegativity of the spline coefficients and sparsity of the density map image in the wavelet domain. This algorithm alternates between a Nesterov’s proximal-gradient step for estimating the density map image and an active-set step for estimating the incident spectrum parameters. Numerical simulations demonstrate the performance of the proposed scheme.
more »
« less
- Award ID(s):
- 1421480
- PAR ID:
- 10012984
- Date Published:
- Journal Name:
- AIP conference proceedings
- Volume:
- 34 1650
- ISSN:
- 0094-243X
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
We develop a framework for reconstructing images that are sparse in an appropriate transform domain from polychromatic computed tomography (CT) measurements under the blind scenario where the material of the inspected object and incident-energy spectrum are unknown. Assuming that the object that we wish to reconstruct consists of a single material, we obtain a parsimonious measurement-model parameterization by changing the integral variable from photon energy to mass attenuation, which allows us to combine the variations brought by the unknown incident spectrum and mass attenuation into a single unknown mass-attenuation spectrum function; the resulting measurement equation has the Laplace-integral form. The mass-attenuation spectrum is then expanded into basis functions using B splines of order one. We consider a Poisson noise model and establish conditions for biconvexity of the corresponding negative log-likelihood (NLL) function with respect to the density-map and mass-attenuation spectrum parameters. We derive a block-coordinate descent algorithm for constrained minimization of a penalized NLL objective function, where penalty terms ensure nonnegativity of the mass-attenuation spline coefficients and nonnegativity and gradient-map sparsity of the density-map image, imposed using a convex total-variation (TV) norm; the resulting objective function is biconvex. This algorithm alternates between a Nesterov’s proximal-gradient (NPG) step and a limited-memory Broyden-Fletcher-Goldfarb-Shanno with box constraints (L-BFGS-B) iteration for updating the image and mass-attenuation spectrum parameters, respectively. We prove the Kurdyka-Łojasiewicz property of the objective function, which is important for establishing local convergence of block-coordinate descent schemes in biconvex optimization problems. Our framework applies to other NLLs and signal-sparsity penalties, such as lognormal NLL and ℓ₁ norm of 2D discrete wavelet transform (DWT) image coefficients. Numerical experiments with simulated and real X-ray CT data demonstrate the performance of the proposed scheme.more » « less
-
Abstract This article presents high order accurate discontinuous Galerkin (DG) methods for wave problems on moving curved meshes with general choices of basis and quadrature. The proposed method adopts an arbitrary Lagrangian–Eulerian formulation to map the wave equation from a time‐dependent moving physical domain onto a fixed reference domain. For moving curved meshes, weighted mass matrices must be assembled and inverted at each time step when using explicit time‐stepping methods. We avoid this step by utilizing an easily invertible weight‐adjusted approximation. The resulting semi‐discrete weight‐adjusted DG scheme is provably energy stable up to a term that (for a fixed time interval) converges to zero with the same rate as the optimal error estimate. Numerical experiments using both polynomial and B‐spline bases verify the high order accuracy and energy stability of proposed methods.more » « less
-
Radio map describes network coverage and is a practically important tool for network planning in modern wireless systems. Generally, radio strength measurements are collected to construct fine-resolution radio maps for analysis. However, certain protected areas are not accessible for measurement due to physical constraints and security considerations, leading to blanked spaces on a radio map. Non-uniformly spaced measurement and uneven observation resolution make it more difficult for radio map estimation and spectrum planning in protected areas. This work explores the distribution of radio spectrum strengths and proposes an exemplar-based approach to reconstruct missing areas on a radio map. Instead of taking generic image processing approaches, we leverage radio propagation models to determine directions of region filling and develop two different schemes to estimate the missing radio signal power. Our test results based on high-fidelity simulation demonstrate efficacy of the proposed methods for radio map reconstruction.more » « less
-
Abstract Normal ogive (NO) models have contributed substantially to the advancement of item response theory (IRT) and have become popular educational and psychological measurement models. However, estimating NO models remains computationally challenging. The purpose of this paper is to propose an efficient and reliable computational method for fitting NO models. Specifically, we introduce a novel and unified expectation‐maximization (EM) algorithm for estimating NO models, including two‐parameter, three‐parameter, and four‐parameter NO models. A key improvement in our EM algorithm lies in augmenting the NO model to be a complete data model within the exponential family, thereby substantially streamlining the implementation of the EM iteration and avoiding the numerical optimization computation in the M‐step. Additionally, we propose a two‐step expectation procedure for implementing the E‐step, which reduces the dimensionality of the integration and effectively enables numerical integration. Moreover, we develop a computing procedure for estimating the standard errors (SEs) of the estimated parameters. Simulation results demonstrate the superior performance of our algorithm in terms of its recovery accuracy, robustness, and computational efficiency. To further validate our methods, we apply them to real data from the Programme for International Student Assessment (PISA). The results affirm the reliability of the parameter estimates obtained using our method.more » « less
An official website of the United States government

