skip to main content


Title: Exemplar-Based Radio Map Reconstruction of Missing Areas Using Propagation Priority
Radio map describes network coverage and is a practically important tool for network planning in modern wireless systems. Generally, radio strength measurements are collected to construct fine-resolution radio maps for analysis. However, certain protected areas are not accessible for measurement due to physical constraints and security considerations, leading to blanked spaces on a radio map. Non-uniformly spaced measurement and uneven observation resolution make it more difficult for radio map estimation and spectrum planning in protected areas. This work explores the distribution of radio spectrum strengths and proposes an exemplar-based approach to reconstruct missing areas on a radio map. Instead of taking generic image processing approaches, we leverage radio propagation models to determine directions of region filling and develop two different schemes to estimate the missing radio signal power. Our test results based on high-fidelity simulation demonstrate efficacy of the proposed methods for radio map reconstruction.  more » « less
Award ID(s):
2029848 2029027
NSF-PAR ID:
10347283
Author(s) / Creator(s):
; ; ; ; ;
Date Published:
Journal Name:
IEEE Global Communications Conference
Page Range / eLocation ID:
1217-1222
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Learning to route has received significant research momentum as a new approach for the route planning problem in intelligent transportation systems. By exploring global knowledge of geographical areas and topological structures of road networks to facilitate route planning, in this work, we propose a novel Generative Adversarial Network (GAN) framework, namely Progressive Route Planning GAN (ProgRPGAN), for route planning in road networks. The novelty of ProgRPGAN lies in the following aspects: 1) we propose to plan a route with levels of increasing map resolution, starting on a low-resolution grid map, gradually refining it on higher-resolution grid maps, and eventually on the road network in order to progressively generate various realistic paths; 2) we propose to transfer parameters of the previous-level generator and discriminator to the subsequent generator and discriminator for parameter initialization in order to improve the efficiency and stability in model learning; and 3) we propose to pre-train embeddings of grid cells in grid maps and intersections in the road network by capturing the network topology and external factors to facilitate effective model learning. Empirical result shows that ProgRPGAN soundly outperforms the state-of-the-art learning to route methods, especially for long routes, by 9.46% to 13.02% in F1-measure on multiple large-scale real-world datasets. ProgRPGAN, moreover, effectively generates various realistic routes for the same query. 
    more » « less
  2. null (Ed.)
    Context. Inferences about dark matter, dark energy, and the missing baryons all depend on the accuracy of our model of large-scale structure evolution. In particular, with cosmological simulations in our model of the Universe, we trace the growth of structure, and visualize the build-up of bigger structures from smaller ones and of gaseous filaments connecting galaxy clusters. Aims. Here we aim to reveal the complexity of the large-scale structure assembly process in great detail and on scales from tens of kiloparsecs up to more than 10 Mpc with new sensitive large-scale observations from the latest generation of instruments. We also aim to compare our findings with expectations from our cosmological model. Methods. We used dedicated SRG/eROSITA performance verification (PV) X-ray, ASKAP/EMU Early Science radio, and DECam optical observations of a ~15 deg 2 region around the nearby interacting galaxy cluster system A3391/95 to study the warm-hot gas in cluster outskirts and filaments, the surrounding large-scale structure and its formation process, the morphological complexity in the inner parts of the clusters, and the (re-)acceleration of plasma. We also used complementary Sunyaev-Zeldovich (SZ) effect data from the Planck survey and custom-made Galactic total (neutral plus molecular) hydrogen column density maps based on the HI4PI and IRAS surveys. We relate the observations to expectations from cosmological hydrodynamic simulations from the Magneticum suite. Results. We trace the irregular morphology of warm and hot gas of the main clusters from their centers out to well beyond their characteristic radii, r 200 . Between the two main cluster systems, we observe an emission bridge on large scale and with good spatial resolution. This bridge includes a known galaxy group but this can only partially explain the emission. Most gas in the bridge appears hot, but thanks to eROSITA’s unique soft response and large field of view, we discover some tantalizing hints for warm, truly primordial filamentary gas connecting the clusters. Several matter clumps physically surrounding the system are detected. For the “Northern Clump,” we provide evidence that it is falling towards A3391 from the X-ray hot gas morphology and radio lobe structure of its central AGN. Moreover, the shapes of these X-ray and radio structures appear to be formed by gas well beyond the virial radius, r 100 , of A3391, thereby providing an indirect way of probing the gas in this elusive environment. Many of the extended sources in the field detected by eROSITA are also known clusters or new clusters in the background, including a known SZ cluster at redshift z = 1. We find roughly an order of magnitude more cluster candidates than the SPT and ACT surveys together in the same area. We discover an emission filament north of the virial radius of A3391 connecting to the Northern Clump. Furthermore, the absorption-corrected eROSITA surface brightness map shows that this emission filament extends south of A3395 and beyond an extended X-ray-emitting object (the “Little Southern Clump”) towards another galaxy cluster, all at the same redshift. The total projected length of this continuous warm-hot emission filament is 15 Mpc, running almost 4 degrees across the entire eROSITA PV observation field. The Northern and Southern Filament are each detected at >4 σ . The Planck SZ map additionally appears to support the presence of both new filaments. Furthermore, the DECam galaxy density map shows galaxy overdensities in the same regions. Overall, the new datasets provide impressive confirmation of the theoretically expected structure formation processes on the individual system level, including the surrounding warm-hot intergalactic medium distribution; the similarities of features found in a similar system in the Magneticum simulation are striking. Our spatially resolved findings show that baryons indeed reside in large-scale warm-hot gas filaments with a clumpy structure. 
    more » « less
  3. Database-driven Dynamic Spectrum Sharing (DSS) is the de-facto technical paradigm adopted by Federal Communications Commission for increasing spectrum efficiency, which allows licensed spectrum to be opportunistically used by secondary users. In database-driven DSS, a geo-location database administrator (DBA) maintains spectrum availability information over its service region in the form of a Radio Environment Map (REM), where the received signal strength from the primary user at every location is either directly measured via spectrum sensing or estimated via statistical spatial interpolation. Crowdsourcing-based spectrum sensing is a promising approach for periodically collecting spectrum measurements over a large geographic area but is unfortunately vulnerable to false spectrum measurements. Despite a large body of prior work on secure cooperative spectrum sensing, how to construct an accurate REM in the presence of false measurements remains an open challenge. In this paper, we introduce ST-REM, a novel spatiotemporal approach for securely constructing an REM in the presence of false spectrum measurements. Inspired by the self-label techniques developed for semi-supervised learning, ST-REM iteratively constructs an REM from a small number of spectrum measurements from trusted anchor sensors and many more measurements from mobile users. During each iteration, the DBA evaluates the trustworthiness of each measurement by jointly considering its spatial fitness with other trusted measurements and the mobile user's long-term behavior. By gradually incorporating the most trustworthy spectrum measurements, the DBA is able to construct a REM with high accuracy. Extensive simulation studies using a real spectrum measurement dataset confirm the efficacy and efficiency of ST-REM. 
    more » « less
  4. Addressing the challenges of sustainable and equitable city management in the 21st century requires innovative solutions and integration from a range of dedicated actors. In order to form and fortify partnerships of multi-sectoral collaboration, expand effective governance, and build collective resiliency it is important to understand the network of existing stewardship organizations. The term ‘stewardship’ encompasses a spectrum of local agents dedicated to the evolving process of community care and restoration. Groups involved in stewardship across Baltimore are catalysts of change through a variety of conservation, management, monitoring, transformation, education, and advocacy activities for the local environment – many with common goals of joint resource management, distributive justice, and community power sharing. The “environment” here is intentionally broadly defined as land, air, water, energy and more. The Stewardship Mapping and Assessment Project (STEW-MAP) is a method of data collection and visualization that tracks the characteristics of organizations and their financial and informational flows across sectors and geographic boundaries. The survey includes questions about three facets of environmental stewardship groups: 1) organizational characteristics, 2) collaboration networks, and 3) stewardship “turfs” where each organization works. The data have been analyzed alongside landcover and demographic data and used in multi-city studies incorporating similar datasets across major urban areas of the U.S. Additional information about the growing network of cities conducting stewmap can be found here: https://www.nrs.fs.usda.gov/STEW-MAP/ Romolini, Michele; Grove, J. Morgan; Locke, Dexter H. 2013. Assessing and comparing relationships between urban environmental stewardship networks and land cover in Baltimore and Seattle. Landscape and Urban Planning. 120: 190-207. https://www.fs.usda.gov/research/treesearch/44985 Johnson, M., D. H. Locke, E. Svendsen, L. Campbell, L. M. Westphal, M. Romolini, and J. Grove. 2019. Context matters: influence of organizational, environmental, and social factors on civic environmental stewardship group intensity. Ecology and Society 24(4): 1. https://doi.org/10.5751/ES-10924-240401 Ponte, S. 2023. Social-ecological processes and dynamics of urban forests as green stormwater infrastructure in Maryland, USA. Doctoral dissertation, University of Maryland, College Park, MD. 
    more » « less
  5. Database-driven Dynamic Spectrum Sharing (DSS) is a promising technical paradigm for enhancing spectrum efficiency by allowing secondary user to opportunistically access licenced spectrum channels without interfering with primary users' transmissions. In database-driven DSS, a geo-location database administrator (DBA) maintains the spectrum availability in its service region in the form of a radio environment map (REM) and grant or deny secondary users' spectrum access requests based on primary users' activities. Crowdsourcing-based spectrum sensing has great potential in improving the accuracy of the REM at the DBA but requires strong incentives and privacy protection to simulate mobile users' participation. To tackle this challenge, this paper introduces a novel differentially-private reverse auction mechanism for crowdsourcing-based spectrum sensing. The proposed mechanism allows the DBA to select spectrum sensing participants under a budget constraint while offering differential bid privacy, approximate truthfulness, and approximate accuracy maximization. Extensive simulation studies using a real spectrum measurement dataset confirm the efficacy and efficiency of the proposed mechanism. 
    more » « less