skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Experimental evidence for both progressive and simultaneous shear during quasistatic compression of a bulk metallic glass
Two distinct types of slip events occur during serrated plastic flow of bulk metallic glasses. These events are distinguished not only by their size but also by distinct stress drop rate profiles. Small stress drop serrations have fluctuating stress drop rates (with maximum stress drop rates ranging from 0.3–1 GPa/s), indicating progressive or intermittent propagation of a shear band. The large stress drop serrations are characterized by sharply peaked stress drop rate profiles (with maximum stress drop rates of 1–100 GPa/s). The propagation of a large slip is preceded by a slowly rising stress drop rate that is presumably due to the percolation of slipping weak spots prior to the initiation of shear over the entire shear plane. The onset of the rapid shear event is accompanied by a burst of acoustic emission. These large slips correspond to simultaneous shear with uniform sliding as confirmed by direct high-speed imaging and image correlation. Both small and large slip events occur throughout plastic deformation. The significant differences between these two types require that they be carefully distinguished in both modeling and experimental efforts.  more » « less
Award ID(s):
1042734
PAR ID:
10015095
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ; ;
Publisher / Repository:
American Institute of Physics
Date Published:
Journal Name:
Journal of Applied Physics
Volume:
119
Issue:
8
ISSN:
0021-8979
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Rheo-NMR velocimetry was used to study shear banding of a 6 wt.% cetylpyridinium chloride (CPCl) worm-like micelle solution under shear startup conditions with and without pre-shear. 1D velocity profiles across the fluid gap of a concentric cylinder Couette shear cell were measured every 1 s following shear startup for four different applied shear rates within the stress plateau. Fitting of the velocity profiles allowed calculation of the shear banding characteristics (shear rates in the high and low shear band, the interface position and apparent slip at the inner rotating wall) as the flow transitioned from transient to steady state regimes. Characteristic timescales to reach steady state were obtained and found to be similar for all shear banding characteristics. Timescales decreased with increasing applied shear rate. Large temporal fluctuations with time were also observed and Fourier transform of the time and velocity autocorrelation functions quantified the fluctuation frequencies. Frequencies corresponded to the elastically driven hydrodynamic instabilities,i.e.vortices, that are known to occur in the unstable high shear band and were dependent upon both applied shear rate and the pre-shear protocol. 
    more » « less
  2. We perform numerical experiments of damped quasi-dynamic fault slip that include a rate-and-state behavior at steady state to simulate earthquakes and a plastic rheology to model permanent strain. The model shear zone has a finite width which represents a natural fault zone. Here we reproduce fast and slow events that follow theoretical and observational scaling relationships for earthquakes and slow slip events (SSEs). We show that the transition between fast and slow slip occurs when the friction drop in the shear zone is equal to a critical value, Δμc. With lower friction drops, SSEs use nearly all of mechanical work to accumulate inelastic strain, while with higher friction drops fast slips use some of the mechanical work to slip frictionally. Our new formulation replaces the state evolution of rate and state by the stress evolution concurrent with accumulation of permanent damage in and around a fault zone. 
    more » « less
  3. Abstract The southern San Andreas fault is in its interseismic period, occasionally releasing some stored elastic strain during triggered slow slip events (SSEs) at <2.5 km depth. A distinct, shallowly exhumed gouge defines the fault and is present at SSE depths. To evaluate if this material can host SSEs, we characterize its mineralogy, microstructures, and frictional behavior with water‐saturated deformation experiments near‐in situ conditions, and we compare laboratory healing rates to natural SSEs. Our results show that slip localizes along clay surfaces in both laboratory and natural settings. The gouge is weak (coefficient of friction of ∼0.29), exhibits low healing rates (<0.001/decade), and transitions from unstable to stable behavior at slip rates above ∼1 μm/s. Healing rate and friction drop data from laboratory instabilities are comparable to geodetically‐constrained values for SSEs. Collective observations indicate this gouge could host shallow SSEs and/or localize slip facilitating dynamic rupture propagation to the surface. 
    more » « less
  4. Seismic and geodetic observations show that slow slip events (SSEs) in subduction zones can happen at all temporal and spatial scales and propagate at various velocities. Observation of rapid tremor reversals indicates back‐propagating fronts traveling much faster than the main rupture front. Heterogeneity of fault properties, such as fault roughness, is a ubiquitous feature often invoked to explain this complex behavior, but how roughness affects SSEs is poorly understood. Here we use quasi‐dynamic seismic cycle simulations to model SSEs on a rough fault, using normal stress perturbations as a proxy for roughness and assuming rate‐and‐state friction, with velocity‐weakening friction at low slip rate and velocity‐strengthening at high slip rate. SSEs exhibit temporal clustering, large variations in rupture length and propagation speed, and back‐propagating fronts at different scales. We identify a mechanism for back propagation: as ruptures propagate through low‐normal stress regions, a rapid increase in slip velocity combined with rate‐strengthening friction induces stress oscillations at the rupture tip, and the subsequent “delayed stress drop” induces secondary back‐propagating fronts. Moreover, on rough faults with fractal elevation profiles, the transition from pulse to crack can also lead to the re‐rupture of SSEs due to local variations in the level of heterogeneity. Our study provides a possible mechanism for the complex evolution of SSEs inferred from geophysical observations and its link to fault roughness. 
    more » « less
  5. "Important physical observations in rupture dynamics such as static fault friction, short-slip, self-healing, and supershear phenomenon in cracks are studied. A continuum model of rupture dynamics is developed using the field dislocation mechanics (FDM) theory. The energy density function in our model encodes accepted and simple physical facts related to rocks and granular materials under compression. We work within a 2-dimensional ansatz of FDM where the rupture front is allowed to move only in a horizontal fault layer sandwiched between elastic blocks. Damage via the degradation of elastic modulus is allowed to occur only in the fault layer, characterized by the amount of plastic slip. The theory dictates the evolution equation of the plastic shear strain to be a Hamilton-Jacobi (H-J) equation, resulting in the representation of a propagating rupture front. A Central-Upwind scheme is used to solve the H-J equation. The rupture propagation is fully coupled to elastodynamics in the whole domain, and our simulations recover static friction laws as emergent features of our continuum model, without putting in by hand any such discontinuous criteria in our model. Estimates of material parameters of cohesion and friction angle are deduced. Short-slip and slip-weakening (crack-like) behaviors are also reproduced as a function of the degree of damage behind the rupture front. The long-time behavior of a moving rupture front is probed, and it is deduced that the equilibrium profiles under no shear stress are not traveling wave profiles under non-zero shear load in our model. However, it is shown that a traveling wave structure is likely attained in the limit of long times. Finally, a crack-like damage front is driven by an initial impact loading, and it is observed in our numerical simulations that an upper bound to the crack speed is the dilatational wave speed of the material unless the material is put under pre-stressed conditions, in which case supersonic motion can be obtained. Without pre-stress, intersonic (supershear) motion is recovered under appropriate conditions." 
    more » « less