skip to main content


Title: Simulation of slip transients and earthquakes in finite thickness shear zones with a plastic formulation
We perform numerical experiments of damped quasi-dynamic fault slip that include a rate-and-state behavior at steady state to simulate earthquakes and a plastic rheology to model permanent strain. The model shear zone has a finite width which represents a natural fault zone. Here we reproduce fast and slow events that follow theoretical and observational scaling relationships for earthquakes and slow slip events (SSEs). We show that the transition between fast and slow slip occurs when the friction drop in the shear zone is equal to a critical value, Δμc. With lower friction drops, SSEs use nearly all of mechanical work to accumulate inelastic strain, while with higher friction drops fast slips use some of the mechanical work to slip frictionally. Our new formulation replaces the state evolution of rate and state by the stress evolution concurrent with accumulation of permanent damage in and around a fault zone.  more » « less
Award ID(s):
1722650
PAR ID:
10104321
Author(s) / Creator(s):
Date Published:
Journal Name:
Nature communications
Volume:
9
ISSN:
2041-1723
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Fluids influence fault zone strength and the occurrence of earthquakes, slow slip events, and aseismic slip. We introduce an earthquake sequence model with fault zone fluid transport, accounting for elastic, viscous, and plastic porosity evolution, with permeability having a power‐law dependence on porosity. Fluids, sourced at a constant rate below the seismogenic zone, ascend along the fault. While the modeling is done for a vertical strike‐slip fault with 2D antiplane shear deformation, the general behavior and processes are anticipated to apply also to subduction zones. The model produces large earthquakes in the seismogenic zone, whose recurrence interval is controlled in part by compaction‐driven pressurization and weakening. The model also produces a complex sequence of slow slip events (SSEs) beneath the seismogenic zone. The SSEs are initiated by compaction‐driven pressurization and weakening and stalled by dilatant suctions. Modeled SSE sequences include long‐term events lasting from a few months to years and very rapid short‐term events lasting for only a few days; slip is ∼1–10 cm. Despite ∼1–10 MPa pore pressure changes, porosity and permeability changes are small and hence fluid flux is relatively constant except in the immediate vicinity of slip fronts. This contrasts with alternative fault valving models that feature much larger changes in permeability from the evolution of pore connectivity. Our model demonstrates the important role that compaction and dilatancy have on fluid pressure and fault slip, with possible relevance to slow slip events in subduction zones and elsewhere.

     
    more » « less
  2. Abstract

    Tectonic faults fail through a spectrum of slip modes, ranging from slow aseismic creep to rapid slip during earthquakes. Understanding the seismic radiation emitted during these slip modes is key for advancing earthquake science and earthquake hazard assessment. In this work, we use laboratory friction experiments instrumented with ultrasonic sensors to document the seismic radiation properties of slow and fast laboratory earthquakes. Stick‐slip experiments were conducted at a constant loading rate of 8 μm/s and the normal stress was systematically increased from 7 to 15 MPa. We produced a full spectrum of slip modes by modulating the loading stiffness in tandem with the fault zone normal stress. Acoustic emission data were recorded continuously at 5 MHz. We demonstrate that the full continuum of slip modes radiate measurable high‐frequency energy between 100 and 500 kHz, including the slowest events that have peak fault slip rates <100 μm/s. The peak amplitude of the high‐frequency time‐domain signals scales systematically with fault slip velocity. Stable sliding experiments further support the connection between fault slip rate and high‐frequency radiation. Experiments demonstrate that the origin of the high‐frequency energy is fundamentally linked to changes in fault slip rate, shear strain, and breaking of contact junctions within the fault gouge. Our results suggest that having measurements close to the fault zone may be key for documenting seismic radiation properties and fully understanding the connection between different slip modes.

     
    more » « less
  3. Seismic and geodetic observations show that slow slip events (SSEs) in subduction zones can happen at all temporal and spatial scales and propagate at various velocities. Observation of rapid tremor reversals indicates back‐propagating fronts traveling much faster than the main rupture front. Heterogeneity of fault properties, such as fault roughness, is a ubiquitous feature often invoked to explain this complex behavior, but how roughness affects SSEs is poorly understood. Here we use quasi‐dynamic seismic cycle simulations to model SSEs on a rough fault, using normal stress perturbations as a proxy for roughness and assuming rate‐and‐state friction, with velocity‐weakening friction at low slip rate and velocity‐strengthening at high slip rate. SSEs exhibit temporal clustering, large variations in rupture length and propagation speed, and back‐propagating fronts at different scales. We identify a mechanism for back propagation: as ruptures propagate through low‐normal stress regions, a rapid increase in slip velocity combined with rate‐strengthening friction induces stress oscillations at the rupture tip, and the subsequent “delayed stress drop” induces secondary back‐propagating fronts. Moreover, on rough faults with fractal elevation profiles, the transition from pulse to crack can also lead to the re‐rupture of SSEs due to local variations in the level of heterogeneity. Our study provides a possible mechanism for the complex evolution of SSEs inferred from geophysical observations and its link to fault roughness. 
    more » « less
  4. Abstract

    Fault-zone fluids control effective normal stress and fault strength. While most earthquake models assume a fixed pore fluid pressure distribution, geologists have documented fault valving behavior, that is, cyclic changes in pressure and unsteady fluid migration along faults. Here we quantify fault valving through 2-D antiplane shear simulations of earthquake sequences on a strike-slip fault with rate-and-state friction, upward Darcy flow along a permeable fault zone, and permeability evolution. Fluid overpressure develops during the interseismic period, when healing/sealing reduces fault permeability, and is released after earthquakes enhance permeability. Coupling between fluid flow, permeability and pressure evolution, and slip produces fluid-driven aseismic slip near the base of the seismogenic zone and earthquake swarms within the seismogenic zone, as ascending fluids pressurize and weaken the fault. This model might explain observations of late interseismic fault unlocking, slow slip and creep transients, swarm seismicity, and rapid pressure/stress transmission in induced seismicity sequences.

     
    more » « less
  5. Recent seismic and geodetic observations indicate that interseismic creep rate varies in both time and space. The spatial extent of creep pinpoints locked asperities, while its temporary accelerations, known as slow-slip events, may trigger earthquakes. Although the conditions promoting fault creep are well-studied, the mechanisms for initiating episodic slow-slip events are enigmatic. Here we investigate surface deformation measured by radar interferometry along the central San Andreas Fault between 2003 and 2010 to constrain the temporal evolution of creep. We show that slow-slip events are ensembles of localized creep bursts that aseismically rupture isolated fault compartments. Using a rate-and-state friction model, we show that effective normal stress is temporally variable on the fault, and support this using seismic observations. We propose that compaction-driven elevated pore fluid pressure in the hydraulically isolated fault zone and subsequent frictional dilation cause the observed slow-slip episodes. We further suggest that the 2004 Mw 6 Parkfield earthquake might have been triggered by a slow-slip event, which increased the Coulomb failure stress by up to 0.45 bar per year. This implies that while creeping segments are suggested to act as seismic rupture barriers, slow-slip events on these zones might promote seismicity on adjacent locked segments. 
    more » « less