skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Evaluation of Direct Collocation Optimal Control Problem Formulations for Solving the Muscle Redundancy Problem
Estimation of muscle forces during motion involves solving an indeterminate problem (more unknown muscle forces than joint moment constraints), frequently via optimization methods. When the dynamics of muscle activation and contraction are modeled for consistency with muscle physiology, the resulting optimization problem is dynamic and challenging to solve. This study sought to identify a robust and computationally efficient formulation for solving these dynamic optimization problems using direct collocation optimal control methods. Four problem formulations were investigated for walking based on both a two and three dimensional model. Formulations differed in the use of either an explicit or implicit representation of contraction dynamics with either muscle length or tendon force as a state variable. The implicit representations introduced additional controls defined as the time derivatives of the states, allowing the nonlinear equations describing contraction dynamics to be imposed as algebraic path constraints, simplifying their evaluation. Problem formulation affected computational speed and robustness to the initial guess. The formulation that used explicit contraction dynamics with muscle length as a state failed to converge in most cases. In contrast, the two formulations that used implicit contraction dynamics converged to an optimal solution in all cases for all initial guesses, with tendon force as a state generally being the fastest. Future work should focus on comparing the present approach to other approaches for computing muscle forces. The present approach lacks some of the major limitations of established methods such as static optimization and computed muscle control while remaining computationally efficient.  more » « less
Award ID(s):
1404767
PAR ID:
10017194
Author(s) / Creator(s):
; ; ;
Date Published:
Journal Name:
Annals of Biomedical Engineering
ISSN:
0090-6964
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Mechanical forces play a critical role in tendon development and function, influencing cell behavior through mechanotransduction signaling pathways and subsequent extracellular matrix (ECM) remodeling. Here, we investigate the molecular mechanisms by which tenocytes in developing zebrafish embryos respond to muscle contraction forces during the onset of swimming and cranial muscle activity. Using genome-wide bulk RNA sequencing of FAC-sorted tenocytes we identify novel tenocyte markers and genes involved in tendon mechanotransduction. Embryonic tendons show dramatic changes in expression ofmatrix remodeling associated 5b(mxra5b),matrilin 1(matn1), and the transcription factorkruppel-like factor 2a(klf2a), as muscles start to contract. Using embryos paralyzed either by loss of muscle contractility or neuromuscular stimulation we confirm that muscle contractile forces influence the spatial and temporal expression patterns of all three genes. Quantification of these gene expression changes across tenocytes at multiple tendon entheses and myotendinous junctions reveals that their responses depend on force intensity, duration, and tissue stiffness. These force-dependent feedback mechanisms in tendons, particularly in the ECM, have important implications for improved treatments of tendon injuries and atrophy. 
    more » « less
  2. Abstract Cerebrovascular accidents like a stroke can affect the lower limb as well as upper extremity joints (i.e., shoulder, elbow, or wrist) and hinder the ability to produce necessary torque for activities of daily living. In such cases, muscles’ ability to generate forces reduces, thus affecting the joint’s torque production. Understanding how muscles generate forces is a key element to injury detection. Researchers have developed several computational methods to obtain muscle forces and joint torques. Electromyography (EMG) driven modeling is one of the approaches to estimate muscle forces and obtain joint torques from muscle activity measurements. Musculoskeletal models and EMG-driven models require necessary muscle-specific parameters for the calculation. The focus of this study is to investigate the EMG-driven approach along with an upper extremity musculoskeletal model to determine muscle forces of two major muscle groups, biceps brachii and triceps brachii, consisting of seven muscle-tendon units. Estimated muscle forces are used to determine the elbow joint torque. Experimental EMG signals and motion capture data are collected for a healthy subject. The musculoskeletal model is scaled to match the geometric parameters of the subject. Then, the approach calculates muscle forces and joint moment for two tasks: simple elbow flexion extension and triceps kickback. Individual muscle forces and net joint torques for both tasks are estimated. The study also has compared the effect of muscle-tendon parameters (optimal fiber length and tendon slack length) on the estimated results. 
    more » « less
  3. Continuum robots suffer large deflections due to internal and external forces. Accurate modeling of their passive compliance is necessary for accurate environmental interaction, especially in scenarios where direct force sensing is not practical. This paper focuses on deriving analytic formulations for the compliance of continuum robots that can be modeled as Kirchhoff rods. Compared to prior works, the approach presented herein is not subject to the constant-curvature assumptions to derive the configuration space compliance, and we do not rely on computationally-expensive finite difference approximations to obtain the task space compliance. Using modal approximations over curvature space and Lie group integration, we obtain closed-form expressions for the task and configuration space compliance matrices of continuum robots, thereby bridging the gap between constant-curvature analytic formulations of configuration space compliance and variable curvature task space compliance. We first present an analytic expression for the compliance of aingle Kirchhoff rod.We then extend this formulation for computing both the task space and configuration space compliance of a tendon-actuated continuum robot. We then use our formulation to study the tradeoffs between computation cost and modeling accuracy as well as the loss in accuracy from neglecting the Jacobian derivative term in the compliance model. Finally, we experimentally validate the model on a tendon-actuated continuum segment, demonstrating the model’s ability to predict passive deflections with error below 11.5% percent of total arc length. 
    more » « less
  4. Abstract Proprioceptive sensory feedback is crucial for the control of movement. In many ways, sensorimotor control loops in the neuromuscular system act as state feedback controllers. These controllers combine input commands and sensory feedback regarding the mechanical state of the muscle, joint or limb to modulate the mechanical output of the muscles. To understand how these control circuits function, it is necessary to understand fully the mechanical state variables that are signalled by proprioceptive sensory (propriosensory) afferents. Using new computational approaches, we demonstrate how combinations of group Ia and II muscle spindle afferent feedback can allow for tuned responses to force and the rate of force (or length and velocity) and how combinations of muscle spindle and Golgi tendon organ feedback can parse external and internal (self‐generated) force. These models suggest that muscle spindle feedback might be used to monitor and control muscle forces in addition to length and velocity and, when combined with tendon organ feedback, can distinguish self‐generated from externally imposed forces. Given that these models combine feedback from different sensory afferent types, they emphasize the utility of analysing muscle propriosensors as an integrated population, rather than independently, to gain a better understanding of propriosensory–motor control. Furthermore, these models propose a framework that links neural connectivity in the spinal cord with neuromechanical control. Although considerable work has been done on propriosensory–motor pathways in the CNS, our aim is to build upon this work by emphasizing the mechanical context. 
    more » « less
  5. ABSTRACT Hill-type muscle models are widely used, even though they do not accurately represent the relationship between activation and force in dynamic contractions. We explored the use of neural networks as an alternative approach to capture features of dynamic muscle function, without a priori assumptions about force–length–velocity relationships. We trained neural networks using an existing dataset of two guinea fowl muscles to estimate muscle force from activation, fascicle length and velocity. Training data were recorded using sonomicrometry, electromyography and a tendon buckle. First, we compared the neural networks with Hill-type muscle models, using the same data for network training and model optimization. Second, we trained neural networks on larger datasets, in a more realistic machine learning scenario. We found that neural networks generally yielded higher coefficients of determination and lower errors than Hill-type muscle models. Neural networks performed better when estimating forces on the muscle used for training, but on another bird, than on a different muscle of the same bird, likely due to inaccuracies in activation and force scaling. We extracted force–length and force–velocity relationships from the trained neural networks and found that both effects were underestimated and the relationships were not well replicated outside the training data distribution. We discuss suggested experimental designs and the challenge of collecting suitable training data. Given a suitable training dataset, neural networks could provide a useful alternative to Hill-type muscle models, particularly for modeling muscle dynamics in faster movements; however, scaling of the training data should be comparable between muscles and animals. 
    more » « less