Communication: Direct measurements of nascent O(3P0,1,2) fine-structure distributions and branching ratios of correlated spin-orbit resolved product channels CO(ã3Π; v) + O(3P0,1,2) and CO($\tilde X{}^1\Sigma ^ + $X̃Σ+1; v) + O(3P0,1,2) in VUV photodissociation of CO2
- Award ID(s):
- 1301501
- PAR ID:
- 10017871
- Date Published:
- Journal Name:
- The Journal of Chemical Physics
- Volume:
- 140
- Issue:
- 23
- ISSN:
- 0021-9606
- Page Range / eLocation ID:
- 231101
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
Abstract Initially, vanadium dioxide seems to be an ideal first-order phase transition case study due to its deceptively simple structure and composition, but upon closer inspection there are nuances to the driving mechanism of the metal-insulator transition (MIT) that are still unexplained. In this study, a local structure analysis across a bulk powder tungsten-substitution series is utilized to tease out the nuances of this first-order phase transition. A comparison of the average structure to the local structure using synchrotron x-ray diffraction and total scattering pair-distribution function methods, respectively, is discussed as well as comparison to bright field transmission electron microscopy imaging through a similar temperature-series as the local structure characterization. Extended x-ray absorption fine structure fitting of thin film data across the substitution-series is also presented and compared to bulk. Machine learning technique, non-negative matrix factorization, is applied to analyze the total scattering data. The bulk MIT is probed through magnetic susceptibility as well as differential scanning calorimetry. The findings indicate the local transition temperature ($$T_c$$ ) is less than the average$$T_c$$ supporting the Peierls-Mott MIT mechanism, and demonstrate that in bulk powder and thin-films, increasing tungsten-substitution instigates local V-oxidation through the phase pathway VO$$_2\, \rightarrow$$ V$$_6$$ O$$_{13} \, \rightarrow$$ V$$_2$$ O$$_5$$ .more » « less
-
Heterogeneously catalyzed reactions over transition metal surfaces are pillars of chemical industry and account for a significant fraction of the global energy demand. CO oxidation provides insight into the relative reactivity of various oxygenaceous surface phases, and it is necessary to first understand where it binds to the surface and the nature of the local environment to develop robust mechanistic pictures of the reaction. Surface IR spectroscopy is a quantitative technique that also provides information about the binding sites and chemical environments of the adsorbed CO molecules. Here, we report results from a study of CO sticking to clean Rh(111) and (2 × 1)-O/Rh(111) that shows that the intensity of the IR absorption was not linear with coverage and is an important consideration for further studies of the catalytic surface.more » « less
-
Abstract Framework oxide materials are well-known for exhibiting not only negative thermal expansion (NTE), but also demonstrating thermal expansion that can be controlled using composition as a tuning parameter. In this work, we study the intrinsic thermal expansion properties of Co2V2O7, which has shown bulk linear NTE, and attempt to understand how substituting Ni2+for Co2+will affect the thermal expansion. The isomorphic solid solution is synthesized through solid-state methods and characterized using x-ray diffraction (XRD), diffuse reflectance spectroscopy, and neutron diffraction. The size difference between Ni2+and Co2+as well as the polyhedral volume of each Co2+metal coordination environment in the crystal structure allows Ni2+to partially be directed toward one crystallographic site over the other. Variable temperature synchrotron XRD data are employed to understand intrinsic thermal expansion. Across the solid solution, no intrinsic NTE is observed at the microscopic level, yet a degree of tunability in the thermal expansion coefficient with Ni substitution is demonstrated. The disparities between the intrinsic and bulk thermal expansion properties suggest that a morphological mechanism may have resulted in NTE in the bulk.more » « less