skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Application of Graph Sparsification in Developing Parallel Algorithms for Updating Dynamic Networks
Analyzing large dynamic networks is an important problem with applications in a wide range of disciplines. A key operation is updating the network properties as its topology changes. In this paper we present graph sparsification as an efficient abstraction for updating the properties of dynamic networks. We demonstrate the applicability of graph sparsification in updating the connected components in random and scalefree networks on shared memory systems. Our results show that the updating is scalable (10X on 16 processors for larger networks). To the best of our knowledge this is the first parallel implementation of graph sparsification. Based on these initial results, we discuss how the current implementation can be further improved and how graph sparsification can be applied to updating other network properties.  more » « less
Award ID(s):
1533881
PAR ID:
10017953
Author(s) / Creator(s):
; ;
Date Published:
Journal Name:
Graph Algorithms Building Blocks (GABB’2016)
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    Recent spectral graph sparsification techniques have shown promising performance in accelerating many numerical and graph algorithms, such as iterative methods for solving large sparse matrices, spectral partitioning of undirected graphs, vectorless verification of power/thermal grids, representation learning of large graphs, etc. However, prior spectral graph sparsification methods rely on fast Laplacian matrix solvers that are usually challenging to implement in practice. This work, for the first time, introduces a solver-free approach (SF-GRASS) for spectral graph sparsification by leveraging emerging spectral graph coarsening and graph signal processing (GSP) techniques. We introduce a local spectral embedding scheme for efficiently identifying spectrally-critical edges that are key to preserving graph spectral properties, such as the first few Laplacian eigenvalues and eigenvectors. Since the key kernel functions in SF-GRASS can be efficiently implemented using sparse-matrix-vector-multiplications (SpMVs), the proposed spectral approach is simple to implement and inherently parallel friendly. Our extensive experimental results show that the proposed method can produce a hierarchy of high-quality spectral sparsifiers in nearly-linear time for a variety of real-world, large-scale graphs and circuit networks when compared with prior state-of-the-art spectral methods. 
    more » « less
  2. Computing the single-source shortest path (SSSP) is one of the fundamental graph algorithms, and is used in many applications. Here, we focus on computing SSSP on large dynamic graphs, i.e. graphs whose structure evolves with time. We posit that instead of recomputing the SSSP for each set of changes on the dynamic graphs, it is more efficient to update the results based only on the region of change. To this end, we present a novel two-step shared-memory algorithm for updating SSSP on weighted large-scale graphs. The key idea of our algorithm is to identify changes, such as vertex/edge addition and deletion, that affect the shortest path computations and update only the parts of the graphs affected by the change. We provide the proof of correctness of our proposed algorithm. Our experiments on real and synthetic networks demonstrate that our algorithm is as much as 4X faster compared to computing SSSP with Galois, a state-of-the-art parallel graph analysis software for shared memory architectures. We also demonstrate how increasing the asynchrony can lead to even faster updates. To the best of our knowledge, this is one of the first practical parallel algorithms for updating networks on shared-memory systems, that is also scalable to large networks. 
    more » « less
  3. Cherifi, Hocine; Donduran, Murat; Rocha, Luis; Cherifi, Chantal; Varol, Onur (Ed.)
    This paper introduces a novel framework for graph sparsification that preserves the essential learning attributes of original graphs, improving computational efficiency and reducing complexity in learning algorithms. We refer to these sparse graphs as “learning backbones.” Our approach leverages the zero-forcing (ZF) phenomenon, a dynamic process on graphs with applications in network control. The key idea is to generate a tree from the original graph that retains critical dynamical properties. By correlating these properties with learning attributes, we construct effective learning backbones. We evaluate the performance of our ZF-based backbones in graph classification tasks across eight datasets and six baseline models. The results demonstrate that our method outperforms existing techniques. Additionally, we explore extensions using node distance metrics to further enhance the framework’s utility. 
    more » « less
  4. This paper introduces a novel framework for graph sparsification that preserves the essential learning attributes of original graphs, improving computational efficiency and reducing complexity in learning algorithms. We refer to these sparse graphs as ``learning backbones.'' Our approach leverages the zero-forcing (ZF) phenomenon, a dynamic process on graphs with applications in network control. The key idea is to generate a tree from the original graph that retains critical dynamical properties. By correlating these properties with learning attributes, we construct effective learning backbones. We evaluate the performance of our ZF-based backbones in graph classification tasks across eight datasets and six baseline models. The results demonstrate that our method outperforms existing techniques. Additionally, we explore extensions using node distance metrics to further enhance the framework's utility. 
    more » « less
  5. null (Ed.)
    Graph compression or sparsification is a basic information-theoretic and computational question. A major open problem in this research area is whether $$(1+\epsilon)$$-approximate cut-preserving vertex sparsifiers with size close to the number of terminals exist. As a step towards this goal, we initiate the study of a thresholded version of the problem: for a given parameter $$c$$, find a smaller graph, which we call \emph{connectivity-$$c$$ mimicking network}, which preserves connectivity among $$k$$ terminals exactly up to the value of $$c$$. We show that connectivity-$$c$$ mimicking networks of size $O(kc^4)$ exist and can be found in time $$m(c\log n)^{O(c)}$$. We also give a separate algorithm that constructs such graphs of size $$k \cdot O(c)^{2c}$$ in time $$mc^{O(c)}\log^{O(1)}n$$. These results lead to the first offline data structures for answering fully dynamic $$c$$-edge-connectivity queries for $$c \ge 4$$ in polylogarithmic time per query as well as more efficient algorithms for survivable network design on bounded treewidth graphs. 
    more » « less