skip to main content


Title: Arm-in-Arm Response Regulator Dimers Promote Intermolecular Signal Transduction
ABSTRACT Bacteriophytochrome photoreceptors (BphPs) and their cognate response regulators make up two-component signal transduction systems which direct bacteria to mount phenotypic responses to changes in environmental light quality. Most of these systems utilize single-domain response regulators to transduce signals through unknown pathways and mechanisms. Here we describe the photocycle and autophosphorylation kinetics of RtBphP1, a red light-regulated histidine kinase from the desert bacterium Ramlibacter tataouinensis . RtBphP1 undergoes red to far-red photoconversion with rapid thermal reversion to the dark state. RtBphP1 is autophosphorylated in the dark; this activity is inhibited under red light. The RtBphP1 cognate response regulator, the R. tataouinensis bacteriophytochrome response regulator (RtBRR), and a homolog, AtBRR from Agrobacterium tumefaciens , crystallize unexpectedly as arm-in-arm dimers, reliant on a conserved hydrophobic motif, hFWAhL (where h is a hydrophobic M, V, L, or I residue). RtBRR and AtBRR dimerize distinctly from four structurally characterized phytochrome response regulators found in photosynthetic organisms and from all other receiver domain homodimers in the Protein Data Bank. A unique cacodylate-zinc-histidine tag metal organic framework yielded single-wavelength anomalous diffraction phases and may be of general interest. Examination of the effect of the BRR stoichiometry on signal transduction showed that phosphorylated RtBRR is accumulated more efficiently than the engineered monomeric RtBRR (RtBRR mon ) in phosphotransfer reactions. Thus, we conclude that arm-in-arm dimers are a relevant signaling intermediate in this class of two-component regulatory systems. IMPORTANCE BphP histidine kinases and their cognate response regulators comprise widespread red light-sensing two-component systems. Much work on BphPs has focused on structural understanding of light sensing and on enhancing the natural infrared fluorescence of these proteins, rather than on signal transduction or the resultant phenotypes. To begin to address this knowledge gap, we solved the crystal structures of two single-domain response regulators encoded by a region immediately downstream of that encoding BphPs. We observed a previously unknown arm-in-arm dimer linkage. Monomerization via deletion of the C-terminal dimerization motif had an inhibitory effect on net response regulator phosphorylation, underlining the importance of these unusual dimers for signal transduction.  more » « less
Award ID(s):
1518160
NSF-PAR ID:
10018462
Author(s) / Creator(s):
; ; ; ;
Date Published:
Journal Name:
Journal of Bacteriology
Volume:
198
Issue:
8
ISSN:
0021-9193
Page Range / eLocation ID:
1218 to 1229
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. ABSTRACT Vibrio cholerae controls the pathogenicity of interactions with arthropod hosts via the activity of the CrbS/R two-component system. This signaling pathway regulates the consumption of acetate, which in turn alters the relative virulence of interactions with arthropods, including Drosophila melanogaster . CrbS is a histidine kinase that links a transporter-like domain to its signaling apparatus via putative STAC and PAS domains. CrbS and its cognate response regulator are required for the expression of acetyl coenzyme A (acetyl-CoA) synthetase (product of acs ), which converts acetate to acetyl-CoA. We demonstrate that the STAC domain of CrbS is required for signaling in culture; without it, acs transcription is reduced in LB medium, and V. cholerae cannot grow on acetate minimal media. However, the strain remains virulent toward Drosophila and expresses acs similarly to the wild type during infection. This suggests that there is a unique signal or environmental variable that modulates CrbS in the gastrointestinal tract of Drosophila . Second, we present evidence in support of CrbR, the response regulator that interacts with CrbS, binding directly to the acs promoter, and we identify a region of the promoter that CrbR may target. We further demonstrate that nutrient signals, together with the cAMP receptor protein (CRP)-cAMP system, control acs transcription, but regulation may occur indirectly, as CRP-cAMP activates the expression of the crbS and crbR genes. Finally, we define the role of the Pta-AckA system in V. cholerae and identify redundancy built into acetate excretion pathways in this pathogen. IMPORTANCE CrbS is a member of a unique family of sensor histidine kinases, as its structure suggests that it may link signaling to the transport of a molecule. However, mechanisms through which CrbS senses and communicates information about the outside world are unknown. In the Vibrionaceae , orthologs of CrbS regulate acetate metabolism, which can, in turn, affect interactions with host organisms. Here, we situate CrbS within a larger regulatory framework, demonstrating that crbS is regulated by nutrient-sensing systems. Furthermore, CrbS domains may play various roles in signaling during infection and growth in culture, suggesting a unique mechanism of host recognition. Finally, we define the roles of additional pathways in acetate flux, as a foundation for further studies of this metabolic nexus point. 
    more » « less
  2. ABSTRACT His-Asp phosphorelay (also known as two-component signal transduction) proteins are the predominant mechanism used in most bacteria to control behavior in response to changing environmental conditions. In addition to systems consisting of a simple two-component system utilizing an isolated histidine kinase/response regulator pair, some bacteria are enriched in histidine kinases that serve as signal integration proteins; these kinases are usually characterized by noncanonical domain architecture, and the responses that they regulate may be difficult to identify. The environmental bacterium Myxococcus xanthus is highly enriched in these noncanonical histidine kinases. M. xanthus is renowned for a starvation-induced multicellular developmental program in which some cells are induced to aggregate into fruiting bodies and then differentiate into environmentally resistant spores. Here, we characterize the M. xanthus orphan hybrid histidine kinase SinK (Mxan_4465), which consists of a histidine kinase transmitter followed by two receiver domains (REC 1 and REC 2 ). Nonphosphorylatable sinK mutants were analyzed under two distinct developmental conditions and using a new high-resolution developmental assay. These assays revealed that SinK autophosphorylation and REC 1 impact the onset of aggregation and/or the mobility of aggregates, while REC 2 impacts sporulation efficiency. SinK activity is controlled by a genus-specific hypothetical protein (SinM; Mxan_4466). We propose that SinK serves to fine-tune fruiting body morphology in response to environmental conditions. IMPORTANCE Biofilms are multicellular communities of microorganisms that play important roles in host disease or environmental biofouling. Design of preventative strategies to block biofilms depends on understanding the molecular mechanisms used by microorganisms to build them. The production of biofilms in bacteria often involves two-component signal transduction systems in which one protein component (a kinase) detects an environmental signal and, through phosphotransfer, activates a second protein component (a response regulator) to change the transcription of genes necessary to produce a biofilm. We show that an atypical kinase, SinK, modulates several distinct stages of specialized biofilm produced by the environmental bacterium Myxococcus xanthus . SinK likely integrates multiple signals to fine-tune biofilm formation in response to distinct environmental conditions. 
    more » « less
  3. ABSTRACT Two-component sensory (TCS) systems link microbial physiology to the environment and thus may play key roles in biogeochemical cycles. In this study, we surveyed the TCS systems of 328 diverse marine bacterial species. We identified lifestyle traits such as copiotrophy and diazotrophy that are associated with larger numbers of TCS system genes within the genome. We compared marine bacterial species with 1,152 reference bacterial species from a variety of habitats and found evidence of extra response regulators in marine genomes. Examining the location of TCS genes along the circular bacterial genome, we also found that marine bacteria have a large number of “orphan” genes, as well as many hybrid histidine kinases. The prevalence of “extra” response regulators, orphan genes, and hybrid TCS systems suggests that marine bacteria break with traditional understanding of how TCS systems operate. These trends suggest prevalent regulatory networking, which may allow coordinated physiological responses to multiple environmental signals and may represent a specific adaptation to the marine environment. We examine phylogenetic and lifestyle traits that influence the number and structure of two-component systems in the genome, finding, for example, that a lack of two-component systems is a hallmark of oligotrophy. Finally, in an effort to demonstrate the importance of TCS systems to marine biogeochemistry, we examined the distribution of Prochlorococcus/Synechococcus response regulator PMT9312_0717 in metaproteomes of the tropical South Pacific. We found that this protein’s abundance is related to phosphate concentrations, consistent with a putative role in phosphate regulation. IMPORTANCE Marine microbes must manage variation in their chemical, physical, and biological surroundings. Because they directly link bacterial physiology to environmental changes, TCS systems are crucial to the bacterial cell. This study surveyed TCS systems in a large number of marine bacteria and identified key phylogenetic and lifestyle patterns in environmental sensing. We found evidence that, in comparison with bacteria as a whole, marine organisms have irregular TCS system constructs which might represent an adaptation specific to the marine environment. Additionally, we demonstrate the biogeochemical relevance of TCS systems by correlating the presence of the PMT9312_0717 response regulator protein to phosphate concentrations in the South Pacific. We highlight that despite their potential ecological and biogeochemical relevance, TCS systems have been understudied in the marine ecosystem. This report expands our understanding of the breadth of bacterial TCS systems and how marine bacteria have adapted to survive in their unique environment. 
    more » « less
  4. DiRita, V. J. (Ed.)
    ABSTRACT

    CbrA is a DivJ/PleC-like histidine kinase of DivK that is required for cell cycle progression and symbiosis in the alphaproteobacteriumSinorhizobium meliloti. Loss ofcbrAresults in increased levels of CtrA as well as its phosphorylation. While many of the knownCaulobacter crescentusregulators of CtrA phosphorylation and proteolysis are phylogenetically conserved withinS. meliloti, the latter lacks the PopA regulator that is required for CtrA degradation inC. crescentus. In order to investigate whether CtrA proteolysis occurs inS. meliloti, CtrA stability was assessed. During exponential growth, CtrA is unstable and therefore likely to be degraded in a cell cycle-regulated manner. Loss ofcbrAsignificantly increases CtrA stability, but this phenotype is restored to that of the wild type by constitutive ectopic expression of a CpdR1 variant that cannot be phosphorylated (CpdR1D53A). Addition of CpdR1D53Afully suppressescbrAmutant cell cycle defects, consistent with regulation of CtrA stability playing a key role in mediating proper cell cycle progression inS. meliloti. Importantly, thecbrAmutant symbiosis defect is also suppressed in the presence of CpdR1D53A. Thus, regulation of CtrA stability by CbrA and CpdR1 is associated with free-living cell cycle outcomes and symbiosis.

    IMPORTANCEThe cell cycle is a fundamental process required for bacterial growth, reproduction, and developmental differentiation. Our objective is to understand how a two-component signal transduction network directs cell cycle events during free-living growth and host colonization. TheSinorhizobium melilotinitrogen-fixing symbiosis with plants is associated with novel cell cycle events. This study identifies a link between the regulated stability of an essential response regulator, free-living cell cycle progression, and symbiosis.

     
    more » « less
  5. Abstract

    KdpD/KdpE two‐component signaling system regulates expression of a high affinity potassium transporter responsible for potassium homeostasis. The C‐terminal module of KdpD consists of a GAF domain linked to a histidine kinase domain. Whereas certain GAF domains act as regulators by binding cyclic nucleotides, the role of the juxtamembrane GAF domain in KdpD is unknown. We report the high‐resolution crystal structure of KdpD GAF domain (KdpDG) consisting of five α‐helices, four β‐sheets and two large loops. KdpDGforms a symmetry‐related dimer, wherein parallelly arranged monomers contribute to a four‐helix bundle at the dimer‐interface, SAXS analysis of KdpD C‐terminal module reveals an elongated structure that is a dimer in solution. Substitution of conserved residues with various residues that disrupt the dimer interface produce a range of effects on gene expression demonstrating the importance of the interface in inactive to active transitions during signaling. Comparison of ligand binding site of the classic cyclic nucleotide‐binding GAF domains to KdpDGreveals structural differences arising from naturally occurring substitutions in primary sequence of KdpDGthat modifies the canonical NKFDE sequence motif required for cyclic nucleotide binding. Together these results suggest a structural role for KdpDGin dimerization and transmission of signal to the kinase domain.

     
    more » « less