Histidine kinases (HKs) are sensor proteins found ubiquitously in prokaryotes. They are the first protein in two-component systems (TCSs), signaling pathways that respond to a myriad of environmental stimuli. TCSs are typically comprised of a HK and its cognate response regulator (RR) which often acts as a transcription factor. RRs will bind DNA and ultimately lead to a cellular response. These cellular outputs vary widely, but HKs are particularly interesting as they are tied to antibiotic resistance and virulence pathways in pathogenic bacteria, making them promising drug targets. We anticipate that HK inhibitors could serve as either standalone antibiotics or antivirulence therapies. Additionally, while the cellular response mediated by the HKs is often well-characterized, very little is known about which stimuli trigger the sensor kinase to begin the phosphorylation cascade. Studying HK activity and enrichment of active HKs through activity-based protein profiling will enable these stimuli to be elucidated, filling this fundamental gap in knowledge. Here, we describe methods to evaluate the potency of putative HK inhibitors in addition to methods to calculate kinetic parameters of various activity-based probes designed for the HKs.
more »
« less
ELIHKSIR Web Server: Evolutionary Links Inferred for Histidine Kinase Sensors Interacting with Response Regulators
Two-component systems (TCS) are signaling machinery that consist of a histidine kinases (HK) and response regulator (RR). When an environmental change is detected, the HK phosphorylates its cognate response regulator (RR). While cognate interactions were considered orthogonal, experimental evidence shows the prevalence of crosstalk interactions between non-cognate HK–RR pairs. Currently, crosstalk interactions have been demonstrated for TCS proteins in a limited number of organisms. By providing specificity predictions across entire TCS networks for a large variety of organisms, the ELIHKSIR web server assists users in identifying interactions for TCS proteins and their mutants. To generate specificity scores, a global probabilistic model was used to identify interfacial couplings and local fields from sequence information. These couplings and local fields were then used to construct Hamiltonian scores for positions with encoded specificity, resulting in the specificity score. These methods were applied to 6676 organisms available on the ELIHKSIR web server. Due to the ability to mutate proteins and display the resulting network changes, there are nearly endless combinations of TCS networks to analyze using ELIHKSIR. The functionality of ELIHKSIR allows users to perform a variety of TCS network analyses and visualizations to support TCS research efforts.
more »
« less
- Award ID(s):
- 1943442
- PAR ID:
- 10300761
- Date Published:
- Journal Name:
- Entropy
- Volume:
- 23
- Issue:
- 2
- ISSN:
- 1099-4300
- Page Range / eLocation ID:
- 170
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Spiers, Andrew (Ed.)Introduction:Two-component response systems (TCRS) are the main mechanism by which prokaryotes acclimate to changing environments. These systems are composed of a membrane bound histidine kinase (HK) that senses external signals and a response regulator (RR) that activates transcription of response genes. Despite their known role in acclimation, little is known about the role TCRS play in environmental adaptation. Several experimental evolution studies have shown the acquisition of mutations in TCRS during adaptation, therefore here we set out to characterize the adaptive mechanism resulting from these mutations and evaluate whether single nucleotide changes in one gene could induce variable genotype-by-environment (GxE) interactions. Methods:To do this, we assessed fitness changes and differential gene expression for four adaptive mutations incusS, the gene that encodes the HK CusS,acquired byEscherichia coliduring silver adaptation. Results:Fitness assays showed that as the environment changed, each mutant displayed a unique fitness profile with greatest fitness in the original selection environment. RNAseq then indicated that, in ± silver nitrate, each mutant induces a primary response that upregulatescusS,its RRcusR, and constitutively expresses the target response genescusCFBA. This then induces a secondary response via differential expression of genes regulated by the CusR through TCRS crosstalk. Finally, each mutant undergoes fitness tuning through unique tertiary responses that result in gene expression patterns specific for the genotype, the environment and optimized for the original selection conditions. Discussion:This three-step response shows that different mutations in a single gene leads to individualized phenotypes governed by unique GxE interactions that not only contribute to transcriptional divergence but also to phenotypic plasticity.more » « less
-
ABSTRACT Two-component sensory (TCS) systems link microbial physiology to the environment and thus may play key roles in biogeochemical cycles. In this study, we surveyed the TCS systems of 328 diverse marine bacterial species. We identified lifestyle traits such as copiotrophy and diazotrophy that are associated with larger numbers of TCS system genes within the genome. We compared marine bacterial species with 1,152 reference bacterial species from a variety of habitats and found evidence of extra response regulators in marine genomes. Examining the location of TCS genes along the circular bacterial genome, we also found that marine bacteria have a large number of “orphan” genes, as well as many hybrid histidine kinases. The prevalence of “extra” response regulators, orphan genes, and hybrid TCS systems suggests that marine bacteria break with traditional understanding of how TCS systems operate. These trends suggest prevalent regulatory networking, which may allow coordinated physiological responses to multiple environmental signals and may represent a specific adaptation to the marine environment. We examine phylogenetic and lifestyle traits that influence the number and structure of two-component systems in the genome, finding, for example, that a lack of two-component systems is a hallmark of oligotrophy. Finally, in an effort to demonstrate the importance of TCS systems to marine biogeochemistry, we examined the distribution of Prochlorococcus/Synechococcus response regulator PMT9312_0717 in metaproteomes of the tropical South Pacific. We found that this protein’s abundance is related to phosphate concentrations, consistent with a putative role in phosphate regulation. IMPORTANCE Marine microbes must manage variation in their chemical, physical, and biological surroundings. Because they directly link bacterial physiology to environmental changes, TCS systems are crucial to the bacterial cell. This study surveyed TCS systems in a large number of marine bacteria and identified key phylogenetic and lifestyle patterns in environmental sensing. We found evidence that, in comparison with bacteria as a whole, marine organisms have irregular TCS system constructs which might represent an adaptation specific to the marine environment. Additionally, we demonstrate the biogeochemical relevance of TCS systems by correlating the presence of the PMT9312_0717 response regulator protein to phosphate concentrations in the South Pacific. We highlight that despite their potential ecological and biogeochemical relevance, TCS systems have been understudied in the marine ecosystem. This report expands our understanding of the breadth of bacterial TCS systems and how marine bacteria have adapted to survive in their unique environment.more » « less
-
ABSTRACT Bacteriophytochrome photoreceptors (BphPs) and their cognate response regulators make up two-component signal transduction systems which direct bacteria to mount phenotypic responses to changes in environmental light quality. Most of these systems utilize single-domain response regulators to transduce signals through unknown pathways and mechanisms. Here we describe the photocycle and autophosphorylation kinetics of RtBphP1, a red light-regulated histidine kinase from the desert bacterium Ramlibacter tataouinensis . RtBphP1 undergoes red to far-red photoconversion with rapid thermal reversion to the dark state. RtBphP1 is autophosphorylated in the dark; this activity is inhibited under red light. The RtBphP1 cognate response regulator, the R. tataouinensis bacteriophytochrome response regulator (RtBRR), and a homolog, AtBRR from Agrobacterium tumefaciens , crystallize unexpectedly as arm-in-arm dimers, reliant on a conserved hydrophobic motif, hFWAhL (where h is a hydrophobic M, V, L, or I residue). RtBRR and AtBRR dimerize distinctly from four structurally characterized phytochrome response regulators found in photosynthetic organisms and from all other receiver domain homodimers in the Protein Data Bank. A unique cacodylate-zinc-histidine tag metal organic framework yielded single-wavelength anomalous diffraction phases and may be of general interest. Examination of the effect of the BRR stoichiometry on signal transduction showed that phosphorylated RtBRR is accumulated more efficiently than the engineered monomeric RtBRR (RtBRR mon ) in phosphotransfer reactions. Thus, we conclude that arm-in-arm dimers are a relevant signaling intermediate in this class of two-component regulatory systems. IMPORTANCE BphP histidine kinases and their cognate response regulators comprise widespread red light-sensing two-component systems. Much work on BphPs has focused on structural understanding of light sensing and on enhancing the natural infrared fluorescence of these proteins, rather than on signal transduction or the resultant phenotypes. To begin to address this knowledge gap, we solved the crystal structures of two single-domain response regulators encoded by a region immediately downstream of that encoding BphPs. We observed a previously unknown arm-in-arm dimer linkage. Monomerization via deletion of the C-terminal dimerization motif had an inhibitory effect on net response regulator phosphorylation, underlining the importance of these unusual dimers for signal transduction.more » « less
-
Hydrogen sulfide (H2S) serves as an important gaseous signaling molecule that is involved in intra- and intercellular signal transduction in plant–environment interactions. In plants, H2S is formed in sulfate/cysteine reduction pathways. The activation of endogenous H2S and its exogenous application has been found to be highly effective in ameliorating a wide variety of stress conditions in plants. The H2S interferes with the cellular redox regulatory network and prevents the degradation of proteins from oxidative stress via post-translational modifications (PTMs). H2S-mediated persulfidation allows the rapid response of proteins in signaling networks to environmental stimuli. In addition, regulatory crosstalk of H2S with other gaseous signals and plant growth regulators enable the activation of multiple signaling cascades that drive cellular adaptation. In this review, we summarize and discuss the current understanding of the molecular mechanisms of H2S-induced cellular adjustments and the interactions between H2S and various signaling pathways in plants, emphasizing the recent progress in our understanding of the effects of H2S on the PTMs of proteins. We also discuss future directions that would advance our understanding of H2S interactions to ultimately mitigate the impacts of environmental stresses in the plants.more » « less
An official website of the United States government

